1
|
Tang Q, Yin D, Liu Y, Zhang J, Guan Y, Kong H, Wang Y, Zhang X, Li J, Wang L, Hu J, Cai X, Zhu Y. Clickable X-ray Nanoprobes for Nanoscopic Bioimaging of Cellular Structures. JACS AU 2024; 4:893-902. [PMID: 38559738 PMCID: PMC10976567 DOI: 10.1021/jacsau.4c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 04/04/2024]
Abstract
Synchrotron-based X-ray microscopy (XRM) has garnered widespread attention from researchers due to its high spatial resolution and excellent energy (element) resolution. Existing molecular probes suitable for XRM include immune probes and genetic labeling probes, enabling the precise imaging of various biological targets within cells. However, immune labeling techniques are prone to cross-interference between antigens and antibodies. Genetic labeling technologies have limited systems that allow express markers independently, and moreover, genetically encoded labels based on catalytic polymerization lack a fixed morphology. When applied to cell imaging, this can result in reduced localization accuracy due to the diffusion of labels within the cells. Therefore, both techniques face challenges in simultaneously labeling multiple biotargets within cells and achieving high-precision imaging. In this work, we applied the click reaction and developed a third category of imaging probes suitable for XRM, termed clickable X-ray nanoprobes (Click-XRN). Click-XRN consists of two components: an X-ray-sensitive multicolor imaging module and a particle-size-controllable morphology module. Efficient identification of intra- and extracellular biotargets is achieved through click reactions between the probe and biomolecules. Click-XRN possesses a controllable particle size, and its loading of various metal ions provides distinctive signals for imaging under XRM. Based on this, we optimized the imaging energy of Click-XRN with different particle sizes, enabling single-color and two-color imaging of the cell membrane, cell nucleus, and mitochondria with nanoscale spatial nanometers. Our work provides a potent molecular tool for investigating cellular activities through XRM.
Collapse
Affiliation(s)
- Qiaowei Tang
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, China
- Xiangfu
Laboratory, Jiashan 314102, China
| | - Dapeng Yin
- Division
of Physical Biology, CAS Key Laboratory of Interfacial Physics and
Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Yubo Liu
- Division
of Physical Biology, CAS Key Laboratory of Interfacial Physics and
Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Jichao Zhang
- Shanghai
Synchrotron Radiation Facility (SSRF), Shanghai
Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Yong Guan
- National
Synchrotron Radiation Laboratory, University
of Science and Technology of China, Hefei 230029, China
| | - Huating Kong
- Shanghai
Synchrotron Radiation Facility (SSRF), Shanghai
Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Yiliu Wang
- Division
of Physical Biology, CAS Key Laboratory of Interfacial Physics and
Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiangzhi Zhang
- Shanghai
Synchrotron Radiation Facility (SSRF), Shanghai
Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Jiang Li
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, China
- Division
of Physical Biology, CAS Key Laboratory of Interfacial Physics and
Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Lihua Wang
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, China
- Division
of Physical Biology, CAS Key Laboratory of Interfacial Physics and
Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Jun Hu
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, China
- Division
of Physical Biology, CAS Key Laboratory of Interfacial Physics and
Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiaoqing Cai
- Shanghai
Synchrotron Radiation Facility (SSRF), Shanghai
Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Ying Zhu
- Institute
of Materiobiology, College of Science, Shanghai
University, Shanghai 200444, China
- Division
of Physical Biology, CAS Key Laboratory of Interfacial Physics and
Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
2
|
Graziotto ME, Kidman CJ, Adair LD, James SA, Harris HH, New EJ. Towards multimodal cellular imaging: optical and X-ray fluorescence. Chem Soc Rev 2023; 52:8295-8318. [PMID: 37910139 DOI: 10.1039/d3cs00509g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Imaging techniques permit the study of the molecular interactions that underlie health and disease. Each imaging technique collects unique chemical information about the cellular environment. Multimodal imaging, using a single probe that can be detected by multiple imaging modalities, can maximise the information extracted from a single cellular sample by combining the results of different imaging techniques. Of particular interest in biological imaging is the combination of the specificity and sensitivity of optical fluorescence microscopy (OFM) with the quantitative and element-specific nature of X-ray fluorescence microscopy (XFM). Together, these techniques give a greater understanding of how native elements or therapeutics affect the cellular environment. This review focuses on recent studies where both techniques were used in conjunction to study cellular systems, demonstrating the breadth of biological models to which this combination of techniques can be applied and the potential for these techniques to unlock untapped knowledge of disease states.
Collapse
Affiliation(s)
- Marcus E Graziotto
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Clinton J Kidman
- Department of Chemistry, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Liam D Adair
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
- Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Simon A James
- Australian Nuclear Science and Technology Organisation, Clayton, Victoria, 3168, Australia
| | - Hugh H Harris
- Department of Chemistry, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
- Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
3
|
Roudeau S, Carmona A, Ortega R. Multimodal and multiscale correlative elemental imaging: From whole tissues down to organelles. Curr Opin Chem Biol 2023; 76:102372. [PMID: 37487424 DOI: 10.1016/j.cbpa.2023.102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 05/17/2023] [Accepted: 06/26/2023] [Indexed: 07/26/2023]
Abstract
Chemical elements, especially metals, play very specific roles in the life sciences. The implementation of correlative imaging methods, of elements on the one hand and of molecules or biological structures on the other hand, is the subject of recent developments. The most commonly used spectro-imaging techniques for metals are synchrotron-induced X-ray fluorescence, mass spectrometry and fluorescence imaging of metal molecular sensors. These imaging methods can be correlated with a wide variety of other analytical techniques used for structural imaging (e.g., electron microscopy), small molecule imaging (e.g., molecular mass spectrometry) or protein imaging (e.g., fluorescence microscopy). The resulting correlative imaging is developed at different scales, from biological tissue to the subcellular level. The fields of application are varied, with some major research topics, the role of metals in the aetiology of neurodegenerative diseases and the use of metals for medical imaging or cancer treatment.
Collapse
Affiliation(s)
| | | | - Richard Ortega
- Univ. Bordeaux, CNRS, LP2I, UMR 5797, F-33170 Gradignan, France.
| |
Collapse
|