1
|
Versolatto S, Boccalon M, Guidolin N, Travagin F, Alessio E, Aime S, Balducci G, Giovenzana GB, Baranyai Z. [Gd(HB-DO3A)]: Equilibrium, Dissociation Kinetic and Structural Differences in a Simple Homolog of [Gd(HP-DO3A)] (Prohance ®). Chemistry 2024; 30:e202400344. [PMID: 38469901 DOI: 10.1002/chem.202400344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
[Gd(HP-DO3A)] (gadoteridol) as an active compound of ProHance® is a widely employed contrast agent in clinical MRI scans in the last 30 years. Recent concerns about the long-term retention of gadolinium-based contrast agents (GBCAs) led to a deeper investigation of the structural features underlying the integrity of the paramagnetic metal complex. Several human and nonclinical studies have noted marked differences among the macrocyclic GBCAs, with the least retention of Gd traces and most rapid elimination consistently being reported for [Gd(HP-DO3A)]. It was deemed of interest to assess how minor structural/electronic changes associated to the ligand structure may affect basic properties of the metal complex with several [Gd(HP-DO3A)] analogues synthesized and characterized in the last years. We recently reported that the closest homolog of [Gd(HP-DO3A)], i. e.: [Gd(HB-DO3A)], in which a (±)-2-hydroxy-1-propyl pendant arm is replaced by a (±)-2-hydroxy-1-butyl moiety, showed a significantly different retention behaviour in the model interaction with collagen, despite the apparently very minor structural difference. In this paper we report a comprehensive study of the structural, thermodynamic, kinetic and relaxation properties of [Gd(HB-DO3A)], compared to the parent [Gd(HP-DO3A)] and to other closely related macrocyclic GBCAs to assess whether very minor structural changes can modulate the physico-chemical properties of Gd3+ complexes.
Collapse
Affiliation(s)
- Silvia Versolatto
- Dipartimento di Scienze Chimiche e Farmaceutiche Università di Trieste, Piazzale Europa 1, 34127, Trieste, TS, Italy
| | - Mariangela Boccalon
- Bracco Imaging Spa, CRB Trieste, AREA Science Park, 34149, Basovizza, TS, Italy
| | - Nicol Guidolin
- Bracco Imaging Spa, CRB Trieste, AREA Science Park, 34149, Basovizza, TS, Italy
| | - Fabio Travagin
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2/3, Novara, NO, 28100, Italy
| | - Enzo Alessio
- Dipartimento di Scienze Chimiche e Farmaceutiche Università di Trieste, Piazzale Europa 1, 34127, Trieste, TS, Italy
| | - Silvio Aime
- IRCCS SDN Research Institute Diagnostics and Nuclear SynLab, Via Emanuele Gianturco, 113, 80143, Napoli, NA, Italy
| | - Gabriele Balducci
- Dipartimento di Scienze Chimiche e Farmaceutiche Università di Trieste, Piazzale Europa 1, 34127, Trieste, TS, Italy
| | - Giovanni B Giovenzana
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2/3, Novara, NO, 28100, Italy
| | - Zsolt Baranyai
- Bracco Imaging Spa, CRB Trieste, AREA Science Park, 34149, Basovizza, TS, Italy
| |
Collapse
|
2
|
Stefania R, Palagi L, Di Gregorio E, Ferrauto G, Dinatale V, Aime S, Gianolio E. Seeking for Innovation with Magnetic Resonance Imaging Paramagnetic Contrast Agents: Relaxation Enhancement via Weak and Dynamic Electrostatic Interactions with Positively Charged Groups on Endogenous Macromolecules. J Am Chem Soc 2024; 146:134-144. [PMID: 38152996 PMCID: PMC10785807 DOI: 10.1021/jacs.3c06275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Gd-L1 is a macrocyclic Gd-HPDO3A derivative functionalized with a short spacer to a trisulfonated pyrene. When compared to Gd-HPDO3A, the increased relaxivity appears to be determined by both the higher molecular weight and the occurrence of an intramolecularly catalyzed prototropic exchange of the coordinated OH moiety. In water, Gd-L1 displayed a relaxivity of 7.1 mM-1 s-1 (at 298 K and 0.5 T), slightly increasing with the concentration likely due to the onset of intermolecular aggregation. A remarkably high and concentration-dependent relaxivity was measured in human serum (up to 26.5 mM-1 s-1 at the lowest tested concentration of 0.005 mM). The acquisition of 1H-nuclear magnetic relaxation dispersion (NMRD) and 17O-R2 vs T profiles allowed to get an in-depth characterization of the system. In vitro experiments in the presence of human serum albumin, γ-globulins, and polylysine, as well as using media mimicking the extracellular matrix, provided strong support to the view that the trisulfonated pyrene fosters binding interactions with the exposed positive groups on the surface of proteins, responsible for a remarkable in vivo hyperintensity in T1w MR images. The in vivo MR images of the liver, kidneys, and spleen showed a marked contrast enhancement in the first 10 min after the i.v. injection of Gd-L1, which was 2-6-fold higher than that for Gd-HPDO3A, while maintaining a very similar excretion behavior. These findings may pave the way to an improved design of MRI GBCAs, for the first time, based on the setup of weak and dynamic interactions with abundant positive groups on serum and ECM proteins.
Collapse
Affiliation(s)
- Rachele Stefania
- Department
of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
- Department
of Science and Technological Innovation, University of Eastern Piedmont, Alessandria 15120, Italy
| | - Lorenzo Palagi
- Department
of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Enza Di Gregorio
- Department
of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Giuseppe Ferrauto
- Department
of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | - Valentina Dinatale
- Department
of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| | | | - Eliana Gianolio
- Department
of Molecular Biotechnology and Health Sciences, University of Torino, Torino 10126, Italy
| |
Collapse
|
3
|
Sherry AD, Castelli DD, Aime S. Prospects and limitations of paramagnetic chemical exchange saturation transfer agents serving as biological reporters in vivo. NMR IN BIOMEDICINE 2023; 36:e4698. [PMID: 35122337 PMCID: PMC9984198 DOI: 10.1002/nbm.4698] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 05/23/2023]
Abstract
The concept of using paramagnetic metal ion complexes as chemical exchange saturation transfer agents (paraCEST) for molecular imaging of various biological processes first appeared in the literature about 20 years ago. The first paraCEST agent was based on a highly shifted, inner-sphere, slowly exchanging water molecule that could be activated at a frequency far away from bulk water, a substantial advantage for selective activation of the agent alone. Many other paraCEST agent designs followed that were based on activation of exchanging -NH or -OH proton on the chelate itself. Both types of paraCEST designs are attractive for molecular imaging because the rates of water molecule or ligand proton exchange can be designed to be sensitive to a biological or physiological property such as pH, enzyme activity, or redox. Hence, the intensity or frequency of the resulting CEST signal provides a direct readout of that property. Many molecular designs have appeared in the literature over the past 20 years, mostly reported as proof-of-concept designs but, unfortunately, only a few reports have explored the limitations of paraCEST agents for imaging a biological process in vivo. As a community, we now know that the sensitivity of paraCEST agents is lower than one might anticipate based upon simple chemical exchange principles and, in general, it appears the sensitivity of paraCEST agents is even lower in vivo than in vitro. In this short review, we address some of the factors that contribute to the limited sensitivity of paraCEST agents in vivo, offer some thoughts on approaches that could lead to dramatically improved paraCEST sensitivity, and challenge the scientific community to perform more in vivo experiments designed to test these ideas.
Collapse
Affiliation(s)
- A. Dean Sherry
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniela Delli Castelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
4
|
How the catalysis of the prototropic exchange affects the properties of lanthanide(III) complexes in their applications as MRI contrast agents. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|