1
|
Li YZ, Liu ZS, Liu WY, Yuan ZR, Yang PF, Xu J, Hao F, Wang JG, Wang NX, Azam M, Sun D. Halide-Directed Ligand Engineering Enables Expedient, Controlled and Divergent Syntheses of Diphosphine-Protected Au Nanoclusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500189. [PMID: 39995352 DOI: 10.1002/smll.202500189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/17/2025] [Indexed: 02/26/2025]
Abstract
Despite substantial progress in ligand engineering, the efforts in the field of Au nanoclusters have been concentrated almost exclusively on organic ligands. Halides, the most typical auxiliary inorganic ligands widely present in Au clusters, remain virtually unexplored, particularly regarding their effects on cluster construction. Herein, diphosphine Ph2P(CH2)nPPh2 (Ln, n = 1-6) is chosen as the co-protecting organic ligands and a comparative analysis on the influential roles of halide ions (Cl-, Br-, I-) in guiding Au cluster synthesis is conducted. A simple yet efficient halide-directed synthetic approach has been developed and a series of Au nanoclusters, including the known [Au18(L1)6Br4]2+, [Au13(L2)5Cl2]3+ and [Au8(L3)4Cl2]2+ that however crystallized in new polymorphic forms, as well as the new reduction-active [Au18(L1)6Cl4]2+, luminescence-enhanced [Au14(L3)5Br4]2+ and core-isomeric [Au11(Ln)4X2]+ (n = 4-6; X = Cl, Br, I), are obtained in a more expedient and controllable manner. This work clearly demonstrates the non-negligible roles of halide ions in directing cluster synthesis, and provides an easier access to diverse diphosphine-protected Au nanoclusters. This approach, promising in gram-scale synthesis, is expected to further extend the ligand scope and holds promise for advancing the diversified syntheses of a broader range of ligand-protected metal nanoclusters.
Collapse
Affiliation(s)
- Ying-Zhou Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Science), Ji'nan, 250353, P. R. China
| | - Zhi-Shuai Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Science), Ji'nan, 250353, P. R. China
| | - Wen-Yan Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Science), Ji'nan, 250353, P. R. China
| | - Zhi-Rui Yuan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Peng-Fei Yang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Science), Ji'nan, 250353, P. R. China
| | - Jing Xu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Science), Ji'nan, 250353, P. R. China
| | - Fei Hao
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Science), Ji'nan, 250353, P. R. China
| | - Jin-Gui Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Science), Ji'nan, 250353, P. R. China
| | - Nian-Xing Wang
- Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, Turku, 20500, Finland
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| |
Collapse
|
2
|
Casteleiro B, de Francesco T, Martinho JMG, Favier A, Charreyre MT, Moffitt MG, Farinha JPS. NIR-Emitting Gold Nanoclusters Encapsulated in PS- b-PEG Polymer Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1594-1603. [PMID: 38193745 DOI: 10.1021/acs.langmuir.3c02104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Gold nanoclusters (AuNCs) are an emerging type of luminescent probe, featuring good biocompatibility, high photostability, and large Stoke shifts. Their lack of colloidal stability is, however, a drawback for many applications. Here, we report the stabilization of AuNCs emitting in the NIR by a thiol-terminated polystyrene chain (Mn = 5000 g mol-1). The optical properties of this nanocomposite remain invariant for 2 years in THF. To use the PS5k-AuNCs in an aqueous environment, these were encapsulated into polymer micelles using a polystyrene-b-poly(ethylene glycol) copolymer. The resulting hierarchical constructs, with diameters of ca. 125 to 215 nm, have promising properties for applications as luminescent probes such as contrast agents for biomedical imaging.
Collapse
Affiliation(s)
- Bárbara Casteleiro
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères, F-69621 Villeurbanne, France
- Department of Chemistry, University of Victoria, P.O. Box 1700 Stn CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - Talita de Francesco
- Department of Chemistry, University of Victoria, P.O. Box 1700 Stn CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - José Manuel Gaspar Martinho
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Arnaud Favier
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères, F-69621 Villeurbanne, France
| | - Marie-Thérèse Charreyre
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, INSA Lyon, Université Jean Monnet, UMR 5223, Ingénierie des Matériaux Polymères, F-69621 Villeurbanne, France
| | - Matthew G Moffitt
- Department of Chemistry, University of Victoria, P.O. Box 1700 Stn CSC, Victoria, British Columbia V8W 2Y2, Canada
| | - José Paulo Sequeira Farinha
- Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal
| |
Collapse
|
3
|
Yin MM, Chen WQ, Hu YJ, Liu Y, Jiang FL. Rapid preparation of water-soluble Ag@Au nanoclusters with bright deep-red emission. Chem Commun (Camb) 2022; 58:2492-2495. [PMID: 35084414 DOI: 10.1039/d1cc06712e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deep-red (λem ∼ 710 nm) thiolated Ag@Au nanoclusters with a quantum yield of ∼18% were rapidly (∼12 min) prepared in aqueous solutions. The effects of pH and silver ions were demonstrated. The surface modification further resulted in nanoclusters with a quantum yield of ∼38%, the highest value ever reported for water-soluble red Au nanoclusters. This will highly facilitate their applications in sensing, bioimaging, etc.
Collapse
Affiliation(s)
- Miao-Miao Yin
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China. .,Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Wen-Qi Chen
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| | - Yan-Jun Hu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, P. R. China
| | - Yi Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China. .,College of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Feng-Lei Jiang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
4
|
Zhu Q, Huang X, Zeng Y, Sun K, Zhou L, Liu Y, Luo L, Tian S, Sun X. Controllable synthesis and electrocatalytic applications of atomically precise gold nanoclusters. NANOSCALE ADVANCES 2021; 3:6330-6341. [PMID: 36133485 PMCID: PMC9417523 DOI: 10.1039/d1na00514f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/28/2021] [Indexed: 06/16/2023]
Abstract
Nanoclusters are composed of metal atoms and ligands with sizes up to 2-3 nm. Due to their stability and unique structure, gold nanoclusters with precise atomic numbers have been widely studied. Until now, atomically precise gold nanoclusters have been synthesised by various methods. Common ones include the Brust-Schiffrin method and the size-focusing method. With more detailed research on gold nanoclusters, more novel methods have been adopted to synthesise atomically precise gold nanoclusters, such as anti-galvanic reduction, ligand-exchange reactions from metal nanoclusters, the seed growth method, and so on. Besides, the nanoclusters also have many unique properties in electrochemical catalyses, such as the ORR, OER, etc., which are helpful for the development of the energy and environment. In this review, the synthesis methods and electrochemical applications of atomically accurate gold nanoclusters in recent years are introduced.
Collapse
Affiliation(s)
- Qingyi Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Xiaoxiao Huang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Yunchu Zeng
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Kai Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Linlin Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Yuying Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Liang Luo
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Shubo Tian
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|