1
|
Zhang S, Xin Y, Sun Y, Xi Z, Wei G, Han M, Liang B, Ou P, Xu K, Qiu J, Huang Z. Particle size effect on surface/interfacial tension and Tolman length of nanomaterials: A simple experimental method combining with theoretical. J Chem Phys 2024; 160:194708. [PMID: 38757618 DOI: 10.1063/5.0204848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
Surface tension and interfacial tension are crucial to the study of nanomaterials. Herein, we report a solubility method using magnesium oxide nanoparticles of different radii (1.8-105.0 nm, MgO NPs) dissolved in pure water as a targeted model; the surface tension and interfacial tension (and their temperature coefficients) were determined by measuring electrical conductivity and combined with the principle of the electrochemical equilibrium method, and the problem of particle size dependence is discussed. Encouragingly, this method can also be used to determine the ionic (atomic or molecular) radius and Tolman length of nanomaterials. This research results disclose that surface/interfacial tension and their temperature coefficients have a significant relationship with particle size. Surface/interfacial tension decreases rapidly with a radius <10 nm (while the temperature coefficients are opposite), while for a radius >10 nm, the effect is minimal. Especially, it is proven that the value of Tolman length is positive, the effect of particle size on Tolman length is consistent with the surface/interfacial tension, and the Tolman length of the bulk does not change much in the temperature range. This work initiates a new era for reliable determination of surface/interfacial tension, their temperature coefficients, ionic radius, and Tolman length of nanomaterials and provides an important theoretical basis for the development and application of various nanomaterials.
Collapse
Affiliation(s)
- Shengjiang Zhang
- School of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an 710069, People's Republic of China
- Department of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Nanning 530006, People's Republic of China
| | - Yujia Xin
- School of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an 710069, People's Republic of China
| | - Yanan Sun
- School of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an 710069, People's Republic of China
| | - Ziheng Xi
- Department of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Nanning 530006, People's Republic of China
| | - Gan Wei
- Department of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Nanning 530006, People's Republic of China
| | - Meng Han
- Department of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Nanning 530006, People's Republic of China
| | - Bing Liang
- Department of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Nanning 530006, People's Republic of China
| | - Panpan Ou
- Wuzhou Product Quality Inspection Institute, Wuzhou 543002, People's Republic of China
| | - Kangzhen Xu
- School of Chemical Engineering, Xi'an Key Laboratory of Special Energy Materials, Northwest University, Xi'an 710069, People's Republic of China
| | - Jiangyuan Qiu
- Department of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Nanning 530006, People's Republic of China
| | - Zaiyin Huang
- Department of Chemistry and Chemical Engineering, Guangxi Minzu University, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Nanning 530006, People's Republic of China
| |
Collapse
|
2
|
Miller MA, Medina S. Life at the interface: Engineering bio-nanomaterials through interfacial molecular self-assembly. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1966. [PMID: 38725255 PMCID: PMC11090466 DOI: 10.1002/wnan.1966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/15/2024]
Abstract
Interfacial self-assembly describes the directed organization of molecules and colloids at phase boundaries. Believed to be fundamental to the inception of primordial life, interfacial assembly is exploited by a myriad of eukaryotic and prokaryotic organisms to execute physiologic activities and maintain homeostasis. Inspired by these natural systems, chemists, engineers, and materials scientists have sought to harness the thermodynamic equilibria at phase boundaries to create multi-dimensional, highly ordered, and functional nanomaterials. Recent advances in our understanding of the biophysical principles guiding molecular assembly at gas-solid, gas-liquid, solid-liquid, and liquid-liquid interphases have enhanced the rational design of functional bio-nanomaterials, particularly in the fields of biosensing, bioimaging and biotherapy. Continued development of non-canonical building blocks, paired with deeper mechanistic insights into interphase self-assembly, holds promise to yield next generation interfacial bio-nanomaterials with unique, and perhaps yet unrealized, properties. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Michael A Miller
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott Medina
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
3
|
Zhang S, Tan X, Zhou Y, Liu J, Liang X, Ding X, Lyu G, Wei Y, Chen J, Mao Y, Wu J, Huang Y, Huang Y, Tan X, Huang Z. Critical size effect for the surface heat capacities of nano-CdS: theoretical and experimental studies. Phys Chem Chem Phys 2022; 24:6193-6207. [PMID: 35229089 DOI: 10.1039/d1cp04619e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The unique physical and chemical properties of nanomaterials are closely related to their surface thermodynamic functions, which mainly depend on their sizes. In this study, the thermodynamic properties of nano-cadmium sulphide (nano-CdS) were investigated by solubility technology. The nano-CdS powders with different particle sizes were prepared via a traditional solvothermal method, and the electrical conductivities of nano-CdS aqueous solutions at different temperatures were measured. The standard dissolution equilibrium constants of nano-CdS at different temperatures were calculated using the theory of dissolution thermodynamics. The standard molar dissolution thermodynamic functions, the molar surface thermodynamic functions and the specific surface thermodynamic functions of nano-CdS with different particle sizes were calculated by combining the thermodynamic functions of bulk-CdS, the principle of the thermodynamic cycle and the principle of electrochemical equilibrium. The experimental results show that the critical size values for the molar surface heat capacity and the specific surface heat capacity for approximately spherical nanoparticles are 9.3 nm and 8.7 nm, respectively. Within an acceptable range of error, the thermodynamic functions have linear and curved relationships with particle sizes and temperatures. Based on these results, it is disclosed that the critical size effect on surface heat capacities of nano-CdS is valuable to understand the energy storage processes of nanomaterials.
Collapse
Affiliation(s)
- Shengjiang Zhang
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Colleges and Universities, Nanning 530008, China.
| | - Xiuniang Tan
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Colleges and Universities, Nanning 530008, China.
| | - Yan Zhou
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Colleges and Universities, Nanning 530008, China.
| | - Jinyang Liu
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Colleges and Universities, Nanning 530008, China.
| | - Xiangyao Liang
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Colleges and Universities, Nanning 530008, China.
| | - Xuehuan Ding
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Colleges and Universities, Nanning 530008, China.
| | - Guangmiao Lyu
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Colleges and Universities, Nanning 530008, China.
| | - Ying Wei
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Colleges and Universities, Nanning 530008, China.
| | - Junxin Chen
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Colleges and Universities, Nanning 530008, China.
| | - Yidan Mao
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Colleges and Universities, Nanning 530008, China.
| | - Jinmei Wu
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Colleges and Universities, Nanning 530008, China.
| | - Yushan Huang
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Colleges and Universities, Nanning 530008, China.
| | - Yusen Huang
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Colleges and Universities, Nanning 530008, China.
| | - Xuecai Tan
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Colleges and Universities, Nanning 530008, China. .,Key Laboratory of Food Safety and Pharmaceutical Analytical Chemistry, Key Laboratory of Forest Chemistry and Engineering, Nanning 530008, China.,Key Laboratory of Forest Chemistry and Engineering, Guangxi University for Nationalities, Nanning 530008, P. R. China
| | - Zaiyin Huang
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Colleges and Universities, Nanning 530008, China. .,Key Laboratory of Food Safety and Pharmaceutical Analytical Chemistry, Key Laboratory of Forest Chemistry and Engineering, Nanning 530008, China.,Key Laboratory of Forest Chemistry and Engineering, Guangxi University for Nationalities, Nanning 530008, P. R. China
| |
Collapse
|