1
|
Medin J, Kyriakidou M, Santoso B, Gupta P, Järlebark J, Schaefer A, Ferrand-Drake Del Castillo G, Cans AS, Dahlin A. Enzymatic Polymer Brush Interfaces for Electrochemical Sensing in Biofluids. ACS APPLIED BIO MATERIALS 2025; 8:4008-4019. [PMID: 40269558 DOI: 10.1021/acsabm.5c00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Electrochemical sensors enable specific and sensitive detection of biological markers. However, most small molecule analytes are not electroactive. Therefore, enzymes are widely used for selective breakdown of the markers into electro-active species. However, it has proven difficult to design a sensor interface where any enzyme can be controllably immobilized in high amounts with preserved activity. In addition, most interfaces cease to function in biofluids due to "fouling" of the sensor surface. Here we present a generic strategy employting polymer brushes for enzymatic electrochemical sensing which resolves these issues. Generic conjugation chemistry is used to covalently bind large amounts of enzymes (>1 μg/cm2). Remarkably, despite this enzyme load, the (∼200 nm thick) brushes remain highly hydrated and practically invisible by electrochemical methods: Small molecules freely access the underlying electrode and the charge transfer resistance increment is exceptionally low (<10 Ω). The enzymatic polymer brush interfaces enable specific detection of the biomarkers glucose and glutamate by simple chronoamperometry. Furthermore, by sequential immobilization of several enzymes, cascade reactions can be performed, as illustrated by detection of acetylcholine. Finally, the sensor interface still functions in cerebrospinal fluid (10× diluted, unfiltered). In conclusion, polymer brushes provide extended possibilities for enzymatic catalysis and electrochemical sensing.
Collapse
Affiliation(s)
- Jesper Medin
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Maria Kyriakidou
- Nyctea Technologies AB, AstraZeneca BioVentureHub, 431 83 Mölndal, Sweden
| | - Bagus Santoso
- Nyctea Technologies AB, AstraZeneca BioVentureHub, 431 83 Mölndal, Sweden
| | - Pankaj Gupta
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Julia Järlebark
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Andreas Schaefer
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | | | - Ann-Sofie Cans
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Andreas Dahlin
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| |
Collapse
|
2
|
Vrabcová M, Spasovová M, Forinová M, Giannetti A, Houska M, Lynn NS, Baldini F, Kopeček J, Chiavaioli F, Vaisocherová-Lísalová H. Optical fibre long-period grating sensors modified with antifouling bio-functional nano-brushes. Biomater Sci 2025; 13:1199-1208. [PMID: 39711143 DOI: 10.1039/d4bm01447b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Recent advances in optical sensing technologies underpin the development of high-performance, surface-sensitive analytical tools capable of reliable and precise detection of molecular targets in complex biological media in non-laboratory settings. Optical fibre sensors guide light to and from a region of interest, enabling sensitive measurements of localized environments. This positions optical fibre sensors as a highly promising technology for a wide range of biochemical and healthcare applications. However, their performance in real-world biological media is often limited by the absence of robust post-modification strategies that provide both high biorecognition and antifouling capabilities. In this study, we present the proof-of-concept antifouling and biorecognition performance of a polymer brush nano-coating synthesized at the sensing region of optical fibre long-period grating (LPG) sensors. Using a newly developed antifouling terpolymer brush (ATB) composed of carboxybetaine methacrylamide, sulfobetaine methacrylamide, and N-(2-hydroxypropyl)methacrylamide, we achieve state-of-the-art antifouling properties. The successful on-fibre ATB synthesis is confirmed through scanning electron microscopy (SEM), fluorescence microscopy, and label-free bio-detection experiments based on antibody-functionalized ATB-coated LPG optical fibres. Despite the challenges in handling optical fibres during polymerization, the resulting nano-coating retains its remarkable antifouling properties upon exposure to blood plasma and enables biorecognition element functionalization. These capabilities are demonstrated through the detection of IgG in buffer and diluted blood plasma using anti-IgG-functionalized ATB-coated sensing regions of LPG fibres in both label-based (fluorescence) and label-free real-time detection experiments. The results show the potential of ATB-coated LPG fibres for use in analytical biosensing applications.
Collapse
Affiliation(s)
- Markéta Vrabcová
- FZU - Institute of Physics, Czech Academy of Sciences, Na Slovance 2, Prague 182 00, Czechia.
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague, 121 16, Czechia
| | - Monika Spasovová
- FZU - Institute of Physics, Czech Academy of Sciences, Na Slovance 2, Prague 182 00, Czechia.
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague, 121 16, Czechia
| | - Michala Forinová
- FZU - Institute of Physics, Czech Academy of Sciences, Na Slovance 2, Prague 182 00, Czechia.
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague, 121 16, Czechia
| | - Ambra Giannetti
- Institute of Applied Physics "Nello Carrara", National Research Council of Italy, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Milan Houska
- FZU - Institute of Physics, Czech Academy of Sciences, Na Slovance 2, Prague 182 00, Czechia.
| | - N Scott Lynn
- FZU - Institute of Physics, Czech Academy of Sciences, Na Slovance 2, Prague 182 00, Czechia.
| | - Francesco Baldini
- Institute of Applied Physics "Nello Carrara", National Research Council of Italy, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Jaromír Kopeček
- FZU - Institute of Physics, Czech Academy of Sciences, Na Slovance 2, Prague 182 00, Czechia.
| | - Francesco Chiavaioli
- Institute of Applied Physics "Nello Carrara", National Research Council of Italy, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| | | |
Collapse
|
3
|
Masuda T, Watanabe Y, Kozuka Y, Saegusa Y, Takai M. Bactericidal Ability of Well-Controlled Cationic Polymer Brush Surfaces and the Interaction Analysis by Quartz Crystal Microbalance with Dissipation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16522-16531. [PMID: 37930305 DOI: 10.1021/acs.langmuir.3c02472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
In this study, cationic poly(2-(methacryloyloxy)ethyl) trimethylammonium chloride) (PMTAC) brush surfaces were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP), and their properties were systematically investigated to discuss the factors affecting their bactericidal properties and interactions with proteins. Model equations for the analysis of electrophoretic behaviors were considered for accurate parameter estimation to indicate the charge density at the interface. The zeta potential dependency of the PMTAC brushes was successfully analyzed using Smolchowski's equation and the Gouy-Chapman model, which describes the diffusive electric double layer. The analysis of the quartz crystal microbalance with dissipation (QCM-D) indicated that the electrostatic interaction promoted protein adsorption, with a large quantity of a negatively charged protein, bovine serum albumin (BSA), being adsorbed. The bactericidal efficiency of the high-graft-density polymer brush (0.45 chains nm-2) was higher than that of the low-graft-density polymer brush (0.06 chains nm-2). To investigate the mechanism of this phenomenon, we applied the dissipation change (ΔD) of QCM-D analysis. The BSA was likewise adsorbed when the brush structure was changed; however, the negative ΔD indicated that the BSA-adsorbed, high-graft-density PMTAC brush became a rigid state. In the bacteria culture media, the behaviors were the same as BSA adsorption, and the high-graft-density polymer brush was also estimated to be more rigid than the low-graft-density polymer brush. Moreover, for S. aureus adhesion after incubating in TSB, a small slope of ΔD/ΔF plots considered initial adsorption of bacteria on the high-graft-density polymer brush strongly interacted compared to that of the low-graft-density polymer brush. The scattered value of the slope of ΔD/ΔF on the high-graft-density polymer brush was considered to be due to the dead bacteria between the bacteria and the polymer brush interface. These investigations for a well-defined cationic polymer brush will contribute to the design of antibacterial surfaces.
Collapse
Affiliation(s)
- Tsukuru Masuda
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8565, Japan
| | - Yoichi Watanabe
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8565, Japan
| | - Yuta Kozuka
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8565, Japan
| | - Yui Saegusa
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8565, Japan
| | - Madoka Takai
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8565, Japan
| |
Collapse
|
4
|
Anthi J, Vaněčková E, Spasovová M, Houska M, Vrabcová M, Vogelová E, Holubová B, Vaisocherová-Lísalová H, Kolivoška V. Probing charge transfer through antifouling polymer brushes by electrochemical methods: The impact of supporting self-assembled monolayer chain length. Anal Chim Acta 2023; 1276:341640. [PMID: 37573118 DOI: 10.1016/j.aca.2023.341640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 08/14/2023]
Abstract
Ultrathin surface-tethered polymer brushes represent attractive platforms for a wide range of sensing applications in strategically vital areas such as medicine, forensics, or security. The recent trends in such developments towards "real world conditions" highlighted the role of zwitterionic poly(carboxybetaine) (pCB) brushes which provide excellent antifouling properties combined with bio-functionalization capacity. Highly dense pCB brushes are usually prepared by the "grafting from" polymerization triggered by initiators on self-assembled monolayers (SAMs). Here, multi-methodological experimental studies are pursued to elucidate the impact of the alkanethiolate SAM chain length (C6, C8 and C11) on structural and functional properties of antifouling poly(carboxybetaine methacrylamide) (pCBMAA) brush. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in a custom-made 3D printed cell employing [Ru(NH3)6]3+/2+ redox probe were used to investigate penetrability of SAM/pCBMAA bilayers for small molecules and interfacial charge transfer characteristics. The biofouling resistance of pCBMAA brushes was characterized by surface plasmon resonance; ellipsometry and FT-IRRAS spectroscopy were used to determine swelling and relative density of the brushes synthesized from initiator-bearing SAMs with varied carbon chain length. The SAM length was found to have a substantial impact on all studied characteristics; the highest value of charge transfer resistance (Rct) was observed for denser pCBMAA on longer-chain (C11) SAM when compared to shorter (C8/C6) SAMs. The observed high value of Rct for C11 implies a limitation for the analytical performance of electrochemical sensing methods. At the same time, the pCBMAA brushes on C11 SAM exhibited the best bio-fouling resistance among inspected systems. This demonstrates that proper selection of supporting structures for brushes is critical in the design of these assemblies for biosensing applications.
Collapse
Affiliation(s)
- Judita Anthi
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 00, Prague, Czech Republic; Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28, Prague, Czech Republic
| | - Eva Vaněčková
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23, Prague, Czech Republic
| | - Monika Spasovová
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 00, Prague, Czech Republic
| | - Milan Houska
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 00, Prague, Czech Republic
| | - Markéta Vrabcová
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 00, Prague, Czech Republic
| | - Eva Vogelová
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 00, Prague, Czech Republic
| | - Barbora Holubová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28, Prague, Czech Republic
| | - Hana Vaisocherová-Lísalová
- FZU - Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 00, Prague, Czech Republic.
| | - Viliam Kolivoška
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23, Prague, Czech Republic.
| |
Collapse
|
5
|
High-frequency phenomena and electrochemical impedance spectroscopy at nanoelectrodes. Curr Opin Colloid Interface Sci 2023. [DOI: 10.1016/j.cocis.2022.101654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
6
|
Besford QA, Schubotz S, Chae S, Özdabak Sert AB, Weiss ACG, Auernhammer GK, Uhlmann P, Farinha JPS, Fery A. Molecular Transport within Polymer Brushes: A FRET View at Aqueous Interfaces. Molecules 2022; 27:molecules27093043. [PMID: 35566393 PMCID: PMC9102696 DOI: 10.3390/molecules27093043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/17/2022] Open
Abstract
Molecular permeability through polymer brush chains is implicated in surface lubrication, wettability, and solute capture and release. Probing molecular transport through polymer brushes can reveal information on the polymer nanostructure, with a permeability that is dependent on chain conformation and grafting density. Herein, we introduce a brush system to study the molecular transport of fluorophores from an aqueous droplet into the external “dry” polymer brush with the vapour phase above. The brushes consist of a random copolymer of N-isopropylacrylamide and a Förster resonance energy transfer (FRET) donor-labelled monomer, forming ultrathin brush architectures of about 35 nm in solvated height. Aqueous droplets containing a separate FRET acceptor are placed onto the surfaces, with FRET monitored spatially around the 3-phase contact line. FRET is used to monitor the transport from the droplet to the outside brush, and the changing internal distributions with time as the droplets prepare to recede. This reveals information on the dynamics and distances involved in the molecular transport of the FRET acceptor towards and away from the droplet contact line, which are strongly dependent on the relative humidity of the system. We anticipate our system to be extremely useful for studying lubrication dynamics and surface droplet wettability processes.
Collapse
Affiliation(s)
- Quinn A. Besford
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany; (S.S.); (S.C.); (A.C.G.W.); (G.K.A.); (P.U.)
- Correspondence: (Q.A.B.); (A.F.)
| | - Simon Schubotz
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany; (S.S.); (S.C.); (A.C.G.W.); (G.K.A.); (P.U.)
| | - Soosang Chae
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany; (S.S.); (S.C.); (A.C.G.W.); (G.K.A.); (P.U.)
| | - Ayşe B. Özdabak Sert
- Molecular Biology and Genetics Department, Istanbul Technical University, 34469 Istanbul, Turkey;
| | - Alessia C. G. Weiss
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany; (S.S.); (S.C.); (A.C.G.W.); (G.K.A.); (P.U.)
| | - Günter K. Auernhammer
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany; (S.S.); (S.C.); (A.C.G.W.); (G.K.A.); (P.U.)
| | - Petra Uhlmann
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany; (S.S.); (S.C.); (A.C.G.W.); (G.K.A.); (P.U.)
| | - José Paulo S. Farinha
- Centro de Química Estrutural, Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung e.V., Hohe Str. 6, 01069 Dresden, Germany; (S.S.); (S.C.); (A.C.G.W.); (G.K.A.); (P.U.)
- Correspondence: (Q.A.B.); (A.F.)
| |
Collapse
|
7
|
Abstract
I review experimental developments in the growth and application of surface-grafted weak polyelectrolytes (brushes), concentrating on their surface, tribological, and adhesive and bioadhesive properties, and their role as actuators.
Collapse
Affiliation(s)
- Mark Geoghegan
- School of Engineering, Newcastle University, Merz Court, Newcastle-upon-Tyne NE1 7RU, UK.
| |
Collapse
|
8
|
Fan R, Li Y, Park KW, Du J, Chang LH, Strieter ER, Andrew TL. A Strategy for Accessing Nanobody-Based Electrochemical Sensors for Analyte Detection in Complex Media. ECS SENSORS PLUS 2022; 1:010601. [PMID: 36338794 PMCID: PMC9635334 DOI: 10.1149/2754-2726/ac5b2e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nanobodies are single variable domain antibodies isolated from camelids and are rapidly distinguishing themselves as ideal recognition elements in biosensors due to their comparative stability, ease of production and isolation, and high binding affinities. However, transducing analyte binding by nanobodies in real time is challenging, as most nanobodies do not directly produce an optical or electrical signal upon target recognition. Here, we report a general strategy to fabricate sensitive and selective electrochemical sensors incorporating nanobodies for detecting target analytes in heterogeneous media, such as cell lysate. Graphite felt can be covalently functionalized with recombinant HaloTag-modified nanobodies. Subsequent encapsulation with a thin layer of a hydrogel using a vapor deposition process affords encapsulated electrodes that directly display a decrease in current upon antigen binding, without added redox mediators. Differential pulse voltammetry affords clear and consistent decreases in electrode current across multiple electrode samples for specific antigen concentrations. The change in observed current vs increasing antigen concentration follows Langmuir binding characteristics, as expected. Importantly, selective and repeatable target binding in unpurified cell lysate is only demonstrated by the encapsulated electrode, with an antigen detection limit of ca. 30 pmol, whereas bare electrodes lacking encapsulation produce numerous false positive signals in control experiments.
Collapse
Affiliation(s)
- Ruolan Fan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Yanfeng Li
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Kwang-Won Park
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Jiale Du
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Lin Hui Chang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Eric R. Strieter
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Trisha L. Andrew
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| |
Collapse
|
9
|
Capacitive Photodetector Thin-Film Cells of Cu-As 2S 3-Cu as Revealed by Dielectric Spectroscopy. SENSORS 2022; 22:s22031143. [PMID: 35161888 PMCID: PMC8839794 DOI: 10.3390/s22031143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023]
Abstract
The As2S3-Cu interface was studied by dielectric spectroscopy measurements on Cu-As2S3-Cu thin film heterostructure samples to assess the charge carriers’ contribution to the electrical properties of such an interface. Three-dimensional printed masks ensured good reproducibility during the PLD deposition of heterostructure samples. The samples were tested for electrical conductivity and AC photoconductivity by dielectric spectroscopy measurements. DC bias voltages and light were applied to the samples. The electrical capacity of the thin film heterostructure can be modified electrically and optically. We observed long-term photoconductivity with a time dependency that was not exponential, and a quick change of the electrical capacity, indicating the potential of the heterostructure cells as photodetector candidates.
Collapse
|
10
|
Zhang BY, Luo HN, Zhang W, Liu Y. Research progress in self-oscillating polymer brushes. RSC Adv 2022; 12:1366-1374. [PMID: 35425176 PMCID: PMC8979042 DOI: 10.1039/d1ra07374e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/22/2021] [Indexed: 12/02/2022] Open
Abstract
Polymer brushes possess unique changes in physical and chemical properties when they are exposed to external stimuli and have a wide range of applications. Self-oscillating polymers are anchored on surfaces of certain materials and are coupled with some self-oscillating reactions (with the Belousov–Zhabotinsky (BZ) reaction as an example) to form self-oscillating polymer brushes. As an independent field of stimulus response functional surface research, the development of new intelligent bionic materials has good potential. This article reviews the oscillation mechanisms of self-oscillating polymer brushes and their classifications. First, the oscillation mechanisms of self-oscillating polymer brushes are introduced. Second, the research progress in self-oscillating polymers is discussed in terms of the type of self-oscillation reactions. Finally, possible future developments of self-oscillating polymer brushes are prospected. Polymer brushes possess unique changes in physical and chemical properties when they are exposed to external stimuli and have a wide range of applications.![]()
Collapse
Affiliation(s)
- Bao-Ying Zhang
- School of Chemical Engineering, China University of Mining and Technology Xuzhou Jiangsu 221116 China .,School of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University Zaozhuang Shandong 277160 China
| | - Hai-Nan Luo
- School of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University Zaozhuang Shandong 277160 China
| | - Wei Zhang
- School of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University Zaozhuang Shandong 277160 China
| | - Yang Liu
- School of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University Zaozhuang Shandong 277160 China
| |
Collapse
|
11
|
Forinová M, Pilipenco A, Víšová I, Lynn NS, Dostálek J, Mašková H, Hönig V, Palus M, Selinger M, Kočová P, Dyčka F, Štěrba J, Houska M, Vrabcová M, Horák P, Anthi J, Tung CP, Yu CM, Chen CY, Huang YC, Tsai PH, Lin SY, Hsu HJ, Yang AS, Dejneka A, Vaisocherová-Lísalová H. Functionalized Terpolymer-Brush-Based Biointerface with Improved Antifouling Properties for Ultra-Sensitive Direct Detection of Virus in Crude Clinical Samples. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60612-60624. [PMID: 34902239 DOI: 10.1021/acsami.1c16930] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
New analytical techniques that overcome major drawbacks of current routinely used viral infection diagnosis methods, i.e., the long analysis time and laboriousness of real-time reverse-transcription polymerase chain reaction (qRT-PCR) and the insufficient sensitivity of "antigen tests", are urgently needed in the context of SARS-CoV-2 and other highly contagious viruses. Here, we report on an antifouling terpolymer-brush biointerface that enables the rapid and sensitive detection of SARS-CoV-2 in untreated clinical samples. The developed biointerface carries a tailored composition of zwitterionic and non-ionic moieties and allows for the significant improvement of antifouling capabilities when postmodified with biorecognition elements and exposed to complex media. When deployed on a surface of piezoelectric sensor and postmodified with human-cell-expressed antibodies specific to the nucleocapsid (N) protein of SARS-CoV-2, it made possible the quantitative analysis of untreated samples by a direct detection assay format without the need of additional amplification steps. Natively occurring N-protein-vRNA complexes, usually disrupted during the sample pre-treatment steps, were detected in the untreated clinical samples. This biosensor design improved the bioassay sensitivity to a clinically relevant limit of detection of 1.3 × 104 PFU/mL within a detection time of only 20 min. The high specificity toward N-protein-vRNA complexes was validated both by mass spectrometry and qRT-PCR. The performance characteristics were confirmed by qRT-PCR through a comparative study using a set of clinical nasopharyngeal swab samples. We further demonstrate the extraordinary fouling resistance of this biointerface through exposure to other commonly used crude biological samples (including blood plasma, oropharyngeal, stool, and nasopharyngeal swabs), measured via both the surface plasmon resonance and piezoelectric measurements, which highlights the potential to serve as a generic platform for a wide range of biosensing applications.
Collapse
Affiliation(s)
- Michala Forinová
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Alina Pilipenco
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Ivana Víšová
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| | - N Scott Lynn
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Jakub Dostálek
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
- Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430 Tulln, Austria
| | - Hana Mašková
- Faculty of Science, University of South Bohemia, Branišovská 31a, 370 05 České Budějovice, Czech Republic
| | - Václav Hönig
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - Martin Palus
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - Martin Selinger
- Faculty of Science, University of South Bohemia, Branišovská 31a, 370 05 České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Pavlína Kočová
- Faculty of Science, University of South Bohemia, Branišovská 31a, 370 05 České Budějovice, Czech Republic
| | - Filip Dyčka
- Faculty of Science, University of South Bohemia, Branišovská 31a, 370 05 České Budějovice, Czech Republic
| | - Jan Štěrba
- Faculty of Science, University of South Bohemia, Branišovská 31a, 370 05 České Budějovice, Czech Republic
| | - Milan Houska
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Markéta Vrabcová
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Petr Horák
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Judita Anthi
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| | - Chao-Ping Tung
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec.2, Nankang Dist., Taipei 115, Taiwan
| | - Chung-Ming Yu
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec.2, Nankang Dist., Taipei 115, Taiwan
| | - Chi-Yung Chen
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec.2, Nankang Dist., Taipei 115, Taiwan
| | - Yu-Chuan Huang
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec.2, Nankang Dist., Taipei 115, Taiwan
| | - Pei-Hsun Tsai
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec.2, Nankang Dist., Taipei 115, Taiwan
| | - Szu-Yu Lin
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec.2, Nankang Dist., Taipei 115, Taiwan
| | - Hung-Ju Hsu
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec.2, Nankang Dist., Taipei 115, Taiwan
| | - An-Suei Yang
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec.2, Nankang Dist., Taipei 115, Taiwan
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Prague, Czech Republic
| | | |
Collapse
|