1
|
Panayides JL, Riley DL, Hasenmaile F, van Otterlo WAL. The role of silicon in drug discovery: a review. RSC Med Chem 2024; 15:3286-3344. [PMID: 39430101 PMCID: PMC11484438 DOI: 10.1039/d4md00169a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/07/2024] [Indexed: 10/22/2024] Open
Abstract
This review aims to highlight the role of silicon in drug discovery. Silicon and carbon are often regarded as being similar with silicon located directly beneath carbon in the same group in the periodic table. That being noted, in many instances a clear dichotomy also exists between silicon and carbon, and these differences often lead to vastly different physiochemical and biological properties. As a result, the utility of silicon in drug discovery has attracted significant attention and has grown rapidly over the past decade. This review showcases some recent advances in synthetic organosilicon chemistry and examples of the ways in which silicon has been employed in the drug-discovery field.
Collapse
Affiliation(s)
- Jenny-Lee Panayides
- Pharmaceutical Technologies, Future Production: Chemicals, Council for Scientific and Industrial Research (CSIR) Meiring Naude Road, Brummeria Pretoria South Africa
| | - Darren Lyall Riley
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria Lynnwood Road Pretoria South Africa
| | - Felix Hasenmaile
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| |
Collapse
|
2
|
Li GL, Niu KK, Yang XZ, Liu H, Yu S, Xing LB. A Hydrogen-Bonded Organic Framework Based on Triphenylamine for Photocatalytic Silane Hydroxylation. Inorg Chem 2024; 63:16533-16540. [PMID: 39167756 DOI: 10.1021/acs.inorgchem.4c02886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Employing hydrogen-bonded organic frameworks (HOFs) as mild photocatalysts for organic conversions is still considerably challenging. In this work, we synthesized a hydrogen-bonded organic framework (HOF-16) and achieved the photocatalytic oxidation of silanes to generate silanols. Considering the constraints imposed by the framework structure, a significant improvement in the efficacy of singlet oxygen (1O2) generation is observed. HOF-16 exhibits remarkable photocatalytic performance when it comes to silane hydroxylation, displaying high efficiency, low catalyst loading, and good recyclability. This research highlights the immense potential of HOFs in the realm of organic photocatalysis.
Collapse
Affiliation(s)
- Guang-Lu Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo, Shandong 255000, P. R. China
| | - Kai-Kai Niu
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo, Shandong 255000, P. R. China
| | - Xuan-Zong Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo, Shandong 255000, P. R. China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo, Shandong 255000, P. R. China
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo, Shandong 255000, P. R. China
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology Zibo, Shandong 255000, P. R. China
| |
Collapse
|
3
|
Liu M, Huang H, An C, Feng X, Wang Z. Facile Synthesis of Ultra-Small Silver Nanoparticles Stabilized on Carbon Nanospheres for the Etherification of Silanes. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1095. [PMID: 38998700 PMCID: PMC11243459 DOI: 10.3390/nano14131095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/22/2024] [Accepted: 06/23/2024] [Indexed: 07/14/2024]
Abstract
The dehydrocoupling reaction between alcohols and hydrosilanes is considered to be one of the most atom-economical ways to produce Si-O coupling compounds because its byproduct is only hydrogen (H2), which make it extremely environmentally friendly. In past decades, various kinds of homogeneous catalysts for the dehydrocoupling of alcohols and hydrosilanes, such as transition metal complexes, alkaline earth metals, alkali metals, and noble metal complexes, have been reported for their good activity and selectivity. Nevertheless, the practical applications of these catalysts still remain unsatisfactory, which is mainly restricted by environmental impact and non-reusability. A facile and recyclable heterogeneous catalyst, ultra-small Ag nanoparticles supported on porous carbon (Ag/C) for the etherification of silanes, has been developed. It has high catalytic activity for the Si-O coupling reaction, and the apparent activation energy of the reaction is about 30 kJ/mol. The ultra-small Ag nanoparticles dispersed in the catalyst through the carrier C have an enrichment effect on all reactants, which makes the reactants reach the adsorption saturation state on the surface of Ag nanoparticles, thus accelerating the coupling reaction process and verifying that the kinetics of the reaction of the catalyst indicate a zero-grade reaction.
Collapse
Affiliation(s)
- Minghui Liu
- College of Biomedical and Chemical Engineering, Liaoning Institute of Science and Technology, No. 176 Xianghuai Road, Benxi 117004, China; (C.A.); (X.F.); (Z.W.)
| | - He Huang
- School of Petrochemical Engineering, Liaoning Shihua University, Fushun 113001, China
| | - Changwei An
- College of Biomedical and Chemical Engineering, Liaoning Institute of Science and Technology, No. 176 Xianghuai Road, Benxi 117004, China; (C.A.); (X.F.); (Z.W.)
| | - Xue Feng
- College of Biomedical and Chemical Engineering, Liaoning Institute of Science and Technology, No. 176 Xianghuai Road, Benxi 117004, China; (C.A.); (X.F.); (Z.W.)
| | - Zijing Wang
- College of Biomedical and Chemical Engineering, Liaoning Institute of Science and Technology, No. 176 Xianghuai Road, Benxi 117004, China; (C.A.); (X.F.); (Z.W.)
| |
Collapse
|
4
|
Huang WS, Xu H, Yang H, Xu LW. Catalytic Synthesis of Silanols by Hydroxylation of Hydrosilanes: From Chemoselectivity to Enantioselectivity. Chemistry 2024; 30:e202302458. [PMID: 37861104 DOI: 10.1002/chem.202302458] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/21/2023]
Abstract
As a crucial class of functional molecules in organosilicon chemistry, silanols are found valuable applications in the fields of modern science and will be a potentially powerful framework for biologically active compounds or functional materials. It has witnessed an increasing demand for non-natural organosilanols, as well as the progress in the synthesis of these structural features. From the classic preparative methods to the catalytic selective oxidation of hydrosilanes, electrochemical hydrolysis of hydrosilanes, and then the construction of the most challenging silicon-stereogenic silanols. This review summarized the progress in the catalyzed synthesis of silanols via hydroxylation of hydrosilanes in the last decade, with a particular emphasis on the latest elegant developments in the desymmetrization strategy for the enantioselective synthesis of silicon-stereogenic silanols from dihydrosilanes.
Collapse
Affiliation(s)
- Wei-Sheng Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Hao Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
5
|
Sen A, Kumar R, Tewari T, Gonnade RG, Chikkali SH. Iron-Catalyzed Alkoxylation, Dehydrogenative-Polymerization and Tandem Hydrosilylative-Alkoxylation. Chemistry 2023; 29:e202301375. [PMID: 37285327 DOI: 10.1002/chem.202301375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/09/2023]
Abstract
Alkoxylation, hydrosilylative-alkoxylation, and dehydrogenative-polymerization are some of the most widely used transformations in synthetic chemistry. However, these transformations are traditionally catalyzed by precious, and rare late-transition metals. Presented here is a molecularly defined iron complex that catalyzes alkoxylation, tandem hydrosilylative-alkoxylation, and dehydrogenative polymerization of silanes under mild conditions. The iron complex [Fe(CO)4 (H)(SiPh3 )] 1 catalyzes a direct Si-O coupling reaction between an array of silanes and alcohols to produce desired alkoxysilanes in excellent yield, with H2 as the only byproduct. The iron catalyst tolerates various functional groups and provides access to 20 alkoxysilanes, including essential molecules such as β-citronellol and cholesterol. Further, complex 1 catalyzes the polymerization of renewable diol and silane monomer to produce a renewable and degradable poly(isosorbide-silyl ether). Remarkably, complex 1 catalyzes a tandem hydrosilylative-alkoxylation of alkynes under mild conditions to yield unsaturated silyl ethers. The synthetic utility has been demonstrated by gram-scale alkoxylation and hydrosilylative-alkoxylation reactions.
Collapse
Affiliation(s)
- Anirban Sen
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, MH, India
- Academy of Scientific and Innovative Research (AcSIR) Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, U. P., India
| | - Rohit Kumar
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, MH, India
- Academy of Scientific and Innovative Research (AcSIR) Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, U. P., India
| | - Tanuja Tewari
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, MH, India
- Academy of Scientific and Innovative Research (AcSIR) Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, U. P., India
| | - Rajesh G Gonnade
- Academy of Scientific and Innovative Research (AcSIR) Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, U. P., India
- Center for Materials Characterization, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, MH, India
| | - Samir H Chikkali
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, MH, India
- Academy of Scientific and Innovative Research (AcSIR) Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, U. P., India
| |
Collapse
|
6
|
Chen YX, He JT, Wu MC, Liu ZL, Xia PJ, Chen K, Xiang HY, Yang H. Visible-light-driven oxidation of organosilanes by a charge-transfer complex. Chem Commun (Camb) 2023; 59:6588-6591. [PMID: 37190787 DOI: 10.1039/d3cc01972a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Direct oxidation of organosilanes is one of the most straightforward ways to access silanols. Herein, we describe a novel photo-induced strategy for oxidation of organosilanes to access silanols, promoted by a photoactive charge-transfer complex (CTC) between sodium benzenesulfinate and molecular O2. A streamlined sequence transformation of organosilanes to silyl ethers was also readily achieved. This developed protocol represents the first example of CTC-based oxidation of organosilanes, offering a facile approach to access a series of silanol and silyl ether products.
Collapse
Affiliation(s)
- Yi-Xuan Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Jun-Tao He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Mei-Chun Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
- College of Chemistry and Chemical Engineering, Huaihua University, Huaihua 418008, P. R. China
| | - Zhi-Lin Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Peng-Ju Xia
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| |
Collapse
|
7
|
Yang J, Cao X, Wei L, Zhang J, Zhang J, Liu P, Xu L, Li P. Visible Light-Mediated Organoboron-Catalyzed Metal-Free Synthesis of Silanols from Silanes. Molecules 2023; 28:molecules28104082. [PMID: 37241823 DOI: 10.3390/molecules28104082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Herein, a four-coordinated organoboron compound, aminoquinoline diarylboron (AQDAB), is utilized as the photocatalyst in the oxidation of silane to silanol. This strategy effectively oxidizes Si-H bonds, affording Si-O bonds. Generally, the corresponding silanols can be obtained in moderate to good yields at room temperature under oxygen atmospheres, representing a green protocol to complement the existing preparation methods for silanols.
Collapse
Affiliation(s)
- Jinbo Yang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Beisi Road, Xinjiang Uygur Autonomous Region, Shihezi 832003, China
| | - Xiangxue Cao
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Beisi Road, Xinjiang Uygur Autonomous Region, Shihezi 832003, China
| | - Lanfeng Wei
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Beisi Road, Xinjiang Uygur Autonomous Region, Shihezi 832003, China
| | - Jianshu Zhang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Beisi Road, Xinjiang Uygur Autonomous Region, Shihezi 832003, China
| | - Jinli Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ping Liu
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Beisi Road, Xinjiang Uygur Autonomous Region, Shihezi 832003, China
| | - Liang Xu
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Beisi Road, Xinjiang Uygur Autonomous Region, Shihezi 832003, China
| | - Pengfei Li
- State Key Laboratory for Mechanical Behavior of Materials, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China
| |
Collapse
|
8
|
Dearomative triple elementalization of quinolines driven by visible light. Nat Commun 2023; 14:652. [PMID: 36746969 PMCID: PMC9902486 DOI: 10.1038/s41467-023-36161-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
Organoboron and organosilicon compounds are used not only as synthetic building blocks but also as functional materials and pharmaceuticals, and compounds with multiple boryl and silyl groups are beginning to be used for these purposes. Especially in drug discovery, methodology providing easy stereoselective access to aliphatic nitrogen heterocycles bearing multiple boryl or silyl groups from readily available aromatic nitrogen heterocycles would be attractive. However, such transformations remain challenging, and available reactions have been mostly limited to dearomative hydroboration or hydrosilylation reactions. Here, we report the dearomative triple elementalization (carbo-sila-boration) of quinolines via the addition of organolithium followed by photo-boosted silaboration, affording the desired products with complete chemo-, regio-, and stereoselectivity. The reaction proceeds via the formation of silyl radicals instead of silyl anions. We also present preliminary studies to illustrate the potential of silaboration products as synthetic platforms.
Collapse
|
9
|
Yang C, Chen J, Li X, Meng L, Wang K, Sun W, Fan B. Difluoroallylation of Silanes under Photoirradiation. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a22110454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
10
|
Antico E, Leutzsch M, Wessel N, Weyhermüller T, Werlé C, Leitner W. Selective oxidation of silanes into silanols with water using [MnBr(CO) 5] as a precatalyst. Chem Sci 2022; 14:54-60. [PMID: 36605749 PMCID: PMC9769106 DOI: 10.1039/d2sc05959b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
The development of earth-abundant catalysts for the selective conversion of silanes to silanols with water as an oxidant generating valuable hydrogen as the only by-product continues to be a challenge. Here, we demonstrate that [MnBr(CO)5] is a highly active precatalyst for this reaction, operating under neutral conditions and avoiding the undesired formation of siloxanes. As a result, a broad substrate scope, including primary and secondary silanes, could be converted to the desired products. The turnover performances of the catalyst were also examined, yielding a maximum TOF of 4088 h-1. New light was shed on the debated mechanism of the interaction between [MnBr(CO)5] and Si-H bonds based on the reaction kinetics (including KIEs of PhMe2SiD and D2O) and spectroscopic techniques (FT-IR, GC-TCD, 1H-, 29Si-, and 13C-NMR). The initial activation of [MnBr(CO)5] was found to result from the formation of a manganese(i) hydride species and R3SiBr, and the experimental data are most consistent with a catalytic cycle comprising a cationic tricarbonyl Mn(i) unit as the active framework.
Collapse
Affiliation(s)
- Emanuele Antico
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470 Mülheim an der RuhrGermany,Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen UniversityWorringer Weg 252074 AachenGermany
| | - Markus Leutzsch
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470 Mülheim an der RuhrGermany
| | - Niklas Wessel
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470 Mülheim an der RuhrGermany,Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen UniversityWorringer Weg 252074 AachenGermany
| | - Thomas Weyhermüller
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470 Mülheim an der RuhrGermany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470 Mülheim an der RuhrGermany,Ruhr University BochumUniversitätsstr. 15044801 BochumGermany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470 Mülheim an der RuhrGermany,Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen UniversityWorringer Weg 252074 AachenGermany
| |
Collapse
|
11
|
Wu W, Zhao H, Chen J, Zhang F, Fan B. Umpolung Reactivity of Imine Ester: Visible-Light Mediated Transfer Hydrogenation of α-Aryl Imino Esters by Phenylsilane and Water. Chemistry 2022; 28:e202202460. [PMID: 36089553 DOI: 10.1002/chem.202202460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 12/13/2022]
Abstract
A visible-light mediated chemoselective transfer hydrogenation of α-aryl imino esters was demonstrated. The methodology allowed the efficient and practical preparation of α-amino acid esters. The mechanism of the reaction was probed by DFT calculations, and deuteration experiments indicated deuterium was introduced into amino acid esters efficiently (up to 99 % D ratio), enabling a feasible way to obtain deuterated amino acids using D2 O as a cheap deuterium source.
Collapse
Affiliation(s)
- Wei Wu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming, Yunnan, P. R. China
| | - HengYuan Zhao
- Key Laboratory of Advanced Synthetic Chemistry, Yunnan Minzu University, Kunming, Yunnan, People's Republic of China
| | - Jingchao Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming, Yunnan, P. R. China
| | - FuQin Zhang
- Key Laboratory of Advanced Synthetic Chemistry, Yunnan Minzu University, Kunming, Yunnan, People's Republic of China
| | - Baomin Fan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming, Yunnan, P. R. China.,Key Laboratory of Advanced Synthetic Chemistry, Yunnan Minzu University, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
12
|
Liu S, Shi S, Ding S, Xiao W, Wang H, Zeng R, Zhao D, Chen C, Song W. Imidazole Functionalized Porous Organic Polymer Stabilizing Palladium Nanoparticles for the Enhanced Catalytic Dehydrogenative Coupling of Silanes with Alcohols. ChemistrySelect 2022. [DOI: 10.1002/slct.202203056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Senqun Liu
- School of Chemistry and Chemical Engineering Nanchang University Nanchang 330031 P. R. China
| | - Shunli Shi
- School of Chemistry and Chemical Engineering Nanchang University Nanchang 330031 P. R. China
| | - Shunmin Ding
- School of Chemistry and Chemical Engineering Nanchang University Nanchang 330031 P. R. China
| | - Weiming Xiao
- School of Chemistry and Chemical Engineering Nanchang University Nanchang 330031 P. R. China
| | - Herong Wang
- School of Chemistry and Chemical Engineering Nanchang University Nanchang 330031 P. R. China
| | - Rong Zeng
- School of Chemistry and Chemical Engineering Nanchang University Nanchang 330031 P. R. China
- School of Chemistry Biology and Materials Science East China University of Technology Nanchang 330013 P.R. China
| | - Dan Zhao
- School of Chemistry and Chemical Engineering Nanchang University Nanchang 330031 P. R. China
| | - Chao Chen
- School of Chemistry and Chemical Engineering Nanchang University Nanchang 330031 P. R. China
| | - Weiguo Song
- School of Chemistry and Chemical Engineering Nanchang University Nanchang 330031 P. R. China
- Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
13
|
Pan C, Meng Y, Deng Y, Zhou B, Chen J, He Z, Sun W, Khan R, Fan B. Metal‐Free Visible‐Light‐Induced Atom‐Transfer
Radical Addition Reaction of Alkenes/Alkynes with
ICH
2
CN
. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chunxiang Pan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University Yuehua Street Kunming Yunnan 650500 China
| | - Yunyan Meng
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University Yuehua Street Kunming Yunnan 650500 China
| | - Yao Deng
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University Yuehua Street Kunming Yunnan 650500 China
| | - Bingjie Zhou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University Yuehua Street Kunming Yunnan 650500 China
| | - Jingchao Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University Yuehua Street Kunming Yunnan 650500 China
| | - Zhenxiu He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University Yuehua Street Kunming Yunnan 650500 China
| | - Weiqing Sun
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University Yuehua Street Kunming Yunnan 650500 China
| | - Ruhima Khan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University Yuehua Street Kunming Yunnan 650500 China
| | - Baomin Fan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University Yuehua Street Kunming Yunnan 650500 China
- Key Laboratory of Advanced Synthetic Chemistry, Yunnan Minzu University Yuehua Street Kunming Yunnan 650500 China
| |
Collapse
|
14
|
Kuciński K, Stachowiak-Dłużyńska H, Hreczycho G. Catalytic silylation of O–nucleophiles via Si–H or Si–C bond cleavage: A route to silyl ethers, silanols and siloxanes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214456] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Guo P, Cheng LC, He X, Ye KY. Cobalt-catalyzed highly selective hydroxylation of organohydrosilanes and hydrosiloxanes. Org Chem Front 2022. [DOI: 10.1039/d2qo01294d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The highly selective and scalable dehydrogenative hydroxylation of hydrosilanes, featuring a low loading of the Earth-abundant cobalt catalyst, water as the green oxidant, and good generality for various hydrosilanes, is reported.
Collapse
Affiliation(s)
- Peng Guo
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ling-Chao Cheng
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xinglei He
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
16
|
Wu W, Chen J, Qiao L, Lv H, Zhang F, Zhu Y, Wu S, Fan B. Ruthenium‐Photocatalyzed Synthesis of Borasiloxanes in a One‐Pot Manner from Readily Available Silanes and Pinacolborane. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wei Wu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University) State Ethnic Affairs Commission & Ministry of Education Kunming 650500 P. R. China
| | - Jingchao Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University) State Ethnic Affairs Commission & Ministry of Education Kunming 650500 P. R. China
| | - Lulin Qiao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University) State Ethnic Affairs Commission & Ministry of Education Kunming 650500 P. R. China
| | - Haiping Lv
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University) State Ethnic Affairs Commission & Ministry of Education Kunming 650500 P. R. China
| | - Fuqin Zhang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University) State Ethnic Affairs Commission & Ministry of Education Kunming 650500 P. R. China
| | - Yuanbin Zhu
- Yunnan Tiefeng High Tech Mining Chemicals. Co. Ltd Qingfeng industrial park Lufeng 651200 Yunnan Province P. R. China
| | - Shiyuan Wu
- Yunnan Tiefeng High Tech Mining Chemicals. Co. Ltd Qingfeng industrial park Lufeng 651200 Yunnan Province P. R. China
| | - Baomin Fan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University) State Ethnic Affairs Commission & Ministry of Education Kunming 650500 P. R. China
- Yunnan Tiefeng High Tech Mining Chemicals. Co. Ltd Qingfeng industrial park Lufeng 651200 Yunnan Province P. R. China
| |
Collapse
|
17
|
Huang Z, Chen Z, Jiang Y, Li N, Yang S, Wang G, Pan X. Metal-Free Hydrosilylation Polymerization by Merging Photoredox and Hydrogen Atom Transfer Catalysis. J Am Chem Soc 2021; 143:19167-19177. [PMID: 34738793 DOI: 10.1021/jacs.1c09263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Organosilicon compounds and polymers have found wide applications as synthetic building blocks and functional materials. Hydrosilylation is a common strategy toward the synthesis of organosilicon compounds and polymers. Although transition-metal-catalyzed hydrosilylation has achieved great advances, the metal-free hydrosilylation polymerization of dienes and bis(silane)s, especially the one suitable for both electron-rich and electron-deficient dienes, is largely lacking. Herein, we report a visible-light-driven metal-free hydrosilylation polymerization of both electron-rich and electron-deficient dienes with bis(silane)s by using the organic photocatalyst and hydrogen atom transfer (HAT) catalyst. We achieved the well-controlled step-growth hydrosilylation polymerizations of the electron-rich diene and bis(silane) monomer due to the selective activation of Si-H bonds by the organic photocatalyst (4CzIPN) and the thiol polarity reversal reagent (HAT 1). For the electron-deficient dienes, hydrosilylation polymerization and self-polymerization occurred simultaneously in the presence of 4CzIPN and aceclidine (HAT 2), providing the opportunity to produce linear, hyperbranched, and network polymers by rationally tuning the concentration of electron-deficient dienes and the ratio of bis(silane)s and dienes to alter the proportion of the two polymerizations. A wide scope of bis(silane)s and dienes furnished polycarbosilanes with high molecular weight, excellent thermal stability, and tunable architectures.
Collapse
Affiliation(s)
- Zhujun Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Zhe Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Yuan Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Ning Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Shicheng Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Guowei Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
18
|
Wang HZ, Li JZ, Guo Z, Zheng H, Wei WT. Visible-Light-Catalyzed N-Radical-Enabled Cyclization of Alkenes for the Synthesis of Five-Membered N-Heterocycles. CHEMSUSCHEM 2021; 14:4658-4670. [PMID: 34402206 DOI: 10.1002/cssc.202101586] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Five-membered N-heterocycles play an important role in organic synthesis and material chemistry, as they are widespread through pharmaceutical molecules and natural products. Chemists have developed many synthetic strategies for constructing five-membered N-heterocycles from N-centered radicals, but the availability of mild and green methods for these transformations is still limited. The cyclization of visible-light-generated N-centered radicals with alkenes has emerged as a powerful tool to enable these chemical transformations in recent years. Through chosen representative examples, the significant developments in this promising field were outlined, including the selection of catalysts, substrate scope, mechanistic understanding (especially density functional theory calculations), and applications. The contents of this Minireview are categorized by intramolecular cyclization and intermolecular N-centered radical addition/cyclization reactions.
Collapse
Affiliation(s)
- Hui-Zhi Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Jiao-Zhe Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Zhiyong Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Hongxing Zheng
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Wen-Ting Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
| |
Collapse
|
19
|
Pan C, Yang C, Li K, Zhang K, Zhu Y, Wu S, Zhou Y, Fan B. Photo-Promoted Decarboxylative Alkylation of α, β-Unsaturated Carboxylic Acids with ICH 2CN for the Synthesis of β, γ-Unsaturated Nitriles. Org Lett 2021; 23:7188-7193. [PMID: 34491073 DOI: 10.1021/acs.orglett.1c02585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An efficient, catalyst/photocatalyst-free, and cost-effective methodology for the decarboxylative alkylation of α,β-unsaturated carboxylic acids to synthesize β,γ-unsaturated nitriles has been developed. The reaction proceeded in an environmentally benign atmosphere of blue light-emitting diode irradiation with K2CO3 and water at room temperature. The methodology worked for a wide range of substrates (22 examples) with up to 83% yield. The protocol is also compatible for gram-scale synthesis.
Collapse
Affiliation(s)
- Chunxiang Pan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Yuehua Street, Kunming 650500, China
| | - Chunhui Yang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Yuehua Street, Kunming 650500, China
| | - Kangkui Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Yuehua Street, Kunming 650500, China
| | - Keyang Zhang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Yuehua Street, Kunming 650500, China
| | - Yuanbin Zhu
- Yunnan Tiefeng High Tech Mining Chemicals Co. Ltd, Qingfeng Industrial Park, Lufeng 651200, Yunnan Province China
| | - Shiyuan Wu
- Yunnan Tiefeng High Tech Mining Chemicals Co. Ltd, Qingfeng Industrial Park, Lufeng 651200, Yunnan Province China
| | - Yongyun Zhou
- Key Laboratory of Advanced Synthetic Chemistry, Yunnan Minzu University, Yuehua Street, Kunming 650500, China
| | - Baomin Fan
- Key Laboratory of Advanced Synthetic Chemistry, Yunnan Minzu University, Yuehua Street, Kunming 650500, China
| |
Collapse
|
20
|
Charge Modified Porous Organic Polymer Stabilized Ultrasmall Platinum Nanoparticles for the Catalytic Dehydrogenative Coupling of Silanes with Alcohols. Catal Letters 2021. [DOI: 10.1007/s10562-021-03763-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|