1
|
Yasui T, Natsume A, Yanagida T, Nagashima K, Washio T, Ichikawa Y, Chattrairat K, Naganawa T, Iida M, Kitano Y, Aoki K, Mizunuma M, Shimada T, Takayama K, Ochiya T, Kawai T, Baba Y. Early Cancer Detection via Multi-microRNA Profiling of Urinary Exosomes Captured by Nanowires. Anal Chem 2024; 96:17145-17153. [PMID: 39422334 PMCID: PMC11525924 DOI: 10.1021/acs.analchem.4c02488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
Multiple microRNAs encapsulated in extracellular vesicles (EVs) including exosomes, unique subtypes of EVs, differ in healthy and cancer groups of people, and they represent a warning sign for various cancer scenarios. Since all EVs in blood cannot be transferred from donor to recipient cells during a single blood circulation, kidney filtration could pass some untransferred EVs from blood to urine. Previously, we reported on the ability of zinc oxide nanowires to capture EVs based on surface charge and hydrogen bonding; these nanowires extracted massive numbers of microRNAs in urine, seeking cancer-related microRNAs through statistical analysis. Here, we report on the scalability of the nanowire performance capability to comprehensively capture EVs, including exosomes, in urine, extract microRNAs from the captured EVs in situ, and identify multiple microRNAs in the extracted microRNAs differing in noncancer and lung cancer subjects through machine learning-based analysis. The nanowire-based extraction allowed the presence of about 2500 species of urinary microRNAs to be confirmed, meaning that urine includes almost all human microRNA species. The machine learning-based analysis identified multiple microRNAs from the extracted microRNA species. The ensembles could classify cancer and noncancer subjects with the area under the receiver operating characteristic curve of 0.99, even though the former were staged early.
Collapse
Affiliation(s)
- Takao Yasui
- Department
of Life Science and Technology, Tokyo Institute
of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan
- Institute
of Quantum Life Science, National Institutes
for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Craif
Inc., 3-38-14-3 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Atsushi Natsume
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Craif
Inc., 3-38-14-3 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Kawamura
Medical Society, Gifu 501-3144, Japan
| | - Takeshi Yanagida
- Department
of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- The
Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kazuki Nagashima
- Research
Institute for Electronic Science (RIES), Hokkaido University, N21W10, Kita, Sapporo, Hokkaido 001-0021, Japan
| | - Takashi Washio
- The
Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yuki Ichikawa
- Craif
Inc., 3-38-14-3 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kunanon Chattrairat
- Department
of Life Science and Technology, Tokyo Institute
of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Tsuyoshi Naganawa
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mikiko Iida
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yotaro Kitano
- Department
of Neurosurgery, School of Medicine, Nagoya
University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kosuke Aoki
- Department
of Neurosurgery, School of Medicine, Nagoya
University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Mika Mizunuma
- Craif
Inc., 3-38-14-3 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taisuke Shimada
- Institute
of Quantum Life Science, National Institutes
for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Kazuya Takayama
- Craif
Inc., 3-38-14-3 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takahiro Ochiya
- Department
of Molecular and Cellular Medicine, Tokyo
Medical University, 6-7-1 Nishishinjyuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Tomoji Kawai
- The
Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yoshinobu Baba
- Institute
of Quantum Life Science, National Institutes
for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
2
|
Xu R, Li S, Yu SX, Liu YJ, Xie W, Zhan Q, Zhao Z, Li X. Flow-induced fabrication of ZnO nanostructures in pillar-arrayed microchannels. LAB ON A CHIP 2024; 24:3973-3984. [PMID: 39027967 DOI: 10.1039/d4lc00328d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The emergence of microfluidic devices integrated with nanostructures enables highly efficient, flexible and controllable biosensing, among which zinc oxide (ZnO) nanostructure-based fluorescence detection has been demonstrated to be a promising methodology due to its high electrical point and unique fluorescence enhancement properties. The optimization of microfluidic synthesis of ZnO nanostructures for biosensing on chip has been in demand due to its low cost and high efficiency, but still the flow-induced growth of ZnO nanostructures is not extensively studied. Here, we report a simple and versatile strategy that could manipulate the local flow field by creating periodically arranged micropillars within a straight microchannel. We have explored the effects of perfusion speed and flow direction of seed solution, localized flow variation of growth solution and growth time on the morphology of nanostructures. This provided a comprehensive understanding which governs nanostructure fabrication controlled by flow. The results demonstrated that localized flow in microfluidic devices was essential for the initiation and growth of zinc oxide crystals, enabling precise control over their properties and morphology. Furthermore, a model protein was used to demonstrate the intrinsic fluorescence enhancement of ZnO nanostructures as an example to reveal the morphology-related enhancement properties.
Collapse
Affiliation(s)
- Ruyi Xu
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China.
| | - Siyu Li
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China.
| | - Sai-Xi Yu
- Shanghai Institute of Cardiovascular Diseases, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yan-Jun Liu
- Shanghai Institute of Cardiovascular Diseases, Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenhui Xie
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China.
| | - Qingfeng Zhan
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China.
| | - Zhenjie Zhao
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China.
| | - Xin Li
- Engineering Research Center for Nanophotonics and Advanced Instrument, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
3
|
Zhang M, Ono M, Kawaguchi S, Iida M, Chattrairat K, Zhu Z, Nagashima K, Yanagida T, Yamaguchi J, Nishikawa H, Natsume A, Baba Y, Yasui T. On-Site Stimulation of Dendritic Cells by Cancer-Derived Extracellular Vesicles on a Core-Shell Nanowire Platform. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29570-29580. [PMID: 38804616 PMCID: PMC11181270 DOI: 10.1021/acsami.4c00283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Extracellular vesicles (EVs) contain a subset of proteins, lipids, and nucleic acids that maintain the characteristics of the parent cell. Immunotherapy using EVs has become a focus of research due to their unique features and bioinspired applications in cancer treatment. Unlike conventional immunotherapy using tumor fragments, EVs can be easily obtained from bodily fluids without invasive actions. We previously fabricated nanowire devices that were specialized for EV collection, but they were not suitable for cell culturing. In this study, we fabricated a ZnO/Al2O3 core-shell nanowire platform that could collect more than 60% of the EVs from the cell supernatant. Additionally, we could continue to culture dendritic cells (DCs) on the platform as an artificial lymph node to investigate cell maturation into antigen-presenting cells. Finally, using this platform, we reproduced a series of on-site immune processes that are among the pivotal immune functions of DCs and include such processes as antigen uptake, antigen presentation, and endocytosis of cancer-derived EVs. This platform provides a new ex vivo tool for EV-DC-mediated immunotherapies.
Collapse
Affiliation(s)
- Min Zhang
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Miki Ono
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Shota Kawaguchi
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Mikiko Iida
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kunanon Chattrairat
- Department
of Life Science and Technology, Tokyo Institute
of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Zetao Zhu
- Department
of Life Science and Technology, Tokyo Institute
of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan
| | - Kazuki Nagashima
- Research
Institute for Electronic Science (RIES), Hokkaido University, Kita, Sapporo, Hokkaido 001-0020, Japan
| | - Takeshi Yanagida
- Department
of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Junya Yamaguchi
- Department
of Immunology, Nagoya University Graduate
School of Medicine, Nagoya 466-8550, Japan
| | - Hiroyoshi Nishikawa
- Department
of Immunology, Nagoya University Graduate
School of Medicine, Nagoya 466-8550, Japan
- Division
of Cancer Immunology, Exploratory Oncology
Research and Clinical Trial Center (EPOC), National Cancer Center, Chiba 277-8577, Japan
| | - Atsushi Natsume
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Kawamura
Medical Society, Gifu 501-3144, Japan
| | - Yoshinobu Baba
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute
for Quantum Life Science, National Institutes
for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Takao Yasui
- Department
of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Department
of Life Science and Technology, Tokyo Institute
of Technology, Nagatsuta 4259, Midori-ku, Yokohama 226-8501, Japan
- Institute
of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute
for Quantum Life Science, National Institutes
for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
4
|
Takahashi H, Yasui T, Hirano M, Shinjo K, Miyazaki Y, Shinoda W, Hasegawa T, Natsume A, Kitano Y, Ida M, Zhang M, Shimada T, Paisrisarn P, Zhu Z, Ohka F, Aoki K, Rahong S, Nagashima K, Yanagida T, Baba Y. Mutation detection of urinary cell-free DNA via catch-and-release isolation on nanowires for liquid biopsy. Biosens Bioelectron 2023; 234:115318. [PMID: 37172361 DOI: 10.1016/j.bios.2023.115318] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/14/2023]
Abstract
Cell-free DNA (cfDNA) and extracellular vesicles (EVs) are molecular biomarkers in liquid biopsies that can be applied for cancer detection, which are known to carry information on the necessary conditions for oncogenesis and cancer cell-specific activities after oncogenesis, respectively. Analyses for both cfDNA and EVs from the same body fluid can provide insights into screening and identifying the molecular subtypes of cancer; however, a major bottleneck is the lack of efficient and standardized techniques for the isolation of cfDNA and EVs from clinical specimens. Here, we achieved catch-and-release isolation by hydrogen bond-mediated binding of cfDNA in urine to zinc oxide (ZnO) nanowires, which also capture EVs by surface charge, and subsequently we identified genetic mutations in urinary cfDNA. The binding strength of hydrogen bonds between single-crystal ZnO nanowires and DNA was found to be equal to or larger than that of conventional hydrophobic interactions, suggesting the possibility of isolating trace amounts of cfDNA. Our results demonstrated that nanowire-based cancer screening assay can screen cancer and can identify the molecular subtypes of cancer in urine from brain tumor patients through EV analysis and cfDNA mutation analysis. We anticipate our method to be a starting point for more sophisticated diagnostic models of cancer screening and identification.
Collapse
Affiliation(s)
- Hiromi Takahashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan; School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Blk N3, Level 2, Room 86 (N3-02c-86), 639798, Singapore.
| | - Takao Yasui
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan; Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan; Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| | - Masaki Hirano
- Division of Molecular Oncology, Aichi Cancer Center Research Institute, Kanokoden, Chikusa-ku, Nagoya, 464-0021, Japan
| | - Keiko Shinjo
- Division of Cancer Biology, Graduate School of Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yusuke Miyazaki
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530, Japan
| | - Wataru Shinoda
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, 700-8530, Japan
| | - Takeshi Hasegawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Atsushi Natsume
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Yotaro Kitano
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, Tsurumai-cho 65, Showa-ku, Nagoya, 466-8550, Japan
| | - Mikiko Ida
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Min Zhang
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Taisuke Shimada
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Piyawan Paisrisarn
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Zetao Zhu
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Fumiharu Ohka
- Department of Neurosurgery, Graduate School of Medicine, Nagoya University, Tsurumai-cho 65, Showa-ku, Nagoya, 466-8550, Japan
| | - Kosuke Aoki
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Sakon Rahong
- College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang, Chalongkrung Rd., Ladkrabang, Bangkok, 10520, Thailand
| | - Kazuki Nagashima
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan; Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan; The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka-cho, Ibaraki, Osaka, 567-0047, Japan; Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan; Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan; Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba, 263-8555, Japan.
| |
Collapse
|
5
|
Pham QN, Winter M, Milanova V, Young C, Condina MR, Hoffmann P, Pham NTH, Tung TT, Losic D, Thierry B. Magnetic enrichment of immuno-specific extracellular vesicles for mass spectrometry using biofilm-derived iron oxide nanowires. NANOSCALE 2023; 15:1236-1247. [PMID: 36541661 DOI: 10.1039/d2nr05619d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Immuno-specific enrichment of extracellular vesicles (EVs) can provide important information into cellular pathways underpinning various pathologies and for non-invasive diagnostics, including mass spectrometry-based analyses. Herein, we report an optimised protocol for immuno-magnetic enrichment of specific EV subtypes and their subsequent processing with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Specifically, we conjugated placental alkaline phosphatase (PLAP) antibodies to magnetic iron oxide nanowires (NWs) derived from bacterial biofilms and demonstrated the utility of this approach by enriching placenta-specific EVs (containing PLAP) from cell culture media. We demonstrate efficient PLAP+ve EV enrichment for both NW-PLAP and Dynabeads™-PLAP, with high PLAP protein recovery (83.7 ± 8.9% and 83.2 ± 5.9%, respectively), high particle-to-protein ratio (7.5 ± 0.7 × 109 and 7.1 ± 1.2 × 109, respectively), and low non-specific binding of non-target EVs (7 ± 3.2% and 5.4 ± 2.2%, respectively). Furthermore, our optimized EV enrichment and processing approach identified 2518 and 2545 protein groups with LC-MS/MS for NW-PLAP and Dynabead™-PLAP, respectively, with excellent reproducibility (Pearson correlation 0.986 and 0.988). These findings demonstrate that naturally occurring iron oxide NWs have comparable performance to current gold standard immune-magnetic beads. The optimized immuno-specific EV enrichment for LC-MS/MS method provides a low-cost and highly-scalable yet efficient, high-throughput approach for quality EV proteomic studies.
Collapse
Affiliation(s)
- Quang Nghia Pham
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, South Australia 5095, Australia.
| | - Marnie Winter
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, South Australia 5095, Australia.
| | - Valentina Milanova
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, South Australia 5095, Australia.
| | - Clifford Young
- Clinical and Health Sciences, University of South Australia, City West Campus, Adelaide, South Australia 5000, Australia
| | - Mark R Condina
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, South Australia 5095, Australia.
| | - Peter Hoffmann
- Clinical and Health Sciences, University of South Australia, City West Campus, Adelaide, South Australia 5000, Australia
| | - Nguyen T H Pham
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Tran Thanh Tung
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Benjamin Thierry
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, South Australia 5095, Australia.
| |
Collapse
|
6
|
Lin G, Qiu H. Diverse Supports for Immobilization of Catalysts in Continuous Flow Reactors. Chemistry 2022; 28:e202200069. [DOI: 10.1002/chem.202200069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Geyu Lin
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
7
|
Microfluidic Platforms for the Isolation and Detection of Exosomes: A Brief Review. MICROMACHINES 2022; 13:mi13050730. [PMID: 35630197 PMCID: PMC9147043 DOI: 10.3390/mi13050730] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are a group of communication organelles enclosed by a phospholipid bilayer, secreted by all types of cells. The size of these vesicles ranges from 30 to 1000 nm, and they contain a myriad of compounds such as RNA, DNA, proteins, and lipids from their origin cells, offering a good source of biomarkers. Exosomes (30 to 100 nm) are a subset of EVs, and their importance in future medicine is beyond any doubt. However, the lack of efficient isolation and detection techniques hinders their practical applications as biomarkers. Versatile and cutting-edge platforms are required to detect and isolate exosomes selectively for further clinical analysis. This review paper focuses on lab-on-chip devices for capturing, detecting, and isolating extracellular vesicles. The first part of the paper discusses the main characteristics of different cell-derived vesicles, EV functions, and their clinical applications. In the second part, various microfluidic platforms suitable for the isolation and detection of exosomes are described, and their performance in terms of yield, sensitivity, and time of analysis is discussed.
Collapse
|