1
|
Lin CF, Huang KW, Chen YT, Hsueh SL, Li MH, Chen P. Perovskite-Based X-ray Detectors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2024. [PMID: 37446540 DOI: 10.3390/nano13132024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
X-ray detection has widespread applications in medical diagnosis, non-destructive industrial radiography and safety inspection, and especially, medical diagnosis realized by medical X-ray detectors is presenting an increasing demand. Perovskite materials are excellent candidates for high-energy radiation detection based on their promising material properties such as excellent carrier transport capability and high effective atomic number. In this review paper, we introduce X-ray detectors using all kinds of halide perovskite materials along with various crystal structures and discuss their device performance in detail. Single-crystal perovskite was first fabricated as an active material for X-ray detectors, having excellent performance under X-ray illumination due to its superior photoelectric properties of X-ray attenuation with μm thickness. The X-ray detector based on inorganic perovskite shows good environmental stability and high X-ray sensitivity. Owing to anisotropic carrier transport capability, two-dimensional layered perovskites with a preferred orientation parallel to the substrate can effectively suppress the dark current of the device despite poor light response to X-rays, resulting in lower sensitivity for the device. Double perovskite applied for X-ray detectors shows better attenuation of X-rays due to the introduction of high-atomic-numbered elements. Additionally, its stable crystal structure can effectively lower the dark current of X-ray detectors. Environmentally friendly lead-free perovskite exhibits potential application in X-ray detectors by virtue of its high attenuation of X-rays. In the last section, we specifically introduce the up-scaling process technology for fabricating large-area and thick perovskite films for X-ray detectors, which is critical for the commercialization and mass production of perovskite-based X-ray detectors.
Collapse
Affiliation(s)
- Chen-Fu Lin
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Kuo-Wei Huang
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
- Photovoltaic Technology Division, Green Energy & Environment Research Laboratories, Industrial Technology Research Institute, Tainan 71150, Taiwan
| | - Yen-Ting Chen
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Sung-Lin Hsueh
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ming-Hsien Li
- Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, Nantou 54561, Taiwan
| | - Peter Chen
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
- Core Facility Center (CFC), National Cheng Kung University, Tainan 70101, Taiwan
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan 70101, Taiwan
- Program on Key Materials, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
2
|
He X, Deng Y, Ouyang D, Zhang N, Wang J, Murthy AA, Spanopoulos I, Islam SM, Tu Q, Xing G, Li Y, Dravid VP, Zhai T. Recent Development of Halide Perovskite Materials and Devices for Ionizing Radiation Detection. Chem Rev 2023; 123:1207-1261. [PMID: 36728153 DOI: 10.1021/acs.chemrev.2c00404] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ionizing radiation such as X-rays and γ-rays has been extensively studied and used in various fields such as medical imaging, radiographic nondestructive testing, nuclear defense, homeland security, and scientific research. Therefore, the detection of such high-energy radiation with high-sensitivity and low-cost-based materials and devices is highly important and desirable. Halide perovskites have emerged as promising candidates for radiation detection due to the large light absorption coefficient, large resistivity, low leakage current, high mobility, and simplicity in synthesis and processing as compared with commercial silicon (Si) and amorphous selenium (a-Se). In this review, we provide an extensive overview of current progress in terms of materials development and corresponding device architectures for radiation detection. We discuss the properties of a plethora of reported compounds involving organic-inorganic hybrid, all-inorganic, all-organic perovskite and antiperovskite structures, as well as the continuous breakthroughs in device architectures, performance, and environmental stability. We focus on the critical advancements of the field in the past few years and we provide valuable insight for the development of next-generation materials and devices for radiation detection and imaging applications.
Collapse
Affiliation(s)
- Xiaoyu He
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Yao Deng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Decai Ouyang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Na Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Jing Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Akshay A Murthy
- Department of Materials Science and Engineering, Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, International Institute for Nanotechnology (IIN), and Department of Mechanical Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Ioannis Spanopoulos
- Department of Chemistry, University of South Florida, Tampa, Florida33620, United States
| | - Saiful M Islam
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, Mississippi39217, United States
| | - Qing Tu
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas77840, United States
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao, SAR999078, People's Republic of China
| | - Yuan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, International Institute for Nanotechnology (IIN), and Department of Mechanical Engineering, Northwestern University, Evanston, Illinois60208, United States
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei430074, People's Republic of China
| |
Collapse
|
3
|
Pan Y, Wang X, Liao Y, Xu Y, Li Y, Li Q, Zhang X, Chen J, Zhu Z, Zhao Z, Elemike EE, Furuta M, Lei W. Epitaxial Perovskite Single-Crystalline Heterojunctions for Filter-Free Ultra-Narrowband Detection with Tunable Spectral Responses. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50331-50342. [PMID: 36300824 DOI: 10.1021/acsami.2c13126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Narrowband photodetectors (NPDs) with the capability of detecting light within a selective wavelength range are in high demand for numerous emerging applications such as imaging systems, machine vision, and optical communication. Halide perovskite materials have been developed for eliminating the current complex filtering systems in NPDs due to their beneficial properties, while currently NPDs using perovskite materials are limited by hardly fully eliminated short wavelength response, low charge collection efficiency (CCE), complex fabrication process, and so forth. Herein, a series of perovskite single-crystalline heterojunctions (PSCHs) with a structure of Bi-MAPbX3/MAPbY3 are fabricated by liquid phase epitaxy for filter-free narrowband detection. By varying the halide component in the PSCH, the PSCH-based NPDs can realize continuously tunable spectral response range from blue to NIR regions and ultra-narrow full width at half-maximum (FWHM) of <20 nm. Specifically, the PSCH-based NPD with a high CCE under a large electric filed shows a high spectra rejection ratio of >1000, a fast response speed with rise/fall time of ∼160/∼225 μs, and long-term stability more than 3 months in ambient air. This work provides a simple strategy for designing low-cost and high-performance filter-free NPDs with a tunable spectral response.
Collapse
Affiliation(s)
- Yuzhu Pan
- State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment, China Nuclear Power Engineering Co. Ltd., Shenzhen, Guangdong518045, China
- School of Electronic Science and Engineering, Joint International Research Laboratory of Information Display and Visualization, Southeast University, Nanjing210096, China
| | - Xin Wang
- School of Electronic Science and Engineering, Joint International Research Laboratory of Information Display and Visualization, Southeast University, Nanjing210096, China
| | - Yuhan Liao
- School of Electronic Science and Engineering, Joint International Research Laboratory of Information Display and Visualization, Southeast University, Nanjing210096, China
| | - Yubing Xu
- School of Electronic Science and Engineering, Joint International Research Laboratory of Information Display and Visualization, Southeast University, Nanjing210096, China
| | - Yuwei Li
- School of Electronic Science and Engineering, Joint International Research Laboratory of Information Display and Visualization, Southeast University, Nanjing210096, China
| | - Qing Li
- School of Electronic Science and Engineering, Joint International Research Laboratory of Information Display and Visualization, Southeast University, Nanjing210096, China
| | - Xiaobing Zhang
- School of Electronic Science and Engineering, Joint International Research Laboratory of Information Display and Visualization, Southeast University, Nanjing210096, China
| | - Jing Chen
- School of Electronic Science and Engineering, Joint International Research Laboratory of Information Display and Visualization, Southeast University, Nanjing210096, China
| | - Zhuoya Zhu
- School of Electronic Science and Engineering, Joint International Research Laboratory of Information Display and Visualization, Southeast University, Nanjing210096, China
| | - Zhiwei Zhao
- School of Electronic Science and Engineering, Joint International Research Laboratory of Information Display and Visualization, Southeast University, Nanjing210096, China
| | - Elias Emeka Elemike
- Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng, Private Bag X2046, Mmabatho2735, South Africa
| | - Mamoru Furuta
- Department of Environmental Science and Engineering, Kochi University of Technology, Kami, Kochi782-8502, Japan
| | - Wei Lei
- School of Electronic Science and Engineering, Joint International Research Laboratory of Information Display and Visualization, Southeast University, Nanjing210096, China
| |
Collapse
|
4
|
Liu C, Chen H, Lin P, Hu H, Meng Q, Xu L, Wang P, Wu X, Cui C. Optimized photoelectric characteristics of MAPbCl 3and MAPbBr 3composite perovskite single crystal heterojunction photodetector. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:405703. [PMID: 35896095 DOI: 10.1088/1361-648x/ac84bc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
MAPbBr3single crystal (SC) thin layer was successfully grown on MAPbCl3SC substrate to form perovskite SC heterojunction. Planar structure electrodes are deposited by thermal evaporation on the surfaces of MAPbCl3, MAPbBr3, and SCs heterojunction, respectively to evaluate their photoelectric performance. The SC heterojunction device exhibits excellent unidirectional conductivity in the voltage-current curves. Meanwhile, the current-time curves prove that SC heterojunction devices can effectively utilize the advantages of MAPbCl3and MAPbBr3, possessing relatively low dark current (∼300 nA), which is comparable to the dark current of MAPbCl3, but very high photocurrent (∼3500 nA), which is equivalent to the photocurrent of MAPbBr3. Rather than the photocurrent overshot and decay occurring at the exposure of light illumination in the MAPbBr3device, the photocurrent is extremely stable without overshot and decay in the SC heterojunction device. The light-to-dark ratio of the SC heterojunction device is twice that of MAPbCl3device and three times that of MAPbBr3device. Furthermore, the detectivity of the heterojunction device reaches as high as∼7×1011 Jones, an order of magnitude higher than MAPbCl3and MAPbBr3. The excellent characteristics of SC heterojunction further expand the practical application prospect of perovskite materials.
Collapse
Affiliation(s)
- Chao Liu
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Hang Chen
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Ping Lin
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Haihua Hu
- Zhejiang University City College, Hangzhou 310018, People's Republic of China
| | - Qingyu Meng
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Lingbo Xu
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Peng Wang
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Xiaoping Wu
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Can Cui
- Key Laboratory of Optical Field Manipulation of Zhejiang Province, Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| |
Collapse
|