1
|
Shi X, Zhang L, Lou J, Zhang K, He Y, Wang W, Liu H, Zhang T, Li C. Injectable hydrogels based on biological macromolecules and intervertebral disc-derived stem cells for intervertebral disc degeneration repair: A review. Int J Biol Macromol 2025; 315:144476. [PMID: 40412681 DOI: 10.1016/j.ijbiomac.2025.144476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/04/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
Intervertebral disc degeneration (IDD) is the fundamental pathological process underlying spinal degenerative diseases. Recent studies on early intervention strategies for delaying and repairing IDD have become a pivotal focus in spinal surgery. Injectable hydrogels synthesized from biological macromolecules, such as polyvinyl alcohol, polyethylene glycol, gelatin, and chitosan, and stem cells have garnered significant attention due to their potential for biomimetic intervertebral disc repair, particularly intervertebral disc-derived stem cells (IVD-SCs). Notably, IVD-SCs exhibit unique tissue-specific characteristics. A comprehensive literature review revealed a limited number of studies investigating the combined application of injectable hydrogels and IVD-SCs for IDD repair. Therefore, we present a comprehensive overview of the development and application of injectable hydrogels and IVD-SCs in IDD repair, detailing their isolation, characterization, clinical translation, associated challenges, and future perspectives. We provide novel insights and directions for advancing future IDD regenerative therapies.
Collapse
Affiliation(s)
- Xuewen Shi
- Department of Orthopedics, The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China; Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou 730030, China; The Key Lab of Stem Cells and Gene Drugs of Gansu Province, Lanzhou 730050, China
| | - Lixia Zhang
- Pediatric Respiratory Department, Gansu Provincial Maternal and Child Health Hospital, Lanzhou 730050, China; Pediatric Respiratory Department, Gansu Provincial Central Hospital, Lanzhou 730050, China
| | - Jinpeng Lou
- Department of Orthopedics, The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China; Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou 730030, China
| | - Kui Zhang
- Department of Orthopedics, The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China; Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou 730030, China
| | - Yixiang He
- Department of Orthopedics, The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China; Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou 730030, China
| | - Wenji Wang
- Department of Orthopedics, The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China; Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou 730030, China.
| | - Hua Liu
- Orthopedic Center, The 940(th) Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China.
| | - Tao Zhang
- Orthopedic Center, The 940(th) Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China.
| | - Chuangbing Li
- Orthopedic Center, The 940(th) Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China.
| |
Collapse
|
2
|
Nakielski P, Kosik-Kozioł A, Rinoldi C, Rybak D, More N, Wechsler J, Lehmann TP, Głowacki M, Stępak B, Rzepna M, Marinelli M, Lanzi M, Seliktar D, Mohyeddinipour S, Sheyn D, Pierini F. Injectable PLGA Microscaffolds with Laser-Induced Enhanced Microporosity for Nucleus Pulposus Cell Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2404963. [PMID: 39282818 DOI: 10.1002/smll.202404963] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/21/2024] [Indexed: 04/25/2025]
Abstract
Intervertebral disc (IVD) degeneration is a leading cause of lower back pain (LBP). Current treatments primarily address symptoms without halting the degenerative process. Cell transplantation offers a promising approach for early-stage IVD degeneration, but challenges such as cell viability, retention, and harsh host environments limit its efficacy. This study aimed to compare the injectability and biocompatibility of human nucleus pulposus cells (hNPC) attached to two types of microscaffolds designed for minimally invasive delivery to IVD. Microscaffolds are developed from poly(lactic-co-glycolic acid) (PLGA) using electrospinning and femtosecond laser structuration. These microscaffolds are tested for their physical properties, injectability, and biocompatibility. This study evaluates cell adhesion, proliferation, and survival in vitro and ex vivo within a hydrogel-based nucleus pulposus model. The microscaffolds demonstrate enhanced surface architecture, facilitating cell adhesion and proliferation. Laser structuration improved porosity, supporting cell attachment and extracellular matrix deposition. Injectability tests show that microscaffolds can be delivered through small-gauge needles with minimal force, maintaining high cell viability. The findings suggest that laser-structured PLGA microscaffolds are viable for minimally invasive cell delivery. These microscaffolds enhance cell viability and retention, offering potential improvements in the therapeutic efficiency of cell-based treatments for discogenic LBP.
Collapse
Affiliation(s)
- Paweł Nakielski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Alicja Kosik-Kozioł
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Chiara Rinoldi
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Daniel Rybak
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Namdev More
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Jacob Wechsler
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Tomasz P Lehmann
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, Poznan, 60-781, Poland
| | - Maciej Głowacki
- Department of Paediatric Orthopaedics and Traumatology, Poznan University of Medical Sciences, Poznan, 61-545, Poland
| | | | - Magdalena Rzepna
- Institute of Nuclear Chemistry and Technology, Warsaw, 03-195, Poland
| | - Martina Marinelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, Bologna, 40136, Italy
| | - Massimiliano Lanzi
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, Bologna, 40136, Italy
| | - Dror Seliktar
- Department of Biomedical Engineering, Israeli Institute of Technology Technion, Haifa, 3200003, Israel
| | - Sarah Mohyeddinipour
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Dmitriy Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 02-106, Poland
| |
Collapse
|
3
|
Xie W, Huang Z, Huang Z, Luo D, Chen Z, Xie L, Zhu L, Liu H, Lian K, Alberton P, Docheva D, Lin D. A mouse coccygeal intervertebral disc degeneration model with tail-looping constructed using a suturing method. Animal Model Exp Med 2025. [PMID: 39808167 DOI: 10.1002/ame2.12501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/18/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUD Intervertebral disc degeneration (IDD) is one of the common degenerative diseases. Due to ethical constraints, it is difficult to obtain sufficient research on humans, so the use of an animal model of IDD is very important to clarify the pathogenesis and treatment mechanism of the disease. METHODS In this study, thirty 2-month-old mice were selected for operation to establish a coccygeal IDD model. The distal tail portion of the tail (beyond the 17th coccygeal vertebra) and a small piece of skin above the 8th coccygeal vertebra were excised, and the two incisions were brought together after flexion, and secured with sutures. The heights and signal intensities of the intervertebral discs (IVDs) were assessed using microcomputed tomography (μCT) and magnetic resonance imaging (MRI) at 0, 6, 12 weeks postoperatively. The overall tissue morphology, cell distribution and density, and extracellular matrix of the IVDs were also assessed using Hematoxylin and Eosin (HE), Safranin O-Fast Green and immunohistochemical staining. RESULTS All mice in the experimental group survived after the operation, and there were no complications such as wound infection, tail necrosis and suture shedding. The experimental results demonstrated that the suturing method can successfully initiate IDD. Different severity levels of IDD can be induced by controlling the bending angle of the IVDs within the tail loop; however, for consistency, histologic and imaging results should be obtained at the same bending angle and looping period. CONCLUSIONS This IDD model is an effective method for studying the etiology and treatment of degenerative IVD disease.
Collapse
Affiliation(s)
- Wei Xie
- Department of Orthopaedic Surgery, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, China
| | - Zemao Huang
- Department of Orthopaedic Surgery, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, China
- Department of Orthopaedic Surgery, Fuzhou Second General Hospital, Xiamen University, Fuzhou, China
| | - Ziyang Huang
- Department of Orthopaedic Surgery, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, China
| | - Deqing Luo
- Department of Orthopaedic Surgery, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, China
| | - Zhangxin Chen
- Department of Orthopaedic Surgery, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, China
- Department of Spine Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Xie
- Department of Orthopaedic Surgery, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, China
| | - Lingqi Zhu
- Department of Orthopaedic Surgery, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, China
| | - Hui Liu
- Department of Orthopaedic Surgery, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, China
| | - Kejian Lian
- Department of Orthopaedic Surgery, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, China
| | - Paolo Alberton
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Munich, Germany
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration Orthopaedic Hospital König-Ludwig-Haus, University of Wuerzburg, Wuerzburg, Germany
| | - Dasheng Lin
- Department of Orthopaedic Surgery, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, China
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Department of Orthopaedic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
4
|
Warren JP, Coe RH, Culbert MP, Dixon AR, Miles DE, Mengoni M, Beales PA, Wilcox RK. Injectable peptide-glycosaminoglycan hydrogels for soft tissue repair: in vitro assessment for nucleus augmentation. MATERIALS ADVANCES 2024; 5:8665-8672. [PMID: 39421698 PMCID: PMC11474259 DOI: 10.1039/d4ma00613e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
We report the development of peptide-glycosaminoglycan hydrogels as injectable biomaterials for load-bearing soft tissue repair. The hydrogels are injectable as a liquid for clinical delivery, rapidly form a gel in situ, and mimic the osmotic swelling behaviour of natural tissue. We used a new in vitro model to demonstrate their application as a nucleus augmentation material for the treatment of intervertebral disc degeneration. Our study compared a complex lab gel preparation method to a simple clinical benchtop process. We showed pH differences did not significantly affect gel formation, and temperature variations had no impact on gel performance. Rheological results demonstrated consistency after benchtop mixing or needle injection. In our in vitro disc degeneration model, we established that peptide augmentation could restore the native biomechanical properties. This suggests the feasibility of minimally invasive peptide-GAG gel delivery, maintaining consistent properties across temperature and needle sizes while restoring disc height and stiffness in vitro.
Collapse
Affiliation(s)
- James P Warren
- Institute of Medical and Biological Engineering, School of Mechanical Engineering UK
- School of Chemistry, University of Leeds Leeds LS2 9JT UK
| | - Ruth H Coe
- Institute of Medical and Biological Engineering, School of Mechanical Engineering UK
| | - Matthew P Culbert
- Institute of Medical and Biological Engineering, School of Mechanical Engineering UK
- School of Chemistry, University of Leeds Leeds LS2 9JT UK
| | - Andrew R Dixon
- Institute of Medical and Biological Engineering, School of Mechanical Engineering UK
| | - Danielle E Miles
- Institute of Medical and Biological Engineering, School of Mechanical Engineering UK
- School of Chemistry, University of Leeds Leeds LS2 9JT UK
| | - Marlène Mengoni
- Institute of Medical and Biological Engineering, School of Mechanical Engineering UK
| | - Paul A Beales
- School of Chemistry, University of Leeds Leeds LS2 9JT UK
| | - Ruth K Wilcox
- Institute of Medical and Biological Engineering, School of Mechanical Engineering UK
| |
Collapse
|
5
|
Riahinezhad H, Amsden BG. In situ forming, mechanically resilient hydrogels prepared from 4a-[PEG- b-PTMC-Ac] and thiolated chondroitin sulfate for nucleus pulposus cell delivery. J Mater Chem B 2024; 12:1257-1270. [PMID: 38167961 DOI: 10.1039/d3tb02574h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Intervertebral disk degeneration (IVDD) is a common condition that causes severe back pain and affects patients' mobility and life quality considerably. IVDD originates within the central region of the disk called the nucleus pulposus (NP). Removing the damaged tissue and replacing it with NP cells (NPCs) delivered within an in situ forming hydrogel is a promising treatment approach. Herein we describe a hydrogel formulation based on 4-arm [poly(ethylene glycol)-b-poly(trimethylene carbonate)-acrylate] (4a[PEG-b-PTMC-Ac]) crosslinked with thiolated chondroitin sulfate via Michael-type reaction for this purpose. A library of hydrogels based on 15 kDa 4a-[PEG] with PTMC blocks of varying molecular weight were prepared and characterized. The instantaneous moduli of the hydrogels were adjustable from 24 to 150 kPa depending on the length of the PTMC block and the polymer volume fraction. The influence of each of these parameters was effectively explained using both scaling or mean field theories of polyelectrolyte hydrogels. The hydrogels were resistant to cyclic compressive loading and degraded gradually over 70 days in vitro. A hydrogel formulation with an instantaneous modulus at the high end of the range of values reported for human NP tissue was chosen to assess the ability of these hydrogels for delivering NPCs. The prepolymer solution was injectable and formed a hydrogel within 30 minutes at 37 °C. Bovine NPCs were encapsulated within this hydrogel with high viability and proliferated throughout a 28 day, hypoxic culture period. The encapsulated NPCs formed clusters and deposited collagen type II but no collagen type I within the hydrogels. Despite an initial gradual decrease, a steady-state modulus was reached at the end of the 28 day culture period that was within the range reported for healthy human NP tissue. This in situ forming hydrogel formulation is a promising approach and with further development could be a viable clinical treatment for IVDD.
Collapse
Affiliation(s)
- Hossein Riahinezhad
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada.
| | - Brian G Amsden
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
6
|
Nakielski P, Rybak D, Jezierska-Woźniak K, Rinoldi C, Sinderewicz E, Staszkiewicz-Chodor J, Haghighat Bayan MA, Czelejewska W, Urbanek O, Kosik-Kozioł A, Barczewska M, Skomorowski M, Holak P, Lipiński S, Maksymowicz W, Pierini F. Minimally Invasive Intradiscal Delivery of BM-MSCs via Fibrous Microscaffold Carriers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58103-58118. [PMID: 38019273 DOI: 10.1021/acsami.3c11710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Current treatments of degenerated intervertebral discs often provide only temporary relief or address specific causes, necessitating the exploration of alternative therapies. Cell-based regenerative approaches showed promise in many clinical trials, but limitations such as cell death during injection and a harsh disk environment hinder their effectiveness. Injectable microscaffolds offer a solution by providing a supportive microenvironment for cell delivery and enhancing bioactivity. This study evaluated the safety and feasibility of electrospun nanofibrous microscaffolds modified with chitosan (CH) and chondroitin sulfate (CS) for treating degenerated NP tissue in a large animal model. The microscaffolds facilitated cell attachment and acted as an effective delivery system, preventing cell leakage under a high disc pressure. Combining microscaffolds with bone marrow-derived mesenchymal stromal cells demonstrated no cytotoxic effects and proliferation over the entire microscaffolds. The administration of cells attached to microscaffolds into the NP positively influenced the regeneration process of the intervertebral disc. Injectable poly(l-lactide-co-glycolide) and poly(l-lactide) microscaffolds enriched with CH or CS, having a fibrous structure, showed the potential to promote intervertebral disc regeneration. These features collectively address critical challenges in the fields of tissue engineering and regenerative medicine, particularly in the context of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Paweł Nakielski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, Warsaw 02-106, Poland
| | - Daniel Rybak
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, Warsaw 02-106, Poland
| | - Katarzyna Jezierska-Woźniak
- Laboratory for Regenerative Medicine, Department of Neurosurgery, School of Medicine, University of Warmia and Mazury, Warszawska 30, Olsztyn 10-082, Poland
| | - Chiara Rinoldi
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, Warsaw 02-106, Poland
| | - Emilia Sinderewicz
- Laboratory for Regenerative Medicine, Department of Neurosurgery, School of Medicine, University of Warmia and Mazury, Warszawska 30, Olsztyn 10-082, Poland
| | - Joanna Staszkiewicz-Chodor
- Laboratory for Regenerative Medicine, Department of Neurosurgery, School of Medicine, University of Warmia and Mazury, Warszawska 30, Olsztyn 10-082, Poland
| | - Mohammad Ali Haghighat Bayan
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, Warsaw 02-106, Poland
| | - Wioleta Czelejewska
- Laboratory for Regenerative Medicine, Department of Neurosurgery, School of Medicine, University of Warmia and Mazury, Warszawska 30, Olsztyn 10-082, Poland
| | - Olga Urbanek
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, Warsaw 02-106, Poland
| | - Alicja Kosik-Kozioł
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, Warsaw 02-106, Poland
| | - Monika Barczewska
- Laboratory for Regenerative Medicine, Department of Neurosurgery, School of Medicine, University of Warmia and Mazury, Warszawska 30, Olsztyn 10-082, Poland
| | - Mateusz Skomorowski
- Neurosurgery Clinic, University Clinical Hospital in Olsztyn, Warszawska 30, Olsztyn 10-082, Poland
| | - Piotr Holak
- Laboratory for Regenerative Medicine, Department of Neurosurgery, School of Medicine, University of Warmia and Mazury, Warszawska 30, Olsztyn 10-082, Poland
| | - Seweryn Lipiński
- Department of Electrical Engineering, Power Engineering, Electronics and Automation, Faculty of Technical Sciences, University of Warmia and Mazury, Oczapowskiego 11, Olsztyn 10-082, Poland
| | - Wojciech Maksymowicz
- Laboratory for Regenerative Medicine, Department of Neurosurgery, School of Medicine, University of Warmia and Mazury, Warszawska 30, Olsztyn 10-082, Poland
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, Warsaw 02-106, Poland
| |
Collapse
|
7
|
Brissenden AJ, Amsden BG. In situ forming macroporous biohybrid hydrogel for nucleus pulposus cell delivery. Acta Biomater 2023; 170:169-184. [PMID: 37598793 DOI: 10.1016/j.actbio.2023.08.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Degenerative intervertebral disc disease is a common source of chronic pain and reduced quality of life in people over the age of 40. While degeneration occurs throughout the disc, it most often initiates in the nucleus pulposus (NP). Minimally invasive delivery of NP cells within hydrogels that can restore and maintain the disc height while regenerating the damaged NP tissue is a promising treatment strategy for this condition. Towards this goal, a biohybrid ABA dimethacrylate triblock copolymer was synthesized, possessing a lower critical solution temperature below 37 °C and which contained as its central block an MMP-degradable peptide flanked by poly(trimethylene carbonate) blocks bearing pendant oligoethylene glycol groups. This triblock prepolymer was used to form macroporous NP cell-laden hydrogels via redox initiated (ammonium persulfate/sodium bisulfite) crosslinking, with or without the inclusion of thiolated chondroitin sulfate. The resulting macroporous hydrogels had water and mechanical properties similar to those of human NP tissue and were mechanically resilient. The hydrogels supported NP cell attachment and growth over 28 days in hypoxic culture. In hydrogels prepared with the triblock copolymer but without the chondroitin sulfate the NP cells were distributed homogeneously throughout in clusters and deposited collagen type II and sulfated glycosaminoglycans but not collagen type I. This hydrogel formulation warrants further investigation as a cell delivery vehicle to regenerate degenerated NP tissue. STATEMENT OF SIGNIFICANCE: The intervertebral disc between the vertebral bones of the spine consists of three regions: a gel-like central nucleus pulposus (NP) within the annulus fibrosis, and bony endplates. Degeneration of the intervertebral disc is a source of chronic pain in the elderly and most commonly initiates in the NP. Replacement of degenerated NP tissue with a NP cell-laden hydrogel is a promising treatment strategy. Herein we demonstrate that a crosslinkable polymer with a lower critical solution temperature below 37 °C can be used to form macroporous hydrogels for this purpose. The hydrogels are capable of supporting NP cells, which deposit collagen II and sulfated glycosaminoglycans, while also possessing mechanical properties matching those of human NP tissue.
Collapse
Affiliation(s)
- Amanda J Brissenden
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Brian G Amsden
- Department of Chemical Engineering, Queen's University, Kingston, ON, Canada K7L 3N6.
| |
Collapse
|
8
|
Chen X, Kohan S, Bhargav D, Choi J, Perera S, Dean C, Chopra N, Sial A, Sandhu HS, Apos E, Appleyard R, Diwan AD. Phase 1 evaluation of an elastomeric nucleus pulposus device as an option to augment disc at microdiscectomy: Experimental results from biomechanical and biocompatibility testing and first in human. JOR Spine 2023; 6:e1250. [PMID: 37361335 PMCID: PMC10285756 DOI: 10.1002/jsp2.1250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 06/28/2023] Open
Abstract
Objective Whilst microdiscectomy is an excellent reliever of pain for recalcitrant lumbar disc herniation (LDH), it has a high failure rate over time due to the ensuing reduction in mechanical stabilization and support of the spine. One option is to clear the disc and replace it with a nonhygroscopic elastomer. Here, we present the evaluation of biomechanical and biological behavior of a novel elastomeric nucleus device (Kunovus disc device [KDD]), consisting of a silicone jacket and a two-part in situ curing silicone polymer filler. Materials and Methods ISO 10993 and American Society for Testing and Materials (ASTM) standards were used to evaluate the biocompatibility and mechanics of KDD. Sensitization, intracutaneous reactivity, acute systemic toxicity, genotoxicity, muscle implantation study, direct contact matrix toxicity assay, and cell growth inhibition assay were performed. Fatigue test, static compression creep testing, expulsion testing, swell testing, shock testing, and aged fatigue testing were conducted to characterize the mechanical and wear behavior of the device. Cadaveric studies to develop a surgical manual and evaluate feasibility were conducted. Finally, a first-in-human implantation was conducted to complete the proof of principle. Results The KDD demonstrated exceptional biocompatibility and biodurability. Mechanical tests showed no Barium-containing particles in fatigue test, no fracture of nucleus in static compression creep testing, no extrusion and swelling, and no material failure in shock and aged fatigue testing. Cadaver training sessions showed that KDD was deemed implantable during microdiscectomy procedures in a minimally invasive manner. Following IRB approval, the first implantation in a human showed no intraoperative vascular and neurological complications and demonstrated feasibility. This successfully completed Phase 1 development of the device. Conclusion The elastomeric nucleus device may mimic native disc behavior in mechanical tests, offering an effective way for treating LDH by way of Phase 2 and subsequent clinical trials or postmarket surveillance in the future.
Collapse
Affiliation(s)
- Xiaolong Chen
- Spine Labs, St. George & Sutherland Clinical School, University of New South WalesSydneyNew South WalesAustralia
- Kunovus TechnologiesSydneyNew South WalesAustralia
| | - Saeed Kohan
- St. George Hospital, University of New South WalesSydneyNew South WalesAustralia
| | | | | | | | - Cameron Dean
- Kunovus TechnologiesSydneyNew South WalesAustralia
| | - Neha Chopra
- Spine Labs, St. George & Sutherland Clinical School, University of New South WalesSydneyNew South WalesAustralia
- Spine Service, Department of Orthopaedic SurgerySt. George Hospital CampusSydneyNew South WalesAustralia
| | - Alisha Sial
- Spine Labs, St. George & Sutherland Clinical School, University of New South WalesSydneyNew South WalesAustralia
- Spine Service, Department of Orthopaedic SurgerySt. George Hospital CampusSydneyNew South WalesAustralia
| | - Harvinder S. Sandhu
- Spinal Surgical Service, Hospital for Special Surgery, Weill Medical College of Cornell UniversityNew YorkNew YorkUSA
| | - Esther Apos
- Kunovus TechnologiesSydneyNew South WalesAustralia
- Cmsscidoc Pty LtdMelbourneVictoriaAustralia
| | - Richard Appleyard
- Orthopaedic Biomechanics Research Group, Department of Biomedical Sciences, Faculty of Medicine and Health SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Ashish D. Diwan
- Spine Labs, St. George & Sutherland Clinical School, University of New South WalesSydneyNew South WalesAustralia
- Spine Service, Department of Orthopaedic SurgerySt. George Hospital CampusSydneyNew South WalesAustralia
| |
Collapse
|
9
|
Warren JP, Culbert MP, Miles DE, Maude S, Wilcox RK, Beales PA. Controlling the Self-Assembly and Material Properties of β-Sheet Peptide Hydrogels by Modulating Intermolecular Interactions. Gels 2023; 9:441. [PMID: 37367112 DOI: 10.3390/gels9060441] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/28/2023] Open
Abstract
Self-assembling peptides are a promising biomaterial with potential applications in medical devices and drug delivery. In the right combination of conditions, self-assembling peptides can form self-supporting hydrogels. Here, we describe how balancing attractive and repulsive intermolecular forces is critical for successful hydrogel formation. Electrostatic repulsion is tuned by altering the peptide's net charge, and intermolecular attractions are controlled through the degree of hydrogen bonding between specific amino acid residues. We find that an overall net peptide charge of +/-2 is optimal to facilitate the assembly of self-supporting hydrogels. If the net peptide charge is too low then dense aggregates form, while a high molecular charge inhibits the formation of larger structures. At a constant charge, altering the terminal amino acids from glutamine to serine decreases the degree of hydrogen bonding within the assembling network. This tunes the viscoelastic properties of the gel, reducing the elastic modulus by two to three orders of magnitude. Finally, hydrogels could be formed from glutamine-rich, highly charged peptides by mixing the peptides in combinations with a resultant net charge of +/-2. These results illustrate how understanding and controlling self-assembly mechanisms through modulating intermolecular interactions can be exploited to derive a range of structures with tuneable properties.
Collapse
Affiliation(s)
- James P Warren
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
- School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
- Institute of Medical and Biological Engineering, University of Leeds, Leeds LS2 9JT, UK
- Bragg Centre for Materials Research, University of Leeds, Leeds LS2 9JT, UK
| | - Matthew P Culbert
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
- School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
- Institute of Medical and Biological Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Danielle E Miles
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
- School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
- Institute of Medical and Biological Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Steven Maude
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Ruth K Wilcox
- School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
- Institute of Medical and Biological Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Paul A Beales
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
- Bragg Centre for Materials Research, University of Leeds, Leeds LS2 9JT, UK
- Astbury Centre for Structural Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
10
|
He Z, Luo H, Wang Z, Chen D, Feng Q, Cao X. Injectable and tissue adhesive EGCG-laden hyaluronic acid hydrogel depot for treating oxidative stress and inflammation. Carbohydr Polym 2023; 299:120180. [PMID: 36876795 DOI: 10.1016/j.carbpol.2022.120180] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 12/12/2022]
Abstract
Oxidative stress and inflammation are common pathological mechanisms for the progression of tissue degeneration. Epigallocatechin-3-gallate (EGCG) features antioxidant and anti-inflammatory properties, which is a promising drug for the treatment of tissue degeneration. Herein, we utilize the phenylborate ester reaction of EGCG and phenylboronic acid (PBA) to fabricate an injectable and tissue adhesive EGCG-laden hydrogel depot (EGCG HYPOT), which can achieve anti-inflammatory and antioxidative effects via smart delivery of EGCG. Specifically, the phenylborate ester bonds, formed by EGCG and PBA-modified methacrylated hyaluronic acid (HAMA-PBA), endow EGCG HYPOT injectability, shape adaptation and efficient load of EGCG. After photo-crosslinking, EGCG HYPOT exhibits good mechanical properties, tissue adhesion and sustained acid-responsive release of EGCG. EGCG HYPOT can scavenge oxygen and nitrogen free radicals. Meanwhile, EGCG HYPOT can scavenge intracellular reactive oxygen species (ROS) and suppress the expression of pro-inflammatory factors. EGCG HYPOT may provide a new idea for alleviation of inflammatory disturbance.
Collapse
Affiliation(s)
- Zhichao He
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Huitong Luo
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510006, PR China
| | - Zetao Wang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, PR China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing JiShuiTan Hospital, Beijing 100035, PR China
| | - Qi Feng
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
| | - Xiaodong Cao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, PR China.
| |
Collapse
|
11
|
Readioff R, Geraghty B, Kharaz YA, Elsheikh A, Comerford E. Proteoglycans play a role in the viscoelastic behaviour of the canine cranial cruciate ligament. Front Bioeng Biotechnol 2022; 10:984224. [PMID: 36457857 PMCID: PMC9705345 DOI: 10.3389/fbioe.2022.984224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/31/2022] [Indexed: 07/01/2024] Open
Abstract
Proteoglycans (PGs) are minor extracellular matrix proteins, and their contributions to the mechanobiology of complex ligaments such as the cranial cruciate ligament (CCL) have not been determined to date. The CCLs are highly susceptible to injuries, and their extracellular matrix comprises higher PGs content than the other major knee ligaments. Hence these characteristics make CCLs an ideal specimen to use as a model in this study. This study addressed the hypothesis that PGs play a vital role in CCL mechanobiology by determining the biomechanical behaviour at low strain rates before and after altering PGs content. For the first time, this study qualitatively investigated the contribution of PGs to key viscoelastic characteristics, including strain rate dependency, hysteresis, creep and stress relaxation, in canine CCLs. Femur-CCL-tibia specimens (n = 6 pairs) were harvested from canine knee joints and categorised into a control group, where PGs were not depleted, and a treated group, where PGs were depleted. Specimens were preconditioned and cyclically loaded to 9.9 N at 0.1, 1 and 10%/min strain rates, followed by creep and stress relaxation tests. Low tensile loads were applied to focus on the toe-region of the stress-strain curves where the non-collagenous extracellular matrix components take significant effect. Biochemical assays were performed on the CCLs to determine PGs and water content. The PG content was ∼19% less in the treated group than in the control group. The qualitative study showed that the stress-strain curves in the treated group were strain rate dependent, similar to the control group. The CCLs in the treated group showed stiffer characteristics than the control group. Hysteresis, creep characteristics (creep strain, creep rate and creep compliance), and stress relaxation values were reduced in the treated group compared to the control group. This study suggests that altering PGs content changes the microstructural organisation of the CCLs, including water molecule contents which can lead to changes in CCL viscoelasticity. The change in mechanical properties of the CCLs may predispose to injury and lead to knee joint osteoarthritis. Future studies should focus on quantitatively identifying the effect of PG on the mechanics of intact knee ligaments across broader demography.
Collapse
Affiliation(s)
- Rosti Readioff
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, Liverpool, United Kingdom
- Faculty of Engineering, School of Mechanical Engineering, Institute of Medical and Biological Engineering, University of Leeds, Leeds, United Kingdom
- School of Dentistry, University of Liverpool, Liverpool, United Kingdom
- Department of Mechanical Engineering, University of Bath, Bath, United Kingdom
| | - Brendan Geraghty
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Yalda A. Kharaz
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Medical Research Council Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, United Kingdom
| | - Ahmed Elsheikh
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, Liverpool, United Kingdom
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- NIHR Moorfields BRC, UCL Institute of Ophthalmology, London, United Kingdom
| | - Eithne Comerford
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Medical Research Council Versus Arthritis Centre for Integrated Research Into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool, United Kingdom
- School of Veterinary Science, University of Liverpool, Neston, United Kingdom
| |
Collapse
|