1
|
Qin R, Ma J, He F, Qin W. In-depth and high-throughput spatial proteomics for whole-tissue slice profiling by deep learning-facilitated sparse sampling strategy. Cell Discov 2025; 11:21. [PMID: 40064869 PMCID: PMC11894098 DOI: 10.1038/s41421-024-00764-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 12/25/2024] [Indexed: 03/14/2025] Open
Abstract
Mammalian organs and tissues are composed of heterogeneously distributed cells, which interact with each other and the extracellular matrix surrounding them in a spatially defined way. Therefore, spatially resolved gene expression profiling is crucial for determining the function and phenotypes of these cells. While genome mutations and transcriptome alterations act as drivers of diseases, the proteins that they encode regulate essentially all biological functions and constitute the majority of biomarkers and drug targets for disease diagnostics and treatment. However, unlike transcriptomics, which has a recent explosion in high-throughput spatial technologies with deep coverage, spatial proteomics capable of reaching bulk tissue-level coverage is still rare in the field, due to the non-amplifiable nature of proteins and sensitivity limitation of mass spectrometry (MS). More importantly, due to the limited multiplexing capability of the current proteomics methods, whole-tissue slice mapping with high spatial resolution requires a formidable amount of MS matching time. To achieve spatially resolved, deeply covered proteome mapping for centimeter-sized samples, we developed a sparse sampling strategy for spatial proteomics (S4P) using computationally assisted image reconstruction methods, which is potentially capable of reducing the number of samples by tens to thousands of times depending on the spatial resolution. In this way, we generated the largest spatial proteome to date, mapping more than 9000 proteins in the mouse brain, and discovered potential new regional or cell type markers. Considering its advantage in sensitivity and throughput, we expect that the S4P strategy will be applicable to a wide range of tissues in future studies.
Collapse
Affiliation(s)
- Ritian Qin
- School of Life Sciences, Tsinghua University, Beijing, Beijing, China
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Jiacheng Ma
- School of Life Sciences, Tsinghua University, Beijing, Beijing, China
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Fuchu He
- School of Life Sciences, Tsinghua University, Beijing, Beijing, China.
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| | - Weijie Qin
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| |
Collapse
|
2
|
Xie Y, Chen X, Xu M, Zheng X. Application of the Human Proteome in Disease, Diagnosis, and Translation into Precision Medicine: Current Status and Future Prospects. Biomedicines 2025; 13:681. [PMID: 40149657 PMCID: PMC11940125 DOI: 10.3390/biomedicines13030681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
This review summarizes the existing studies of human proteomics technology in the medical field with a focus on the development mechanism of a disease and its potential in discovering biomarkers. Through a systematic review of the relevant literature, we found the significant advantages and application scenarios of proteomics technology in disease diagnosis, drug development, and personalized treatment. However, the review also identifies the challenges facing proteomics technologies, including sample preparation of low-abundance proteins, massive amounts of data analysis, and how research results can be better used in clinical practice. Finally, this work discusses future research directions, including the development of more effective proteomics technologies, strengthening the integration of multi-source omics technologies, and promoting the application of AI in the human proteome.
Collapse
Affiliation(s)
| | | | - Maokai Xu
- Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou 350001, China; (Y.X.); (X.C.)
| | - Xiaochun Zheng
- Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou 350001, China; (Y.X.); (X.C.)
| |
Collapse
|
3
|
Xu X, Su J, Zhu R, Li K, Zhao X, Fan J, Mao F. From morphology to single-cell molecules: high-resolution 3D histology in biomedicine. Mol Cancer 2025; 24:63. [PMID: 40033282 DOI: 10.1186/s12943-025-02240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/18/2025] [Indexed: 03/05/2025] Open
Abstract
High-resolution three-dimensional (3D) tissue analysis has emerged as a transformative innovation in the life sciences, providing detailed insights into the spatial organization and molecular composition of biological tissues. This review begins by tracing the historical milestones that have shaped the development of high-resolution 3D histology, highlighting key breakthroughs that have facilitated the advancement of current technologies. We then systematically categorize the various families of high-resolution 3D histology techniques, discussing their core principles, capabilities, and inherent limitations. These 3D histology techniques include microscopy imaging, tomographic approaches, single-cell and spatial omics, computational methods and 3D tissue reconstruction (e.g. 3D cultures and spheroids). Additionally, we explore a wide range of applications for single-cell 3D histology, demonstrating how single-cell and spatial technologies are being utilized in the fields such as oncology, cardiology, neuroscience, immunology, developmental biology and regenerative medicine. Despite the remarkable progress made in recent years, the field still faces significant challenges, including high barriers to entry, issues with data robustness, ambiguous best practices for experimental design, and a lack of standardization across methodologies. This review offers a thorough analysis of these challenges and presents recommendations to surmount them, with the overarching goal of nurturing ongoing innovation and broader integration of cellular 3D tissue analysis in both biology research and clinical practice.
Collapse
Affiliation(s)
- Xintian Xu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rongyi Zhu
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Kailong Li
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaolu Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital)Key Laboratory of Assisted Reproduction (Peking University), Ministry of EducationBeijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China.
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory for Interdisciplinary Research in Gastrointestinal Oncology (BLGO), Beijing, China.
| |
Collapse
|
4
|
Kitata RB, Velickovic M, Xu Z, Zhao R, Scholten D, Chu RK, Orton DJ, Chrisler WB, Zhang T, Mathews JV, Bumgarner BM, Gursel DB, Moore RJ, Piehowski PD, Liu T, Smith RD, Liu H, Wasserfall CH, Tsai CF, Shi T. Robust collection and processing for label-free single voxel proteomics. Nat Commun 2025; 16:547. [PMID: 39805815 PMCID: PMC11730317 DOI: 10.1038/s41467-024-54643-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/18/2024] [Indexed: 01/16/2025] Open
Abstract
With advanced mass spectrometry (MS)-based proteomics, genome-scale proteome coverage can be achieved from bulk tissues. However, such bulk measurement lacks spatial resolution and obscures tissue heterogeneity, precluding proteome mapping of tissue microenvironment. Here we report an integrated wet collection of single microscale tissue voxels and Surfactant-assisted One-Pot voxel processing method termed wcSOP for robust label-free single voxel proteomics. wcSOP capitalizes on buffer droplet-assisted wet collection of single voxels dissected by LCM to the tube cap and SOP voxel processing in the same collection cap. This method enables reproducible, label-free quantification of approximately 900 and 4600 proteins for single voxels at 20 µm × 20 µm × 10 µm (~1 cell region) and 200 µm × 200 µm × 10 µm (~100 cell region) from fresh frozen human spleen tissue, respectively. It can reveal spatially resolved protein signatures and region-specific signaling pathways. Furthermore, wcSOP-MS is demonstrated to be broadly applicable for OCT-embedded and FFPE human archived tissues as well as for small-scale 2D proteome mapping of tissues at high spatial resolutions. wcSOP-MS may pave the way for routine robust single voxel proteomics and spatial proteomics.
Collapse
Affiliation(s)
- Reta Birhanu Kitata
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Marija Velickovic
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Zhangyang Xu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Rui Zhao
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - David Scholten
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Daniel J Orton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - William B Chrisler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Jeremy V Mathews
- Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Benjamin M Bumgarner
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Demirkan B Gursel
- Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Paul D Piehowski
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Huiping Liu
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Clive H Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| |
Collapse
|
5
|
Ryu T, Kim K, Asiimwe N, Na CH. Proteomic Insight Into Alzheimer's Disease Pathogenesis Pathways. Proteomics 2025:e202400298. [PMID: 39791267 DOI: 10.1002/pmic.202400298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Alzheimer's disease (AD) is a leading cause of dementia, but the pathogenesis mechanism is still elusive. Advances in proteomics have uncovered key molecular mechanisms underlying AD, revealing a complex network of dysregulated pathways, including amyloid metabolism, tau pathology, apolipoprotein E (APOE), protein degradation, neuroinflammation, RNA splicing, metabolic dysregulation, and cognitive resilience. This review examines recent proteomic findings from AD brain tissues and biological fluids, highlighting potential biomarkers and therapeutic targets. By examining the proteomic landscape of them, we aim to deepen our understanding of the disease and support developing precision medicine strategies for more effective interventions.
Collapse
Affiliation(s)
- Taekyung Ryu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kyungdo Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Asiimwe
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chan Hyun Na
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Sisó S, Kavirayani AM, Couto S, Stierstorfer B, Mohanan S, Morel C, Marella M, Bangari DS, Clark E, Schwartz A, Carreira V. Trends and Challenges of the Modern Pathology Laboratory for Biopharmaceutical Research Excellence. Toxicol Pathol 2025; 53:5-20. [PMID: 39673215 DOI: 10.1177/01926233241303898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2024]
Abstract
Pathology, a fundamental discipline that bridges basic scientific discovery to the clinic, is integral to successful drug development. Intrinsically multimodal and multidimensional, anatomic pathology continues to be empowered by advancements in molecular and digital technologies enabling the spatial tissue detection of biomolecules such as genes, transcripts, and proteins. Over the past two decades, breakthroughs in spatial molecular biology technologies and advancements in automation and digitization of laboratory processes have enabled the implementation of higher throughput assays and the generation of extensive molecular data sets from tissue sections in biopharmaceutical research and development research units. It is our goal to provide readers with some rationale, advice, and ideas to help establish a modern molecular pathology laboratory to meet the emerging needs of biopharmaceutical research. This manuscript provides (1) a high-level overview of the current state and future vision for excellence in research pathology practice and (2) shared perspectives on how to optimally leverage the expertise of discovery, toxicologic, and translational pathologists to provide effective spatial, molecular, and digital pathology data to support modern drug discovery. It captures insights from the experiences, challenges, and solutions from pathology laboratories of various biopharmaceutical organizations, including their approaches to troubleshooting and adopting new technologies.
Collapse
Affiliation(s)
- Sílvia Sisó
- AbbVie Bioresearch Center, Worcester, Massachusetts, USA
| | | | | | | | | | | | - Mathiew Marella
- Janssen Research & Development, LLC, La Jolla, California, USA
| | | | - Elizabeth Clark
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA
| | | | | |
Collapse
|
7
|
Xu Y, Wang X, Li Y, Mao Y, Su Y, Mao Y, Yang Y, Gao W, Fu C, Chen W, Ye X, Liang F, Bai P, Sun Y, Li S, Xu R, Tian R. Multimodal single cell-resolved spatial proteomics reveal pancreatic tumor heterogeneity. Nat Commun 2024; 15:10100. [PMID: 39572534 PMCID: PMC11582669 DOI: 10.1038/s41467-024-54438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
Despite the advances in antibody-guided cell typing and mass spectrometry-based proteomics, their integration is hindered by challenges for processing rare cells in the heterogeneous tissue context. Here, we introduce Spatial and Cell-type Proteomics (SCPro), which combines multiplexed imaging and flow cytometry with ion exchange-based protein aggregation capture technology to characterize spatial proteome heterogeneity with single-cell resolution. The SCPro is employed to explore the pancreatic tumor microenvironment and reveals the spatial alternations of over 5000 proteins by automatically dissecting up to 100 single cells guided by multi-color imaging of centimeter-scale formalin-fixed, paraffin-embedded tissue slide. To enhance cell-type resolution, we characterize the proteome of 14 different cell types by sorting up to 1000 cells from the same tumor, which allows us to deconvolute the spatial distribution of immune cell subtypes and leads to the discovery of subtypes of regulatory T cells. Together, the SCPro provides a multimodal spatial proteomics approach for profiling tissue proteome heterogeneity.
Collapse
Affiliation(s)
- Yanfen Xu
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Xi Wang
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
- Department of Oncology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Yuan Li
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Yiheng Mao
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Yiran Su
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Yize Mao
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Yun Yang
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Weina Gao
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Changying Fu
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Wendong Chen
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Xueting Ye
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Fuchao Liang
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China
| | - Panzhu Bai
- Department of System Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ying Sun
- Department of System Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Shengping Li
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Ruilian Xu
- Department of Oncology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Ruijun Tian
- State Key Laboratory of Medical Proteomics and Shenzhen Key Laboratory of Functional Proteomics, Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science and Guangming Advanced Research Institute, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
8
|
Egbejiogu BC, Donnarumma F, Murray KK. Infrared Laser Ablation and Capture of Formalin-Fixed Paraffin-Embedded Tissue. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39494617 DOI: 10.1021/jasms.4c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissue is a ubiquitous and invaluable resource for biomedical research and clinical applications. However, FFPE tissue proteomics is challenging due to protein cross-linking and chemical modification. Laser ablation sampling allows precise removal of material from tissue sections with high spatial control and reproducibility for offline proteomics by liquid chromatography coupled with tandem mass spectrometry. In this work, we used a pulsed mid-infrared laser for microsampling of rat liver tissue for subsequent identification and quantification of proteins. It was found that more proteins were identified by FFPE tissue laser ablation sampling compared to fresh frozen (FF) tissue laser ablation sampling and that more proteins were identified by laser ablation than by manual dissection of FFPE tissue. In contrast to previous studies, no loss of hydrophilic proteins due to residual cross-linking was observed. The efficient capture of proteins by laser ablation microsampling is attributed to efficient laser breakup of the tissue which facilitates downstream processing of the proteins.
Collapse
Affiliation(s)
- Blessing C Egbejiogu
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
9
|
Veličković M, Fillmore TL, Attah IK, Posso C, Pino JC, Zhao R, Williams SM, Veličković D, Jacobs JM, Burnum-Johnson KE, Zhu Y, Piehowski PD. Coupling Microdroplet-Based Sample Preparation, Multiplexed Isobaric Labeling, and Nanoflow Peptide Fractionation for Deep Proteome Profiling of the Tissue Microenvironment. Anal Chem 2024; 96:12973-12982. [PMID: 39089681 PMCID: PMC11325296 DOI: 10.1021/acs.analchem.4c00523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/09/2024] [Accepted: 05/16/2024] [Indexed: 08/04/2024]
Abstract
There is increasing interest in developing in-depth proteomic approaches for mapping tissue heterogeneity in a cell-type-specific manner to better understand and predict the function of complex biological systems such as human organs. Existing spatially resolved proteomics technologies cannot provide deep proteome coverage due to limited sensitivity and poor sample recovery. Herein, we seamlessly combined laser capture microdissection with a low-volume sample processing technology that includes a microfluidic device named microPOTS (microdroplet processing in one pot for trace samples), multiplexed isobaric labeling, and a nanoflow peptide fractionation approach. The integrated workflow allowed us to maximize proteome coverage of laser-isolated tissue samples containing nanogram levels of proteins. We demonstrated that the deep spatial proteomics platform can quantify more than 5000 unique proteins from a small-sized human pancreatic tissue pixel (∼60,000 μm2) and differentiate unique protein abundance patterns in pancreas. Furthermore, the use of the microPOTS chip eliminated the requirement for advanced microfabrication capabilities and specialized nanoliter liquid handling equipment, making it more accessible to proteomic laboratories.
Collapse
Affiliation(s)
- Marija Veličković
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Thomas L. Fillmore
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Isaac Kwame Attah
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Camilo Posso
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - James C. Pino
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Rui Zhao
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Sarah M. Williams
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Dušan Veličković
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Jon M. Jacobs
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Kristin E. Burnum-Johnson
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Ying Zhu
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Paul D. Piehowski
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
10
|
Xie L, Kong Q, Ai M, He A, Yao B, Zhang L, Zhang K, Zhu C, Li Y, Xia L, Tian R, Xu R. Spatial Proteomic Profiling of Colorectal Cancer Revealed Its Tumor Microenvironment Heterogeneity. J Proteome Res 2024; 23:3342-3352. [PMID: 39026393 DOI: 10.1021/acs.jproteome.3c00719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Colorectal cancer is a predominant malignancy with a second mortality worldwide. Despite its prevalence, therapeutic options remain constrained and surgical operation is still the most useful therapy. In this regard, a comprehensive spatially resolved quantitative proteome atlas was constructed to explore the functional proteomic landscape of colorectal cancer. This strategy integrates histopathological analysis, laser capture microdissection, and proteomics. Spatial proteome profiling of 200 tissue section samples facilitated by the fully integrated sample preparation technology SISPROT enabled the identification of more than 4000 proteins on the Orbitrap Exploris 240 from 2 mm2 × 10 μm tissue sections. Compared with normal adjacent tissues, we identified a spectrum of cancer-associated proteins and dysregulated pathways across various regions of colorectal cancer including ascending colon, transverse colon, descending colon, sigmoid colon, and rectum. Additionally, we conducted proteomic analysis on tumoral epithelial cells and paracancerous epithelium from early to advanced stages in hallmark rectum cancer and sigmoid colon cancer. Bioinformatics analysis revealed functional proteins and cell-type signatures associated with different regions of colorectal tumors, suggesting potential clinical implications. Overall, this study provides a comprehensive spatially resolved functional proteome landscape of colorectal cancer, serving as a valuable resource for exploring potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Lifen Xie
- Department of Oncology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 1017 Dongmen North Road, Shenzhen 518020, China
- The First Affiliated Hospital, Jinan University, 613 Huangpu Avenue West Road, Guangzhou 510632, China
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Qian Kong
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Meiling Ai
- Department of Oncology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 1017 Dongmen North Road, Shenzhen 518020, China
- The First Affiliated Hospital, Jinan University, 613 Huangpu Avenue West Road, Guangzhou 510632, China
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - An He
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Bin Yao
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Luobin Zhang
- Department of Oncology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 1017 Dongmen North Road, Shenzhen 518020, China
| | - Keren Zhang
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Chaowei Zhu
- Department of Gastrointestinal Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 1017 Dongmen North Road, Shenzhen 518020, China
| | - Yangqiu Li
- Department of Hematology, First Affiliated Hospital, Institute of Hematology, School of Medicine, Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, 613 Huangpu Avenue West Road, Guangzhou 510632, China
| | - Ligang Xia
- Department of Gastrointestinal Surgery, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 1017 Dongmen North Road, Shenzhen 518020, China
| | - Ruijun Tian
- Department of Chemistry, College of Science, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Ruilian Xu
- Department of Oncology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 1017 Dongmen North Road, Shenzhen 518020, China
| |
Collapse
|
11
|
Pang Z, Cravatt BF, Ye L. Deciphering Drug Targets and Actions with Single-Cell and Spatial Resolution. Annu Rev Pharmacol Toxicol 2024; 64:507-526. [PMID: 37722721 DOI: 10.1146/annurev-pharmtox-033123-123610] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Recent advances in chemical, molecular, and genetic approaches have provided us with an unprecedented capacity to identify drug-target interactions across the whole proteome and genome. Meanwhile, rapid developments of single-cell and spatial omics technologies are revolutionizing our understanding of the molecular architecture of biological systems. However, a significant gap remains in how we align our understanding of drug actions, traditionally based on molecular affinities, with the in vivo cellular and spatial tissue heterogeneity revealed by these newer techniques. Here, we review state-of-the-art methods for profiling drug-target interactions and emerging multiomics tools to delineate the tissue heterogeneity at single-cell resolution. Highlighting the recent technical advances enabling high-resolution, multiplexable in situ small-molecule drug imaging (clearing-assisted tissue click chemistry, or CATCH), we foresee the integration of single-cell and spatial omics platforms, data, and concepts into the future framework of defining and understanding in vivo drug-target interactions and mechanisms of actions.
Collapse
Affiliation(s)
- Zhengyuan Pang
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA;
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA;
| | - Li Ye
- Department of Neuroscience, The Scripps Research Institute, La Jolla, California, USA;
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
12
|
Joshi SK, Piehowski P, Liu T, Gosline SJC, McDermott JE, Druker BJ, Traer E, Tyner JW, Agarwal A, Tognon CE, Rodland KD. Mass Spectrometry-Based Proteogenomics: New Therapeutic Opportunities for Precision Medicine. Annu Rev Pharmacol Toxicol 2024; 64:455-479. [PMID: 37738504 PMCID: PMC10950354 DOI: 10.1146/annurev-pharmtox-022723-113921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Proteogenomics refers to the integration of comprehensive genomic, transcriptomic, and proteomic measurements from the same samples with the goal of fully understanding the regulatory processes converting genotypes to phenotypes, often with an emphasis on gaining a deeper understanding of disease processes. Although specific genetic mutations have long been known to drive the development of multiple cancers, gene mutations alone do not always predict prognosis or response to targeted therapy. The benefit of proteogenomics research is that information obtained from proteins and their corresponding pathways provides insight into therapeutic targets that can complement genomic information by providing an additional dimension regarding the underlying mechanisms and pathophysiology of tumors. This review describes the novel insights into tumor biology and drug resistance derived from proteogenomic analysis while highlighting the clinical potential of proteogenomic observations and advances in technique and analysis tools.
Collapse
Affiliation(s)
- Sunil K Joshi
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Paul Piehowski
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Tao Liu
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Sara J C Gosline
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Jason E McDermott
- Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Elie Traer
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Cristina E Tognon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Karin D Rodland
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA;
- Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
13
|
Truong T, Sanchez-Avila X, Webber KGI, Johnston SM, Kelly RT. Efficient and Sensitive Sample Preparation, Separations, and Data Acquisition for Label-Free Single-Cell Proteomics. Methods Mol Biol 2024; 2817:67-84. [PMID: 38907148 DOI: 10.1007/978-1-0716-3934-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
We describe a sensitive and efficient workflow for label-free single-cell proteomics that spans sample preparation, liquid chromatography separations, and mass spectrometry data acquisition. The Tecan Uno Single Cell Dispenser provides rapid cell isolation and nanoliter-volume reagent dispensing within 384-well PCR plates. A newly developed sample processing workflow achieves cell lysis, protein denaturation, and digestion in 1 h with a single reagent dispensing step. Low-flow liquid chromatography coupled with wide-window data-dependent acquisition results in the quantification of nearly 3000 proteins per cell using an Orbitrap Exploris 480 mass spectrometer. This approach greatly broadens accessibility to sensitive single-cell proteome profiling for nonspecialist laboratories.
Collapse
Affiliation(s)
- Thy Truong
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Ximena Sanchez-Avila
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Kei G I Webber
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - S Madisyn Johnston
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
14
|
Egbejiogu BC, Donnarumma F, Dong C, Murray KK. Infrared Laser Ablation and Capture of Biological Tissue. Methods Mol Biol 2024; 2817:9-18. [PMID: 38907143 DOI: 10.1007/978-1-0716-3934-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Sampling thin tissue sections with cellular precision can be accomplished using laser ablation microsampling for mass spectrometry analysis. In this work, the use of a pulsed mid-infrared (IR) laser for selecting small regions of interest (ROI) in tissue sections for offline liquid chromatography-tandem mass spectrometry (LC-MS/MS) is described. The laser is focused onto the tissue section, which is rastered as the laser is fired. The ablated tissue is captured in a microwell array and processed in situ through reduction, alkylation, and digestion with a low liquid volume workflow. The resulting peptides from areas as small as 0.01 mm2 containing 5 ng of protein are analyzed for protein identification and quantification using offline LC-MS/MS.
Collapse
Affiliation(s)
| | | | - Chao Dong
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
15
|
Xiang P, Liyu A, Kwon Y, Hu D, Williams SM, Veličković D, Markillie LM, Chrisler WB, Paša-Tolić L, Zhu Y. Spatial Proteomics toward Subcellular Resolution by Coupling Deep Ultraviolet Laser Ablation with Nanodroplet Sample Preparation. ACS MEASUREMENT SCIENCE AU 2023; 3:459-468. [PMID: 38145026 PMCID: PMC10740121 DOI: 10.1021/acsmeasuresciau.3c00033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/17/2023] [Accepted: 09/22/2023] [Indexed: 12/26/2023]
Abstract
Multiplexed molecular profiling of tissue microenvironments, or spatial omics, can provide critical insights into cellular functions and disease pathology. The coupling of laser microdissection with mass spectrometry-based proteomics has enabled deep and unbiased mapping of >1000 proteins. However, the throughput of laser microdissection is often limited due to tedious two-step procedures, sequential laser cutting, and sample collection. The two-step procedure also hinders the further improvement of spatial resolution to <10 μm as needed for subcellular proteomics. Herein, we developed a high-throughput and high-resolution spatial proteomics platform by seamlessly coupling deep ultraviolet (DUV) laser ablation (LA) with nanoPOTS (Nanodroplet Processing in One pot for Trace Samples)-based sample preparation. We demonstrated the DUV-LA system can quickly isolate and collect tissue samples at a throughput of ∼30 spots/min and a spatial resolution down to 2 μm from a 10 μm thick human pancreas tissue section. To improve sample recovery, we developed a proximity aerosol collection approach by placing DMSO droplets close to LA spots. We demonstrated the DUV-LA-nanoPOTS platform can detect an average of 1312, 1533, and 1966 proteins from ablation spots with diameters of 7, 13, and 19 μm, respectively. In a proof-of-concept study, we isolated and profiled two distinct subcellular regions of the pancreas tissue revealed by hematoxylin and eosin (H&E) staining. Quantitative proteomics revealed proteins specifically enriched to subcellular compartments.
Collapse
Affiliation(s)
- Piliang Xiang
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Andrey Liyu
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Yumi Kwon
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Dehong Hu
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Sarah M. Williams
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Dušan Veličković
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Lye Meng Markillie
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - William B. Chrisler
- Biological
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99354, United States
| | - Ljiljana Paša-Tolić
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Ying Zhu
- Department
of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
16
|
Navolić J, Moritz M, Voß H, Schlumbohm S, Schumann Y, Schlüter H, Neumann JE, Hahn J. Direct 3D Sampling of the Embryonic Mouse Head: Layer-wise Nanosecond Infrared Laser (NIRL) Ablation from Scalp to Cortex for Spatially Resolved Proteomics. Anal Chem 2023; 95:17220-17227. [PMID: 37956982 PMCID: PMC10688223 DOI: 10.1021/acs.analchem.3c02637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 11/21/2023]
Abstract
Common workflows in bottom-up proteomics require homogenization of tissue samples to gain access to the biomolecules within the cells. The homogenized tissue samples often contain many different cell types, thereby representing an average of the natural proteome composition, and rare cell types are not sufficiently represented. To overcome this problem, small-volume sampling and spatial resolution are needed to maintain a better representation of the sample composition and their proteome signatures. Using nanosecond infrared laser ablation, the region of interest can be targeted in a three-dimensional (3D) fashion, whereby the spatial information is maintained during the simultaneous process of sampling and homogenization. In this study, we ablated 40 μm thick consecutive layers directly from the scalp through the cortex of embryonic mouse heads and analyzed them by subsequent bottom-up proteomics. Extra- and intracranial ablated layers showed distinct proteome profiles comprising expected cell-specific proteins. Additionally, known cortex markers like SOX2, KI67, NESTIN, and MAP2 showed a layer-specific spatial protein abundance distribution. We propose potential new marker proteins for cortex layers, such as MTA1 and NMRAL1. The obtained data confirm that the new 3D tissue sampling and homogenization method is well suited for investigating the spatial proteome signature of tissue samples in a layerwise manner. Characterization of the proteome composition of embryonic skin and bone structures, meninges, and cortex lamination in situ enables a better understanding of molecular mechanisms of development during embryogenesis and disease pathogenesis.
Collapse
Affiliation(s)
- Jelena Navolić
- Research
Group Molecular Pathology in Neurooncology, Center for Molecular Neurobiology
(ZMNH), University Medical Center Hamburg−Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Manuela Moritz
- Section/Core
Facility Mass Spectrometry and Proteomics, Center for Diagnostics, University Medical Center Hamburg−Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Hannah Voß
- Section/Core
Facility Mass Spectrometry and Proteomics, Center for Diagnostics, University Medical Center Hamburg−Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Simon Schlumbohm
- High
Performance Computing, Helmut Schmidt University, Holstenhofweg 85, 22043 Hamburg, Germany
| | - Yannis Schumann
- High
Performance Computing, Helmut Schmidt University, Holstenhofweg 85, 22043 Hamburg, Germany
| | - Hartmut Schlüter
- Section/Core
Facility Mass Spectrometry and Proteomics, Center for Diagnostics, University Medical Center Hamburg−Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Julia E. Neumann
- Research
Group Molecular Pathology in Neurooncology, Center for Molecular Neurobiology
(ZMNH), University Medical Center Hamburg−Eppendorf, Falkenried 94, 20251 Hamburg, Germany
- Institute
of Neuropathology, University Medical Center
Hamburg−Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Jan Hahn
- Section/Core
Facility Mass Spectrometry and Proteomics, Center for Diagnostics, University Medical Center Hamburg−Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| |
Collapse
|
17
|
Matarèse BFE, Rusin A, Seymour C, Mothersill C. Quantum Biology and the Potential Role of Entanglement and Tunneling in Non-Targeted Effects of Ionizing Radiation: A Review and Proposed Model. Int J Mol Sci 2023; 24:16464. [PMID: 38003655 PMCID: PMC10671017 DOI: 10.3390/ijms242216464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
It is well established that cells, tissues, and organisms exposed to low doses of ionizing radiation can induce effects in non-irradiated neighbors (non-targeted effects or NTE), but the mechanisms remain unclear. This is especially true of the initial steps leading to the release of signaling molecules contained in exosomes. Voltage-gated ion channels, photon emissions, and calcium fluxes are all involved but the precise sequence of events is not yet known. We identified what may be a quantum entanglement type of effect and this prompted us to consider whether aspects of quantum biology such as tunneling and entanglement may underlie the initial events leading to NTE. We review the field where it may be relevant to ionizing radiation processes. These include NTE, low-dose hyper-radiosensitivity, hormesis, and the adaptive response. Finally, we present a possible quantum biological-based model for NTE.
Collapse
Affiliation(s)
- Bruno F. E. Matarèse
- Department of Haematology, University of Cambridge, Cambridge CB2 1TN, UK;
- Department of Physics, University of Cambridge, Cambridge CB2 1TN, UK
| | - Andrej Rusin
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.R.); (C.S.)
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.R.); (C.S.)
| | - Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.R.); (C.S.)
| |
Collapse
|
18
|
Dowling P, Swandulla D, Ohlendieck K. Mass Spectrometry-Based Proteomic Technology and Its Application to Study Skeletal Muscle Cell Biology. Cells 2023; 12:2560. [PMID: 37947638 PMCID: PMC10649384 DOI: 10.3390/cells12212560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Voluntary striated muscles are characterized by a highly complex and dynamic proteome that efficiently adapts to changed physiological demands or alters considerably during pathophysiological dysfunction. The skeletal muscle proteome has been extensively studied in relation to myogenesis, fiber type specification, muscle transitions, the effects of physical exercise, disuse atrophy, neuromuscular disorders, muscle co-morbidities and sarcopenia of old age. Since muscle tissue accounts for approximately 40% of body mass in humans, alterations in the skeletal muscle proteome have considerable influence on whole-body physiology. This review outlines the main bioanalytical avenues taken in the proteomic characterization of skeletal muscle tissues, including top-down proteomics focusing on the characterization of intact proteoforms and their post-translational modifications, bottom-up proteomics, which is a peptide-centric method concerned with the large-scale detection of proteins in complex mixtures, and subproteomics that examines the protein composition of distinct subcellular fractions. Mass spectrometric studies over the last two decades have decisively improved our general cell biological understanding of protein diversity and the heterogeneous composition of individual myofibers in skeletal muscles. This detailed proteomic knowledge can now be integrated with findings from other omics-type methodologies to establish a systems biological view of skeletal muscle function.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
19
|
Maffuid K, Cao Y. Decoding the Complexity of Immune-Cancer Cell Interactions: Empowering the Future of Cancer Immunotherapy. Cancers (Basel) 2023; 15:4188. [PMID: 37627216 PMCID: PMC10453128 DOI: 10.3390/cancers15164188] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The tumor and tumor microenvironment (TME) consist of a complex network of cells, including malignant, immune, fibroblast, and vascular cells, which communicate with each other. Disruptions in cell-cell communication within the TME, caused by a multitude of extrinsic and intrinsic factors, can contribute to tumorigenesis, hinder the host immune system, and enable tumor evasion. Understanding and addressing intercellular miscommunications in the TME are vital for combating these processes. The effectiveness of immunotherapy and the heterogeneous response observed among patients can be attributed to the intricate cellular communication between immune cells and cancer cells. To unravel these interactions, various experimental, statistical, and computational techniques have been developed. These include ligand-receptor analysis, intercellular proximity labeling approaches, and imaging-based methods, which provide insights into the distorted cell-cell interactions within the TME. By characterizing these interactions, we can enhance the design of cancer immunotherapy strategies. In this review, we present recent advancements in the field of mapping intercellular communication, with a particular focus on immune-tumor cellular interactions. By modeling these interactions, we can identify critical factors and develop strategies to improve immunotherapy response and overcome treatment resistance.
Collapse
Affiliation(s)
- Kaitlyn Maffuid
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
20
|
Kitata RB, Velickovic M, Xu Z, Zhao R, Scholten D, Chu RK, Orton DJ, Chrisler WB, Mathews JV, Piehowski PD, Liu T, Smith RD, Liu H, Wasserfall CH, Tsai CF, Shi T. Robust collection and processing for label-free single voxel proteomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553333. [PMID: 37645907 PMCID: PMC10462033 DOI: 10.1101/2023.08.14.553333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
With advanced mass spectrometry (MS)-based proteomics, genome-scale proteome coverage can be achieved from bulk tissues. However, such bulk measurement lacks spatial resolution and obscures important tissue heterogeneity, which make it impossible for proteome mapping of tissue microenvironment. Here we report an integrated wet collection of single tissue voxel and Surfactant-assisted One-Pot voxel processing method termed wcSOP for robust label-free single voxel proteomics. wcSOP capitalizes on buffer droplet-assisted wet collection of single tissue voxel dissected by LCM into the PCR tube cap and MS-compatible surfactant-assisted one-pot voxel processing in the collection cap. This convenient method allows reproducible label-free quantification of ∼900 and ∼4,600 proteins for single voxel from fresh frozen human spleen tissue at 20 μm × 20 μm × 10 μm (close to single cells) and 200 μm × 200 μm × 10 μm (∼100 cells), respectively. 100s-1000s of protein signatures with differential expression levels were identified to be spatially resolved between spleen red and white pulp regions depending on the voxel size. Region-specific signaling pathways were enriched from single voxel proteomics data. Antibody-based CODEX imaging was used to validate label-free MS quantitation for single voxel analysis. The wcSOP-MS method paves the way for routine robust single voxel proteomics and spatial proteomics.
Collapse
|
21
|
Gosline SJC, Veličković M, Pino JC, Day LZ, Attah IK, Swensen AC, Danna V, Posso C, Rodland KD, Chen J, Matthews CE, Campbell-Thompson M, Laskin J, Burnum-Johnson K, Zhu Y, Piehowski PD. Proteome Mapping of the Human Pancreatic Islet Microenvironment Reveals Endocrine-Exocrine Signaling Sphere of Influence. Mol Cell Proteomics 2023; 22:100592. [PMID: 37328065 PMCID: PMC10460696 DOI: 10.1016/j.mcpro.2023.100592] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/24/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023] Open
Abstract
The need for a clinically accessible method with the ability to match protein activity within heterogeneous tissues is currently unmet by existing technologies. Our proteomics sample preparation platform, named microPOTS (Microdroplet Processing in One pot for Trace Samples), can be used to measure relative protein abundance in micron-scale samples alongside the spatial location of each measurement, thereby tying biologically interesting proteins and pathways to distinct regions. However, given the smaller pixel/voxel number and amount of tissue measured, standard mass spectrometric analysis pipelines have proven inadequate. Here we describe how existing computational approaches can be adapted to focus on the specific biological questions asked in spatial proteomics experiments. We apply this approach to present an unbiased characterization of the human islet microenvironment comprising the entire complex array of cell types involved while maintaining spatial information and the degree of the islet's sphere of influence. We identify specific functional activity unique to the pancreatic islet cells and demonstrate how far their signature can be detected in the adjacent tissue. Our results show that we can distinguish pancreatic islet cells from the neighboring exocrine tissue environment, recapitulate known biological functions of islet cells, and identify a spatial gradient in the expression of RNA processing proteins within the islet microenvironment.
Collapse
Affiliation(s)
- Sara J C Gosline
- Pacific Northwest National Laboratories, Richland, Washington, USA
| | | | - James C Pino
- Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Le Z Day
- Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Isaac K Attah
- Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Adam C Swensen
- Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Vincent Danna
- Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Camilo Posso
- Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Karin D Rodland
- Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Jing Chen
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Clayton E Matthews
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Martha Campbell-Thompson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, USA
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA
| | | | - Ying Zhu
- Pacific Northwest National Laboratories, Richland, Washington, USA
| | - Paul D Piehowski
- Pacific Northwest National Laboratories, Richland, Washington, USA.
| |
Collapse
|
22
|
Veličković M, Fillmore TL, Attah K, Posso C, Pino JC, Zhao R, Williams SM, Veličković D, Jacobs JM, Burnum-Johnson KE, Zhu Y, Piehowski PD. Coupling microdroplet-based sample preparation, multiplexed isobaric labeling, and nanoflow peptide fractionation for deep proteome profiling of tissue microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.531822. [PMID: 36993277 PMCID: PMC10055005 DOI: 10.1101/2023.03.13.531822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
There is increasing interest in developing in-depth proteomic approaches for mapping tissue heterogeneity at a cell-type-specific level to better understand and predict the function of complex biological systems, such as human organs. Existing spatially resolved proteomics technologies cannot provide deep proteome coverages due to limited sensitivity and poor sample recovery. Herein, we seamlessly combined laser capture microdissection with a low-volume sample processing technology that includes a microfluidic device named microPOTS (Microdroplet Processing in One pot for Trace Samples), the multiplexed isobaric labelling, and a nanoflow peptide fractionation approach. The integrated workflow allowed to maximize proteome coverage of laser-isolated tissue samples containing nanogram proteins. We demonstrated the deep spatial proteomics can quantify more than 5,000 unique proteins from a small-sized human pancreatic tissue pixel (∼60,000 µm2) and reveal unique islet microenvironments.
Collapse
|
23
|
Li L, Sun C, Sun Y, Dong Z, Wu R, Sun X, Zhang H, Jiang W, Zhou Y, Cen X, Cai S, Xia H, Zhu Y, Guo T, Piatkevich KD. Spatially resolved proteomics via tissue expansion. Nat Commun 2022; 13:7242. [PMID: 36450705 PMCID: PMC9712279 DOI: 10.1038/s41467-022-34824-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
Spatially resolved proteomics is an emerging approach for mapping proteome heterogeneity of biological samples, however, it remains technically challenging due to the complexity of the tissue microsampling techniques and mass spectrometry analysis of nanoscale specimen volumes. Here, we describe a spatially resolved proteomics method based on the combination of tissue expansion with mass spectrometry-based proteomics, which we call Expansion Proteomics (ProteomEx). ProteomEx enables quantitative profiling of the spatial variability of the proteome in mammalian tissues at ~160 µm lateral resolution, equivalent to the tissue volume of 0.61 nL, using manual microsampling without the need for custom or special equipment. We validated and demonstrated the utility of ProteomEx for streamlined large-scale proteomics profiling of biological tissues including brain, liver, and breast cancer. We further applied ProteomEx for identifying proteins associated with Alzheimer's disease in a mouse model by comparative proteomic analysis of brain subregions.
Collapse
Affiliation(s)
- Lu Li
- grid.494629.40000 0004 8008 9315Research Center for Industries of the Future and School of Life Sciences, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang 310030 China ,grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang China ,grid.494629.40000 0004 8008 9315Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang China ,grid.13402.340000 0004 1759 700XCollege of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310024 Zhejiang China
| | - Cuiji Sun
- grid.494629.40000 0004 8008 9315Research Center for Industries of the Future and School of Life Sciences, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang 310030 China ,grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang China
| | - Yaoting Sun
- grid.494629.40000 0004 8008 9315Research Center for Industries of the Future and School of Life Sciences, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang 310030 China ,grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang China ,grid.494629.40000 0004 8008 9315Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang China
| | - Zhen Dong
- grid.494629.40000 0004 8008 9315Research Center for Industries of the Future and School of Life Sciences, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang 310030 China ,grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang China ,grid.494629.40000 0004 8008 9315Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang China
| | - Runxin Wu
- grid.494629.40000 0004 8008 9315Research Center for Industries of the Future and School of Life Sciences, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang 310030 China ,grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang China ,grid.494629.40000 0004 8008 9315Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang China ,grid.21107.350000 0001 2171 9311Whiting School of Engineering, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Xiaoting Sun
- grid.494629.40000 0004 8008 9315Research Center for Industries of the Future and School of Life Sciences, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang 310030 China ,grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang China
| | - Hanbin Zhang
- grid.494629.40000 0004 8008 9315Research Center for Industries of the Future and School of Life Sciences, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang 310030 China ,grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang China
| | - Wenhao Jiang
- grid.494629.40000 0004 8008 9315Research Center for Industries of the Future and School of Life Sciences, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang 310030 China ,grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang China ,grid.494629.40000 0004 8008 9315Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang China
| | - Yan Zhou
- grid.494629.40000 0004 8008 9315Research Center for Industries of the Future and School of Life Sciences, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang 310030 China ,grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang China ,grid.494629.40000 0004 8008 9315Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang China
| | - Xufeng Cen
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry & Molecular Medical Center, Zhejiang University School of Medicine, Hangzhou, 310058 China
| | - Shang Cai
- grid.494629.40000 0004 8008 9315Research Center for Industries of the Future and School of Life Sciences, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang 310030 China ,grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang China
| | - Hongguang Xia
- grid.13402.340000 0004 1759 700XDepartment of Biochemistry & Molecular Medical Center, Zhejiang University School of Medicine, Hangzhou, 310058 China ,grid.452661.20000 0004 1803 6319Research Center for Clinical Pharmacy & Key Laboratory for Drug Evaluation and Clinical Research of Zhejiang Province, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003 China ,grid.13402.340000 0004 1759 700XZhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121 China
| | - Yi Zhu
- grid.494629.40000 0004 8008 9315Research Center for Industries of the Future and School of Life Sciences, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang 310030 China ,grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang China ,grid.494629.40000 0004 8008 9315Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang China
| | - Tiannan Guo
- grid.494629.40000 0004 8008 9315Research Center for Industries of the Future and School of Life Sciences, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang 310030 China ,grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang China ,grid.494629.40000 0004 8008 9315Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang China
| | - Kiryl D. Piatkevich
- grid.494629.40000 0004 8008 9315Research Center for Industries of the Future and School of Life Sciences, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang 310030 China ,grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024 Zhejiang China
| |
Collapse
|
24
|
Woo J, Schoenfeld M, Sun X, Iraguha T, Zhou Z, Zhang Q. Mouse Paneth Cell-Enriched Proteome Enabled by Laser Capture Microdissection. J Proteome Res 2022; 21:2435-2442. [PMID: 36153828 PMCID: PMC9671084 DOI: 10.1021/acs.jproteome.2c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Paneth cells are antimicrobial peptide-secreting cells located at the base of the crypts of the small intestine. The proteome of Paneth cells is not well defined because of their coexistence with stem cells, making it difficult to culture Paneth cells alone in vitro. Using a simplified toluidine blue O method for staining mouse intestinal tissue, laser capture microdissection (LCM) to isolate cells from the crypt region, and surfactant-assisted one-pot protein digestion, we identified more than 1300 proteins from crypts equivalent to 18,000 cells. Compared with the proteomes of villi and smooth muscle regions, the crypt proteome is highly enriched in defensins, lysozymes, and other antimicrobial peptides that are characteristic of Paneth cells. The sensitivity of the LCM-based proteomics approach was also assessed using a smaller number of cell equivalent tissues: a comparable proteomic coverage can be achieved with 3600 cells. This work is the first proteomics study of intestinal tissue enriched with Paneth cells. The simplified workflow enables profiling of Paneth cell-associated pathological changes at the proteome level directly from frozen intestinal tissue. It may also be useful for proteomics studies of other spatially resolved cell types from other tissues.
Collapse
Affiliation(s)
- Jongmin Woo
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081
| | - Madeline Schoenfeld
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081
| | - Xinguo Sun
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081
| | - Thierry Iraguha
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081
- Department of Nutrition, University of North Carolina at Greensboro, Greensboro, NC 27402
| | - Qibin Zhang
- Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC 28081
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402
| |
Collapse
|
25
|
Raghunathan R, Turajane K, Wong LC. Biomarkers in Neurodegenerative Diseases: Proteomics Spotlight on ALS and Parkinson’s Disease. Int J Mol Sci 2022; 23:ijms23169299. [PMID: 36012563 PMCID: PMC9409485 DOI: 10.3390/ijms23169299] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 11/21/2022] Open
Abstract
Neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and Parkinson’s disease (PD) are both characterized by pathogenic protein aggregates that correlate with the progressive degeneration of neurons and the loss of behavioral functions. Both diseases lack biomarkers for diagnosis and treatment efficacy. Proteomics is an unbiased quantitative tool capable of the high throughput quantitation of thousands of proteins from minimal sample volumes. We review recent proteomic studies in human tissues, plasma, cerebrospinal fluid (CSF), and exosomes in ALS and PD that identify proteins with potential utility as biomarkers. Further, we review disease-related post-translational modifications in key proteins TDP43 in ALS and α-synuclein in PD studies, which may serve as biomarkers. We compare relative and absolute quantitative proteomic approaches in key biomarker studies in ALS and PD and discuss recent technological advancements which may identify suitable biomarkers for the early-diagnosis treatment efficacy of these diseases.
Collapse
|
26
|
Dong C, Donnarumma F, Murray KK. Infrared Laser Ablation Microsampling for Small Volume Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1003-1010. [PMID: 35536596 DOI: 10.1021/jasms.2c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Infrared (IR) laser ablation was used to remove localized tissue regions from which proteins were extracted and processed with a low volume sample preparation workflow for bottom-up proteomics by liquid chromatography tandem mass spectrometry (LC-MS/MS). A polytetrafluoroethylene (PTFE) coated glass slide with 2 mm diameter microwells was used to capture ablated rat brain tissue for in situ protein digestion with submicroliter solution volumes. The resulting peptides were analyzed with LC-MS/MS for protein identification and label-free quantification. The method was used to identify an average of 600, 1350, and 1900 proteins from ablation areas of 0.01, 0.04, and 0.1 mm2, respectively, from a 50 μm thick rat brain tissue section. Differential proteomics of 0.01 mm2 regions captured from cerebral cortex and corpus callosum was accomplished to demonstrate the capabilities of the approach.
Collapse
Affiliation(s)
- Chao Dong
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
27
|
Zheng Q, Guo Z, Chen Y. Capillary array electrophoresis imaging of biochemicals in tissue sections. Talanta 2022; 240:123183. [PMID: 34996017 DOI: 10.1016/j.talanta.2021.123183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 10/19/2022]
Abstract
It is of great significance to reveal the molecular distribution images in biological tissues, which has led to the bloom of mass spectrometry imaging. Unfortunately, its application is encountering the resistance of high technical barriers and equipment cost, as well as the inability to image substances that cannot be desorbed or ionized, or cannot be separated by their mass-to-charge ratios. Herein presented is a complementary and cost-effective method called capillary array electrophoresis (CAE) imaging. To have the information of molecules and their spatial location, a gridding cutter was fabricated to orderly dissect a tissue section into a leakproof array of micro wells enclosed by the grid-blade arrays. After in situ extraction and fluorophore-labeling of analytes, the samples in the wells were directly subjected to CAE-LIF (laser-induced fluorescence), and the molecular distribution images were depicted with the separated peaks. The practicability was demonstrated by CAE imaging of rat brain tissue sections with amino acid neurotransmitters (e.g., glutamine, 4-aminobutyric acid, alanine, glutamic acid and aspartic acid) as targets. The resultant images showed the global differences of molecular distributions, with a spatial resolution of 1000 μm that was presently determined by the well width but ultimately by the bore size of capillary (down to 10-50 μm). CAE imaging can hence be promising for its low cost, low technical barriers and abundant mechanisms to separate the charged and non-charged, chiral and non-chiral substances.
Collapse
Affiliation(s)
- Qingfeng Zheng
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenpeng Guo
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yi Chen
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Huaiyin Institute of Technology, Huaian, 223001, China; Beijing National Laboratory for Molecular Science, Beijing, 100190, China.
| |
Collapse
|
28
|
Lubeckyj RA, Sun L. Laser capture microdissection-capillary zone electrophoresis-tandem mass spectrometry (LCM-CZE-MS/MS) for spatially resolved top-down proteomics: a pilot study of zebrafish brain. Mol Omics 2022; 18:112-122. [PMID: 34935839 PMCID: PMC9066772 DOI: 10.1039/d1mo00335f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mass spectrometry (MS)-based spatially resolved top-down proteomics (TDP) of tissues is crucial for understanding the roles played by microenvironmental heterogeneity in the biological functions of organs and for discovering new proteoform biomarkers of diseases. There are few published spatially resolved TDP studies. One of the challenges relates to the limited performance of TDP for the analysis of spatially isolated samples using, for example, laser capture microdissection (LCM) because those samples are usually mass-limited. We present the first pilot study of LCM-capillary zone electrophoresis (CZE)-MS/MS for spatially resolved TDP and used zebrafish brain as the sample. The LCM-CZE-MS/MS platform employed a non-ionic detergent and a freeze-thaw method for efficient proteoform extraction from LCM isolated brain sections followed by CZE-MS/MS without any sample cleanup step, ensuring high sensitivity. Over 400 proteoforms were identified in a CZE-MS/MS analysis of one LCM brain section via consuming the protein content of roughly 250 cells. We observed drastic differences in proteoform profiles between two LCM brain sections isolated from the optic tectum (Teo) and telencephalon (Tel) regions. Proteoforms of three proteins (npy, penkb, and pyya) having neuropeptide hormone activity were exclusively identified in the isolated Tel section. Proteoforms of reticulon, myosin, and troponin were almost exclusively identified in the isolated Teo section, and those proteins play essential roles in visual and motor activities. The proteoform profiles accurately reflected the main biological functions of the Teo and Tel regions of the brain. Additionally, hundreds of post-translationally modified proteoforms were identified.
Collapse
Affiliation(s)
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI 48824, USA.
| |
Collapse
|
29
|
Sari B, Isik M, Eylem CC, Kilic C, Okesola BO, Karakaya E, Emregul E, Nemutlu E, Derkus B. Omics Technologies for High-Throughput-Screening of Cell-Biomaterial Interactions. Mol Omics 2022; 18:591-615. [DOI: 10.1039/d2mo00060a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent research effort in biomaterial development has largely focused on engineering bio-instructive materials to stimulate specific cell signaling. Assessing the biological performance of these materials using time-consuming and trial-and-error traditional...
Collapse
|