1
|
Kim HE, Choi JH, Chung WJ. Monodefluorinative Halogenation of Perfluoroalkyl Ketones via Organophosphorus-Mediated Selective C-F Activation. JACS AU 2025; 5:1007-1015. [PMID: 40017785 PMCID: PMC11863160 DOI: 10.1021/jacsau.4c01242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 03/01/2025]
Abstract
Through the prosperity of organofluorine chemistry in modern organic synthesis, perfluorinated organic compounds are now abundant and widely available. Consequently, these substances become attractive starting materials for the production of complex, multifunctional fluorinated molecules. However, the inherent challenges associated with the activation and discrimination of the C-F bonds typically lead to overdefluorination as well as functional group incompatibility. To address these problems, our group utilized a rationally designed organophosphorus reagent that promoted mild and selective manipulation of a single C-F bond in trifluoromethyl and pentafluoroethyl ketones via an interrupted Perkow-type reaction, which allowed the replacement of fluorine with more labile and synthetically versatile congeners such as chlorine, bromine, and iodine. The resulting α-haloperfluoroketones have two reactive units with orthogonal properties that would be suitable for the subsequent structural diversification. DFT calculations identified the favorable P-F interaction as the crucial factor from both thermodynamic and kinetic viewpoints.
Collapse
Affiliation(s)
- Ha Eun Kim
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jun-Ho Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Won-jin Chung
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
2
|
Shen Y, Li Y, Wang X, Wei J, Shen Y, Wu L, Luo K. Late-stage C-H trifluoroacetylation of quinoxaline-2(1 H)-ones using masked trifluoroacyl reagents. Org Biomol Chem 2025; 23:1683-1688. [PMID: 39790052 DOI: 10.1039/d4ob01945h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
A strategy for trifluoroacetylation of quinoxaline-2(1H)-ones has been investigated. This strategy employs masked trifluoroacyl reagents to obtain trifluoroacetylated quinoxaline-2(1H)-ones under metal-, catalyst-, and light-free conditions. This approach is distinguished by its functional group compatibility and tolerance, as well as the simplicity of the experimental process, making it suitable for gram-scale synthesis.
Collapse
Affiliation(s)
- Yawei Shen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Yuan Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Xia Wang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Jiaoyan Wei
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Yafen Shen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Kai Luo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| |
Collapse
|
3
|
Veth L, Windhorst AD, Vugts DJ. [ 18F]Trifluoroiodomethane - Enabling Photoredox-mediated Radical [ 18F]Trifluoromethylation for Positron Emission Tomography. Angew Chem Int Ed Engl 2025; 64:e202416901. [PMID: 39349368 PMCID: PMC11753608 DOI: 10.1002/anie.202416901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
The development of new tracers for positron emission tomography (PET) is highly dependent on the available synthetic tools for their radiosynthesis. Herein, we present the radiosynthesis and application of [18F]trifluoroiodomethane - the first reagent for broad scope radical [18F]trifluoromethylation chemistry in high molar activity. CF2 18FI can be prepared from [18F]fluoroform with 67±5 % AY and >99 % RCP. Its synthetic utility is demonstrated by the radiosynthesis of previously unprecedented 18F-labeled α-trifluoromethyl ketones and 18F-labeled trifluoromethyl sulfides, important motifs that are present in a range of bioactive compounds. Both protocols are Ru- and photo-mediated and proceed under mild reaction conditions. They show good functional group tolerance evidenced by the respective reaction scopes and make use of easily obtainable starting materials. The products can be isolated in 8.3-11.1 GBq/μmol (starting from ca. 5 GBq [18F]fluoride). The applicability to PET tracer synthesis is shown by the radiolabeling of bioactive compounds, such as derivatives of probenecid and febuxostat. In a broader context, this work opens the door to the utilization of radical [18F]trifluoromethylation chemistry for the radiolabeling of PET tracers in high molar activity.
Collapse
Affiliation(s)
- Lukas Veth
- Dept. of Radiology and Nuclear Medicine Amsterdam UMClocation Vrije UniversiteitDe Boelelaan 11171081 HVAmsterdamthe Netherlands
| | - Albert D. Windhorst
- Dept. of Radiology and Nuclear Medicine Amsterdam UMClocation Vrije UniversiteitDe Boelelaan 11171081 HVAmsterdamthe Netherlands
| | - Danielle J. Vugts
- Dept. of Radiology and Nuclear Medicine Amsterdam UMClocation Vrije UniversiteitDe Boelelaan 11171081 HVAmsterdamthe Netherlands
| |
Collapse
|
4
|
Veth L, Windhorst AD, Vugts DJ. Synthesis of 18F-labelled aryl trifluoromethyl ketones with improved molar activity. Chem Commun (Camb) 2024; 60:6801-6804. [PMID: 38869169 DOI: 10.1039/d4cc01776e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
A method for the radiosynthesis of 18F-labelled aryl trifluoromethyl ketones starting from widely available Weinreb amides using [18F]fluoroform is presented. The method uses potassium hexamethyldisilazane as base and delivers products in high molar activity (up to 24 GBq μmol-1) and excellent radiochemical conversions. The applicability for PET tracer synthesis is demonstrated by the radiosynthesis of ten (hetero)aryl trifluoromethylketones, bearing electron-withdrawing and -donating substituents including a derivative of bioactive probenecid.
Collapse
Affiliation(s)
- Lukas Veth
- Dept. of Radiology & Nuclear Medicine Amsterdam UMC, Location Vrije Universiteit Amsterdam De Boelelaan, 1117, Amsterdam, The Netherlands.
| | - Albert D Windhorst
- Dept. of Radiology & Nuclear Medicine Amsterdam UMC, Location Vrije Universiteit Amsterdam De Boelelaan, 1117, Amsterdam, The Netherlands.
| | - Danielle J Vugts
- Dept. of Radiology & Nuclear Medicine Amsterdam UMC, Location Vrije Universiteit Amsterdam De Boelelaan, 1117, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Ye ZP, Guo M, Ye YQ, Yuan CP, Wang HL, Yang JS, Chen HB, Xiang HY, Chen K, Yang H. Iodine(III)-Mediated Trifluoroacetylation of a C(sp 2)-H or C(sp)-H Bond with Masked Trifluoroacyl Reagents. Org Lett 2024; 26:5196-5201. [PMID: 38858221 DOI: 10.1021/acs.orglett.4c01780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
A novel strategy for incorporating a trifluoroacetyl functionality into a range of structurally varied unsaturated bonds was developed by using PhI(OCOMe)2 as an oxidant with a masked trifluoroacyl reagent as a trifluoroacetyl radical precursor. The oxidative decarboxylation of the masked trifluoroacyl precursor followed by a tandem radical process provides versatile access to 5-exo-trig cyclization of N-arylacrylamides, direct C(sp2)-H trifluoroacetylation of quinolines, isoquinoline, 2H-indazole, and quinoxalin-2(1H)-ones, and C(sp)-H trifluoroacetylation of alkynes. This protocol is characterized by mild reaction conditions, operational simplicity, and broad functional group compatibility.
Collapse
Affiliation(s)
- Zhi-Peng Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Meng Guo
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yong-Qing Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Chu-Ping Yuan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hai-Long Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jing-Song Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hong-Bin Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Jiangxi Time Chemical Company, Ltd., Fuzhou 344800, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Xiangjiang Laboratory, Changsha 410205, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Xiangjiang Laboratory, Changsha 410205, P. R. China
| |
Collapse
|
6
|
Jana S, Telu S, Jakobsson JE, Yang BY, Pike VW. Copper(I)-free syntheses of [ 11C/ 18F]trifluoromethyl ketones from alkyl or aryl esters and [ 11C/ 18F]fluoroform. Chem Commun (Camb) 2024; 60:4589-4592. [PMID: 38577766 PMCID: PMC11047764 DOI: 10.1039/d4cc00465e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Herein, we report a copper(I)-free method for labeling the trifluoroacetyl group with positron-emitting carbon-11 (t1/2 = 20.4 min) or fluorine-18 (t1/2 = 109.8 min) as part of our exploration of radiolabeled fluoroforms to access new radiolabeled chemotypes of interest for tracer development. Treatment of alkyl esters and aryl esters, containing electron-donating or electron-withdrawing groups, with [11C/18F]fluoroform in the presence of strong base, gave [11C/18F]trifluoromethyl ketones as novel radiolabeling synthons in moderate to high yields within 15 minutes.
Collapse
Affiliation(s)
- Susovan Jana
- Molecular Imaging Branch, NIMH, National Institutes of Health, 10 Center Dr, Bethesda, Maryland 20892, USA.
| | - Sanjay Telu
- Molecular Imaging Branch, NIMH, National Institutes of Health, 10 Center Dr, Bethesda, Maryland 20892, USA.
| | - Jimmy E Jakobsson
- Molecular Imaging Branch, NIMH, National Institutes of Health, 10 Center Dr, Bethesda, Maryland 20892, USA.
| | - Bo Yeun Yang
- Molecular Imaging Branch, NIMH, National Institutes of Health, 10 Center Dr, Bethesda, Maryland 20892, USA.
| | - Victor W Pike
- Molecular Imaging Branch, NIMH, National Institutes of Health, 10 Center Dr, Bethesda, Maryland 20892, USA.
| |
Collapse
|
7
|
Lye K, Young RD. A review of frustrated Lewis pair enabled monoselective C-F bond activation. Chem Sci 2024; 15:2712-2724. [PMID: 38404400 PMCID: PMC10882520 DOI: 10.1039/d3sc06485a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/07/2024] [Indexed: 02/27/2024] Open
Abstract
Frustrated Lewis pair (FLP) bond activation chemistry has greatly developed over the last two decades since the seminal report of metal-free reversible hydrogen activation. Recently, FLP systems have been utilized to allow monoselective C-F bond activation (at equivalent sites) in polyfluoroalkanes. The problem of 'over-defluorination' in the functionalization of polyfluoroalkanes (where multiple fluoro-positions are uncontrollably functionalized) has been a long-standing chemical problem in fluorocarbon chemistry for over 80 years. FLP mediated monoselective C-F bond activation is complementary to other solutions developed to address 'over-defluorination' and offers several advantages and unique opportunities. This perspective highlights some of these advantages and opportunities and places the development of FLP mediated C-F bond activation into the context of the wider effort to overcome 'over-defluorination'.
Collapse
Affiliation(s)
- Kenneth Lye
- Department of Chemistry, National University of Singapore 117543 Singapore
| | - Rowan D Young
- School of Chemistry and Molecular Biosciences, The University of Queensland St Lucia 4072 Australia
| |
Collapse
|
8
|
Hooker LV, Bandar JS. Synthetic Advantages of Defluorinative C-F Bond Functionalization. Angew Chem Int Ed Engl 2023; 62:e202308880. [PMID: 37607025 PMCID: PMC10843719 DOI: 10.1002/anie.202308880] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
Much progress has been made in the development of methods to both create compounds that contain C-F bonds and to functionalize C-F bonds. As such, C-F bonds are becoming common and versatile synthetic functional handles. This review summarizes the advantages of defluorinative functionalization reactions for small molecule synthesis. The coverage is organized by the type of carbon framework the fluorine is attached to for mono- and polyfluorinated motifs. The main challenges, opportunities and advances of defluorinative functionalization are discussed for each class of organofluorine. Most of the text focuses on case studies that illustrate how defluorofunctionalization can improve routes to synthetic targets or how the properties of C-F bonds enable unique mechanisms and reactions. The broader goal is to showcase the opportunities for incorporating and exploiting C-F bonds in the design of synthetic routes, improvement of specific reactions and advent of new methods.
Collapse
Affiliation(s)
- Leidy V Hooker
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jeffrey S Bandar
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
9
|
Fast, easy oxidation of alcohols using an oxoammonium salt bearing the nitrate anion. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Young RD, Gupta R. A Review on the Halodefluorination of Aliphatic Fluorides. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1684-0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractHalodefluorination of alkyl fluorides using group 13 metal halides has been known for quite some time (first reported by Newman in 1938) and is often utilized in its crude stoichiometric form to substitute fluorine with heavier halogens. However, recently halodefluorination has undergone many developments. The reaction can be effected with a range of metal halide sources (including s-block, f-block, and p-block metals), and has been developed into a catalytic process. Furthermore, methods for monoselective halodefluorination in polyfluorocarbons have been developed, allowing exchange of only a single fluorine with a heavier halogen. The reaction has also found use in cascade processes, where the final product may not even contain a halide, but where the conversion of fluorine to a more reactive halogen is a pivotal reaction step in the cascade. This review provides a summary of the developments in the reaction from its inception until now.1 Introduction2 Stoichiometric Halodefluorination2.1 Group 13 Halodefluorination Reagents2.2 Other Metal Halide Mediated Halodefluorination3 Catalytic Halodefluorination4 Monoselective Halodefluorination5 Cascade Reactions Involving Halodefluorination6 Summary and Outlook
Collapse
|
11
|
Francis F, Wuest F. Advances in [ 18F]Trifluoromethylation Chemistry for PET Imaging. Molecules 2021; 26:molecules26216478. [PMID: 34770885 PMCID: PMC8587676 DOI: 10.3390/molecules26216478] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Positron emission tomography (PET) is a preclinical and clinical imaging technique extensively used to study and visualize biological and physiological processes in vivo. Fluorine-18 (18F) is the most frequently used positron emitter for PET imaging due to its convenient 109.8 min half-life, high yield production on small biomedical cyclotrons, and well-established radiofluorination chemistry. The presence of fluorine atoms in many drugs opens new possibilities for developing radioligands labelled with fluorine-18. The trifluoromethyl group (CF3) represents a versatile structural motif in medicinal and pharmaceutical chemistry to design and synthesize drug molecules with favourable pharmacological properties. This fact also makes CF3 groups an exciting synthesis target from a PET tracer discovery perspective. Early attempts to synthesize [18F]CF3-containing radiotracers were mainly hampered by low radiochemical yields and additional challenges such as low radiochemical purity and molar activity. However, recent innovations in [18F]trifluoromethylation chemistry have significantly expanded the chemical toolbox to synthesize fluorine-18-labelled radiotracers. This review presents the development of significant [18F]trifluoromethylation chemistry strategies to apply [18F]CF3-containing radiotracers in preclinical and clinical PET imaging studies. The continuous growth of PET as a crucial functional imaging technique in biomedical and clinical research and the increasing number of CF3-containing drugs will be the primary drivers for developing novel [18F]trifluoromethylation chemistry strategies in the future.
Collapse
Affiliation(s)
- Felix Francis
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, AB T6G 2N4, Canada;
| | - Frank Wuest
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, AB T6G 2N4, Canada;
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
- Correspondence: ; Tel.: +1-780-391-7666; Fax: +1-780-432-8483
| |
Collapse
|