1
|
Huang J, Bastos-Arrieta J, Serrano N, Díaz-Cruz JM. Voltammetric Determination of Salbutamol, Sulfamethoxazole, and Trimethoprim as Anthropogenic Impact Indicators Using Commercial Screen-Printed Electrodes. SENSORS (BASEL, SWITZERLAND) 2025; 25:2998. [PMID: 40431793 PMCID: PMC12115316 DOI: 10.3390/s25102998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025]
Abstract
A voltammetric method based on the use of screen-printed carbon electrodes (SPCEs) is presented for the simultaneous determination of salbutamol (SAL), sulfamethoxazole (SMX), and trimethoprim (TMP), with high sensitivity, fast response, and excellent repeatability and reproducibility. Under the optimal voltammetric conditions, the simultaneous analysis showed linear ranges of 0.3-2.5 mg L-1, 0.3-11.1 mg L-1, and 0.5-9.0 mg L-1 for SAL, SMX, and TMP, respectively, and detection limits of 83.8 μg L-1, 88.7 μg L-1, and 139.2 μg L-1, respectively. Additionally, the developed method was successfully validated by the analysis of a spiked river water sample with satisfactory recovery values in the range of 97.0-98.8%. The added value of the presented method relays in combining cost-effective disposable SPCEs with rapid analysis (<30 s), providing portable electrochemical tools for the on-site monitoring of pharmaceutical residues, which is critical for addressing contamination linked to anthropogenic activity.
Collapse
Affiliation(s)
- Jing Huang
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona (UB), Martí i Franquès 1-11, 08028 Barcelona, Spain; (J.H.); (N.S.)
- Water Research Institute (IdRA), University of Barcelona (UB), Martí i Franquès 1-11, 08028-Barcelona, Spain
| | - Julio Bastos-Arrieta
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona (UB), Martí i Franquès 1-11, 08028 Barcelona, Spain; (J.H.); (N.S.)
- Water Research Institute (IdRA), University of Barcelona (UB), Martí i Franquès 1-11, 08028-Barcelona, Spain
| | - Núria Serrano
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona (UB), Martí i Franquès 1-11, 08028 Barcelona, Spain; (J.H.); (N.S.)
- Water Research Institute (IdRA), University of Barcelona (UB), Martí i Franquès 1-11, 08028-Barcelona, Spain
| | - José Manuel Díaz-Cruz
- Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona (UB), Martí i Franquès 1-11, 08028 Barcelona, Spain; (J.H.); (N.S.)
- Water Research Institute (IdRA), University of Barcelona (UB), Martí i Franquès 1-11, 08028-Barcelona, Spain
| |
Collapse
|
2
|
Ragumoorthy C, Nataraj N, Chen TW, Chen SM, Kiruthiga G, Lou BS, Al-Mohaimeed AM, Ali MA, Elshikh MS. Advanced detection of the protozoacide dimetridazole in complex fluids using cassiterite nanoparticles incorporated carbon black composite. Food Chem 2025; 470:142660. [PMID: 39742594 DOI: 10.1016/j.foodchem.2024.142660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/03/2025]
Abstract
Dimetridazole (DMT), a nitroimidazole used in veterinary medicine for treating protozoan infections, poses significant carcinogenic and mutagenic risks, necessitating precise monitoring to ensure food safety. We report the development of an advanced electrochemical sensor based on a glassy carbon electrode (GCE) modified with a nanostructured cassiterite (SnO2)/carbon black (CB) composite, synthesized via hydrothermal and sonochemical techniques. The sensor benefits from SnO2's high electrical conductivity, chemical stability, and large bandgap, while CB enhances its performance with superior conductivity. Characterization through various techniques confirmed the composite's nanostructured morphology with an average particle size of 18 nm. Electrochemical analyses revealed a limit of detection (LOD) of 0.004 μM, a limit of quantification (LOQ) of 0.011 μM, and a wide linear range from 0.29 to 204.6 μM. The sensor demonstrated excellent repeatability and reproducibility, with a relative standard deviation (RSD) of 1.6 % and 2.3 %. It also exhibited notable storage stability, retaining 95.8 % of its initial response after 12 days. Real sample analyses showed impressive recovery rates of 97.5 % to 106.4 % for DMT in complex fluids such as food products, biological fluids, synthetic fluids, and environmental samples.
Collapse
Affiliation(s)
- Chandini Ragumoorthy
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Nandini Nataraj
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom.
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - G Kiruthiga
- Department of Physics, Avinashilingam Institute for Home Science and Higher Education for Women, Tamil Nadu, Coimbatore 641 043, India
| | - Bih-Show Lou
- Chemistry Division, Center for General Education, Chang Gung University, Taoyuan 333, Taiwan; Department of Orthopaedic Surgery, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City 236, Taiwan.
| | - Amal M Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Felix MAJ, Ragumoorthy C, Chen TW, Chen SM, Kiruthiga G, Singh A, Ghazaryan K, Al-Mohaimeed AM, Elshikh MS. Fluid-specific detection of environmental pollutant moxifloxacin hydrochloride utilizing a rare-earth niobate decorated functionalized carbon nanofiber sensor platform. ENVIRONMENTAL RESEARCH 2025; 264:120349. [PMID: 39542161 DOI: 10.1016/j.envres.2024.120349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/03/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
The development of precise and efficient detection methods is essential for the real-time monitoring of antibiotics, especially in environmental and biological matrices. This study aims to address this challenge by introducing a novel electrochemical sensor for the targeted detection of moxifloxacin hydrochloride (MFN), a fourth-generation fluoroquinolone. The sensor is based on a holmium niobate (HNO) and functionalized carbon nanofiber (f-CNF) nanocomposite, synthesized via a hydrothermal approach and subsequently characterized for its structural and electrochemical properties. When deposited onto a glassy carbon electrode (GCE), the HNO/f-CNF nanocomposite demonstrated exceptional electrochemical performance, as assessed using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The sensor exhibited remarkable sensitivity, with a detection limit of 0.034 μM, a quantification limit of 0.11 μM, and a sensitivity of 0.69 μA μM-1 cm-2. It also achieved a broad linear detection range from 0.001 μM to 1166.11 μM, making it highly effective for MFN detection across various complex matrices, including environmental waters, biological fluids, and artificial saliva, with recovery rates between 98.15% and 101.75%. The novelty of this work lies in the unique combination of HNO's catalytic properties and f-CNF's enhanced electron transport, establishing a highly selective and sensitive platform for MFN detection. This sensor not only advances the field of electrochemical sensing but also offers a promising tool for real-time environmental and pharmaceutical monitoring.
Collapse
Affiliation(s)
- Mariya Antony John Felix
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Chandini Ragumoorthy
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London, SW7 2AZ, United Kingdom.
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan.
| | - G Kiruthiga
- Department of Physics, Avinashilingam Institute for Home Science and Higher Education for Women, Tamil Nadu, Coimbatore, 641 043, India
| | - Abhishek Singh
- Faculty of Biology, Yerevan State University, Yerevan, 0025, Armenia
| | - Karen Ghazaryan
- Faculty of Biology, Yerevan State University, Yerevan, 0025, Armenia
| | - Amal M Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
4
|
Qin Y, Xiao D, Gao X, Zhang X, Xu Y. Nanocubic cobalt-containing Prussian blue analogue-derived carbon-coated CoFe alloy nanoparticles for noninvasive uric acid sensing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2496-2504. [PMID: 38578053 DOI: 10.1039/d4ay00121d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
This work describes an electrochemical sensor for the fast noninvasive detection of uric acid (UA) in saliva. The sensing material was based on a cobalt-containing Prussian blue analogue (Na2-xCo[Fe(CN)6]1-y, PCF). By optimizing the ratio of Co and Fe as 1.5 : 1 in PCF (PCF1.5,0), particles with a regular nanocubic morphology were formed. The calcination of PCF1.5,0 produced a carbon-coated CoFe alloy (CCF1.5), which possessed abundant defects and achieved an excellent electrochemical performance. Subsequently, CCF1.5 was modified on a screen-printed carbon electrode (SPCE) to fabricate the electrochemical sensor, CCF1.5/SPCE, which showed a sensitive and selective response toward salivary UA owing to its good conductivity, sufficient surface active sites and efficient catalytic activity. The determination of UA in artificial saliva achieved the wide linear range of 40 nM-30 μM and the low limit of detection (LOD) of 15.3 nM (3σ/s of 3). The performances of the sensor including its reproducibility, stability and selectivity were estimated to be satisfactory. The content of UA in human saliva was determined and the recovery was in the range of 98-107% and the total RSD was 4.14%. The results confirmed the reliability of CCF1.5/SPCE for application in noninvasive detection.
Collapse
Affiliation(s)
- Yunting Qin
- School of Pharmacy, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, P. R. China
| | - Dan Xiao
- Institute of Advanced Study, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, P. R. China.
- College of Chemical Engineering, Sichuan University, No. 29 Wangjiang Road, Chengdu, P. R. China.
| | - Xilan Gao
- College of Food and Bioengineering, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, P. R. China
| | - Xicui Zhang
- Sichuan Institute of Product Quality Supervision & Inspection, No. 16, Xinmao Street, Chengdu, China.
| | - Yanxue Xu
- Institute of Advanced Study, Chengdu University, No. 2025, Chengluo Avenue, Chengdu, P. R. China.
| |
Collapse
|
5
|
Zhao T, Niu X, Pei WY, Ma JF. Thiacalix[4]arene-based metal-organic framework/reduced graphene oxide composite for electrochemical detection of chlorogenic acid. Anal Chim Acta 2023; 1276:341653. [PMID: 37573094 DOI: 10.1016/j.aca.2023.341653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/23/2023] [Indexed: 08/14/2023]
Abstract
A novel metal-organic framework [Co2LCl4]·2DMF (Co-L) based on thiacalix[4]arene derivative was synthesized using the solvothermal method. Then Co-L was respectively mixed with reduced graphene oxide (RGO), multi-walled carbon nanotubes (MWCNT) and mesoporous carbon (MC) to prepare corresponding composite materials. PXRD, SEM and N2 adsorption-desorption illustrated that composite materials have been successfully prepared. After optimizing experimental conditions for detecting chlorogenic acid (CGA), the Co-L@RGO(1:1) composite material showed the optimal electrocatalytic activity for CGA, which may be because RGO possessed large specific surface area and hydroxyl and carboxyl groups that could form hydrogen-bonding with the oxide of CGA. Benefiting from the synergetic effect of Co-L and RGO, the glassy carbon electrode modified with Co-L@RGO(1:1) (Co-L@RGO(1:1)/GCE) exhibited a low limit of detection (LOD) of 7.24 nM for CGA within the concentration of 0.1-2 μM and 2-20 μM. Co-L@RGO(1:1)/GCE also showed excellent selectivity, stability, and reproducibility for the CGA detection. Co-L@RGO(1:1)/GCE could detect the CGA in honeysuckle with satisfactory results. This work provided a great example for the thiacalix[4]arene-based MOF in the application of electrochemical sensors.
Collapse
Affiliation(s)
- Tong Zhao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xia Niu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Wen-Yuan Pei
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, 130024, China.
| | - Jian-Fang Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
6
|
Bas SZ, Cetiner R, Teke D, Ozmen M. A lab-made screen-printed sensing strip for sensitive and selective electrochemical detection of butylated hydroxyanisole. LAB ON A CHIP 2023; 23:1664-1673. [PMID: 36752530 DOI: 10.1039/d3lc00060e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This study describes the fabrication of a lab-made screen-printed electrode (LabSPE) and its sensing ability for the detection of butylated hydroxyanisole (BHA) which is a synthetic antioxidant utilized widely in food industries. The lab-made screen-printed electrodes were printed on a polycarbonate substrate stepwise via a screen-printing technique using various inks suitable for electrode templates and then modified for the detection of BHA. As for the design of the sensor, firstly, graphitic carbon nitride (g-C3N4) was synthesized electrochemically through the one-pot synthesis method. After the synthesis of Fe3O4 nanoparticles (Fe3O4 NPs), the surface of SPE was modified with the dual composite consisting of g-C3N4 and Fe3O4 NPs. Lastly, platinum nanoparticles (Pt NPs) were deposited electrochemically on the modified electrode in 0.5 M HCl solution containing 2 mM H2PtCl6 at a constant potential of 0.25 V for 45 s. After optimization of varied parameters such as pH of the electrolyte solution, deposition time, and deposition potential, the current responses of the sensor (Pt/g-C3N4-Fe3O4/LabSPE) toward BHA displayed linearity in the wide concentration range of 0.25 μM to 90 μM with a low detection limit of 0.053 μM. The selectivity of Pt/g-C3N4-Fe3O4/SPE was tested successfully in the presence of other antioxidants (BHT, TBHQ, GA, and PG). Moreover, the applicability of the proposed sensor for practical tests was verified by the detection of BHA in commercial samples.
Collapse
Affiliation(s)
- Salih Zeki Bas
- Department of Chemistry, Science Faculty, Selcuk University, 42130, Konya, Turkey.
| | - Rumeysa Cetiner
- Department of Chemistry, Science Faculty, Selcuk University, 42130, Konya, Turkey.
| | - Deniz Teke
- Department of Chemistry, Science Faculty, Selcuk University, 42130, Konya, Turkey.
| | - Mustafa Ozmen
- Department of Chemistry, Science Faculty, Selcuk University, 42130, Konya, Turkey.
| |
Collapse
|
7
|
Nagal V, Masrat S, Khan M, Alam S, Ahmad A, Alshammari MB, Bhat KS, Novikov SM, Mishra P, Khosla A, Ahmad R. Highly Sensitive Electrochemical Non-Enzymatic Uric Acid Sensor Based on Cobalt Oxide Puffy Balls-like Nanostructure. BIOSENSORS 2023; 13:375. [PMID: 36979587 PMCID: PMC10046517 DOI: 10.3390/bios13030375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Early-stage uric acid (UA) abnormality detection is crucial for a healthy human. With the evolution of nanoscience, metal oxide nanostructure-based sensors have become a potential candidate for health monitoring due to their low-cost, easy-to-handle, and portability. Herein, we demonstrate the synthesis of puffy balls-like cobalt oxide nanostructure using a hydrothermal method and utilize them to modify the working electrode for non-enzymatic electrochemical sensor fabrication. The non-enzymatic electrochemical sensor was utilized for UA determination using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The puffy balls-shaped cobalt oxide nanostructure-modified glassy carbon (GC) electrode exhibited excellent electro-catalytic activity during UA detection. Interestingly, when we compared the sensitivity of non-enzymatic electrochemical UA sensors, the DPV technique resulted in high sensitivity (2158 µA/mM.cm2) compared to the CV technique (sensitivity = 307 µA/mM.cm2). The developed non-enzymatic electrochemical UA sensor showed good selectivity, stability, reproducibility, and applicability in the human serum. Moreover, this study indicates that the puffy balls-shaped cobalt oxide nanostructure can be utilized as electrode material for designing (bio)sensors to detect a specific analyte.
Collapse
Affiliation(s)
- Vandana Nagal
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Sakeena Masrat
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Marya Khan
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Shamshad Alam
- Department of Pharmacology & Therapeutics, Rosewell Park Cancer Institute, Elm Street & Carlton Street, Buffalo, NY 14263, USA
| | - Akil Ahmad
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed B. Alshammari
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Kiesar Sideeq Bhat
- Department of Bioresources, University of Kashmir, Hazratbal, Srinagar 190006, India
- Singapore-MIT Alliance for Research and Technology (SMART), Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Create Way 138602, Singapore
| | - Sergey M. Novikov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - Prabhash Mishra
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Ajit Khosla
- Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710126, China
| | - Rafiq Ahmad
- Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
8
|
Masrat S, Nagal V, Khan M, Moid I, Alam S, Bhat KS, Khosla A, Ahmad R. Electrochemical Ultrasensitive Sensing of Uric Acid on Non-Enzymatic Porous Cobalt Oxide Nanosheets-Based Sensor. BIOSENSORS 2022; 12:1140. [PMID: 36551107 PMCID: PMC9775216 DOI: 10.3390/bios12121140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Transition metal oxide (TMO)-based nanomaterials are effectively utilized to fabricate clinically useful ultra-sensitive sensors. Different nanostructured nanomaterials of TMO have attracted a lot of interest from researchers for diverse applications. Herein, we utilized a hydrothermal method to develop porous nanosheets of cobalt oxide. This synthesis method is simple and low temperature-based. The morphology of the porous nanosheets like cobalt oxide was investigated in detail using FESEM and TEM. The morphological investigation confirmed the successful formation of the porous nanosheet-like nanostructure. The crystal characteristic of porous cobalt oxide nanosheets was evaluated by XRD analysis, which confirmed the crystallinity of as-synthesized cobalt oxide nanosheets. The uric acid sensor fabrication involves the fixing of porous cobalt oxide nanosheets onto the GCE (glassy carbon electrode). The non-enzymatic electrochemical sensing was measured using CV and DPV analysis. The application of DPV technique during electrochemical testing for uric acid resulted in ultra-high sensitivity (3566.5 µAmM-1cm-2), which is ~7.58 times better than CV-based sensitivity (470.4 µAmM-1cm-2). Additionally, uric acid sensors were tested for their selectivity and storage ability. The applicability of the uric acid sensors was tested in the serum sample through standard addition and recovery of known uric acid concentration. This ultrasensitive nature of porous cobalt oxide nanosheets could be utilized to realize the sensing of other biomolecules.
Collapse
Affiliation(s)
- Sakeena Masrat
- Sensors Lab, Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Vandana Nagal
- Quantum and Nanophotonics Research Laboratory, Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Marya Khan
- Sensors Lab, Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Iqra Moid
- Department of Life Science, Shakuntala Memorial Educational Institute, Bahraich 271870, India
| | - Shamshad Alam
- Department of Pharmacology & Therapeutics, Rosewell Park Cancer Institute, Elm Street & Carlton Street, Buffalo, NY 14263, USA
| | - Kiesar Sideeq Bhat
- Department of Bioresources, University of Kashmir, Hazratbal, Srinagar 190006, India
- Singapore-MIT Alliance for Research and Technology (SMART), Critical Analytics for Manufacturing Personalized-Medicine (CAMP), Create Way 138602, Singapore
| | - Ajit Khosla
- Department of Applied Chemistry, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710126, China
| | - Rafiq Ahmad
- Sensors Lab, Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
9
|
Fabrication of Niobium Metal Organic Frameworks anchored Carbon Nanofiber Hybrid Film for Simultaneous Detection of Xanthine, Hypoxanthine and Uric Acid. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Sagar P, Srivastava M, Srivastava SK. Electrochemical Sensor for the Anti‐tuberculosis Drug Rifampicin on CuO@rGO‐Nanocomposite‐Modified GCE by Voltammetry Techniques. ChemistrySelect 2022. [DOI: 10.1002/slct.202202271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pinky Sagar
- Department of Physics Institute of Science Banaras Hindu University Varanasi 221005 India
| | - Monika Srivastava
- School of Materials Science & Technology Indian Institute of Technology (BHU) Varanasi 221005 India
| | - Sanjay K. Srivastava
- Department of Physics Institute of Science Banaras Hindu University Varanasi 221005 India
| |
Collapse
|
11
|
Hilal M, Xie W, Yang W. Straw-sheaf-like Co 3O 4 for preparation of an electrochemical non-enzymatic glucose sensor. Mikrochim Acta 2022; 189:364. [PMID: 36045180 DOI: 10.1007/s00604-022-05453-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/09/2022] [Indexed: 11/30/2022]
Abstract
3D straw-sheaf-like cobalt oxide (SS-Co3O4) was prepared via the hydrothermal method and inert gas calcination of precursors without the assistance of any template or surfactant. It was composed of numerous nanoneedles with a length of ~ 8 µm and a diameter of ~ 30 nm strongly tied in the center. The SS-Co3O4 exhibited high crystallinity, a large surface area (39.01 m2.g-1), a smaller pore size (6 nm), and lower charge transfer resistance (Rct = 9.35 Ω) at the electrode/electrolyte interface. A non-enzymatic glucose oxidizing electrode fabricated with SS-Co3O4 showed a high sensitivity (669 µA.mM-1.cm-2), wide linear range (0.04-4.85 mM), low limit of detection (0.31 µM), good selectivity, fast response time (5 s), and high reproducibility with a relative standard deviation of 2.25%. In addition, its robust structure demonstrated excellent electrochemical stability by retaining 83.8% of the initial sensitivity when its current density vs. time response was measured for 75 min in bare electrolytes prior to the glucose-sensing test. Furthermore, it demonstrated excellent repeatability performance by retaining 87.0% of the initial sensitivity when a single electrode was tested for 4 cycles. The proposed robust structured 3D SS-Co3O4 electrode successfully responds to the content of glucose in human saliva, which substantially proves its suitability in practical application. The synthesis technique is advantageous to prepare other metal oxides with interesting morphology and robust structure for the development of more reliable non-enzymatic glucometers and other electrochemical devices.
Collapse
Affiliation(s)
- Muhammad Hilal
- Department of Physics, Dongguk University, Seoul, 04620, Republic of Korea
| | - Wanfeng Xie
- Department of Physics, Dongguk University, Seoul, 04620, Republic of Korea. .,College of Microtechnology & Nanotechnology, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao, 266071, China.
| | - Woochul Yang
- Department of Physics, Dongguk University, Seoul, 04620, Republic of Korea.
| |
Collapse
|
12
|
Ning Q, Feng S, Cheng Y, Li T, Cui D, Wang K. Point-of-care biochemical assays using electrochemical technologies: approaches, applications, and opportunities. Mikrochim Acta 2022; 189:310. [PMID: 35918617 PMCID: PMC9345663 DOI: 10.1007/s00604-022-05425-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/21/2022] [Indexed: 12/12/2022]
Abstract
Against the backdrop of hidden symptoms of diseases and limited medical resources of their investigation, in vitro diagnosis has become a popular mode of real-time healthcare monitoring. Electrochemical biosensors have considerable potential for use in wearable products since they can consistently monitor the physiological information of the patient. This review classifies and briefly compares commonly available electrochemical biosensors and the techniques of detection used. Following this, the authors focus on recent studies and applications of various types of sensors based on a variety of methods to detect common compounds and cancer biomarkers in humans. The primary gaps in research are discussed and strategies for improvement are proposed along the dimensions of hardware and software. The work here provides new guidelines for advanced research on and a wider scope of applications of electrochemical biosensors to in vitro diagnosis.
Collapse
Affiliation(s)
- Qihong Ning
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaoqing Feng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuemeng Cheng
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tangan Li
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Daxiang Cui
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kan Wang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
13
|
Ma K, Yang L, Liu J, Liu J. Electrochemical Sensor Nanoarchitectonics for Sensitive Detection of Uric Acid in Human Whole Blood Based on Screen-Printed Carbon Electrode Equipped with Vertically-Ordered Mesoporous Silica-Nanochannel Film. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1157. [PMID: 35407275 PMCID: PMC9000518 DOI: 10.3390/nano12071157] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/21/2022]
Abstract
Screen-printed carbon electrodes (SPCEs) bear great potential in the detection of biomarker in clinical samples with low sample consumption. However, modification of electrode surfaces to improve the anti-interference ability and sensitivity is highly desirable for direct electroanalysis of whole blood samples. Here, a reliable and miniaturized electrochemical sensor is demonstrated based on SPCE equipped with vertically-ordered mesoporous silica-nanochannel film (VMSF). To achieve stable binding of VMSF and improve the electrocatalytic performance, electrochemically reduced graphene oxide (ErGO) is applied as a conductive adhesion layer, that is in situ reduced from GO nanosheets during fast growth (less than 10 s) of amino groups modified VMSF (NH2-VMSF) using electrochemically assisted self-assembly (EASA). In comparison with bare SPCE, NH2-VMSF/ErGO/SPCE exhibits decreased oxidation potential of uric acid (UA) by 147 mV owing to significant electrocatalytic ability of ErGO. The dual signal amplification based on electrocatalysis of ErGO and enrichment of nanochannels leads to enhanced peak current by 3.9 times. Thus, the developed NH2-VMSF/ErGO/SPCE sensor enables sensitive detection of UA in the range from 0.5 μM to 180 μM with a low limit of detection (LOD, 129 nM, S/N = 3). Owing to good anti-fouling ability and high selectivity of the sensor, direct and rapid detection of UA in human whole blood is realized with very low sample consumption (50 μL).
Collapse
Affiliation(s)
- Kai Ma
- Urology and Lithotripsy Center, Peking University People’s Hospital, Beijing 100044, China; (K.M.); (J.L.)
- Peking University Applied Lithotripsy Institute, Peking University, Beijing 100044, China
| | - Luoxing Yang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Jun Liu
- Urology and Lithotripsy Center, Peking University People’s Hospital, Beijing 100044, China; (K.M.); (J.L.)
- Peking University Applied Lithotripsy Institute, Peking University, Beijing 100044, China
| | - Jiyang Liu
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| |
Collapse
|
14
|
Nagal V, Tuba T, Kumar V, Alam S, Ahmad A, Alshammari MB, Hafiz AK, Ahmad R. A non-enzymatic electrochemical sensor composed of nano-berry shaped cobalt oxide nanostructures on a glassy carbon electrode for uric acid detection. NEW J CHEM 2022. [DOI: 10.1039/d2nj01961b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Non-enzymatic electrochemical uric acid sensor fabrication with excellent performance using nano-berry shaped cobalt oxide nanostructures on a glassy carbon electrode.
Collapse
Affiliation(s)
- Vandana Nagal
- Quantum and Nanophotonics Research Laboratory, Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi-110025, India
| | - Talia Tuba
- Sensors Lab, Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi-110025, India
| | - Virendra Kumar
- Nanotechnology Lab, School of Physical Sciences, Jawaharlal Nehru University (JNU), New Delhi-110067, India
| | - Shamshad Alam
- Department of Pharmacology & Therapeutics, Rosewell Park Cancer Institute, Elm Street & Carlton Street, Buffalo, NY-14263, USA
| | - Akil Ahmad
- Chemistry Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj-11942, Saudi Arabia
| | - Mohammed B. Alshammari
- Chemistry Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj-11942, Saudi Arabia
| | - Aurangzeb Khurram Hafiz
- Quantum and Nanophotonics Research Laboratory, Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi-110025, India
| | - Rafiq Ahmad
- Sensors Lab, Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi-110025, India
| |
Collapse
|