1
|
Deivasigamani R, Mohd Maidin NN, Abdul Nasir NS, Abdulhameed A, Ahmad Kayani AB, Mohamed MA, Buyong MR. A correlation of conductivity medium and bioparticle viability on dielectrophoresis-based biomedical applications. Electrophoresis 2023; 44:573-620. [PMID: 36604943 DOI: 10.1002/elps.202200203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/28/2022] [Accepted: 12/26/2022] [Indexed: 01/07/2023]
Abstract
Dielectrophoresis (DEP) bioparticle research has progressed from micro to nano levels. It has proven to be a promising and powerful cell manipulation method with an accurate, quick, inexpensive, and label-free technique for therapeutic purposes. DEP, an electrokinetic phenomenon, induces particle movement as a result of polarization effects in a nonuniform electrical field. This review focuses on current research in the biomedical field that demonstrates a practical approach to DEP in terms of cell separation, trapping, discrimination, and enrichment under the influence of the conductive medium in correlation with bioparticle viability. The current review aims to provide readers with an in-depth knowledge of the fundamental theory and principles of the DEP technique, which is influenced by conductive medium and to identify and demonstrate the biomedical application areas. The high conductivity of physiological fluids presents obstacles and opportunities, followed by bioparticle viability in an electric field elaborated in detail. Finally, the drawbacks of DEP-based systems and the outlook for the future are addressed. This article will aid in advancing technology by bridging the gap between bioscience and engineering. We hope the insights presented in this review will improve cell suspension medium and promote DEP-viable bioparticle manipulation for health-care diagnostics and therapeutics.
Collapse
Affiliation(s)
- Revathy Deivasigamani
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Nur Nasyifa Mohd Maidin
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Nur Shahira Abdul Nasir
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | | | - Aminuddin Bin Ahmad Kayani
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia.,ARC Research Hub for Connected Sensors for Health, RMIT University, Melbourne, Australia
| | - Mohd Ambri Mohamed
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Muhamad Ramdzan Buyong
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| |
Collapse
|
2
|
Kichatov B, Korshunov A, Sudakov V, Golubkov A, Gubernov V, Kiverin A. Motion of a chemically reactive bimetal motor in a magnetic field. Phys Chem Chem Phys 2022; 24:19693-19696. [PMID: 35968933 DOI: 10.1039/d2cp03383f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The wide research interest in nano-, micro-, and macromotors is due to the diverse range of applied problems in engineering, biomedicine, and ecology. At the same time, the amount of known mechanisms responsible for the locomotion of motors is limited. Here, we demonstrate a novel method of motor locomotion, which can be contingently called "chemical magnetism". The phenomenon considered here is based on the fact that any current loop in the magnetic field is affected by a force. "Chemical magnet" represents a bimetal surfer swimming at the electrolyte surface. When the redox reaction proceeds, a current loop emerges. That defines the action of the additional magnetic force on the surfer in the non-uniform magnetic field. The magnetic properties of the surfer can be varied in a wide range by changing the concentration of the electrolyte solution, its temperature, and the pair of metals composing the surfer. The phenomenon of "chemical magnetism" considered here widens a list of known mechanisms of motor locomotion.
Collapse
Affiliation(s)
- Boris Kichatov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Alexey Korshunov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Vladimir Sudakov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Alexandr Golubkov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Vladimir Gubernov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Alexey Kiverin
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| |
Collapse
|
3
|
Lisin EA, Vaulina OS, Lisina II, Petrov OF. Motion of a self-propelled particle with rotational inertia. Phys Chem Chem Phys 2022; 24:14150-14158. [PMID: 35648110 DOI: 10.1039/d2cp01313d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Overdamped active Brownian motion of self-propelled particles in a liquid has been fairly well studied. However, there are a variety of situations in which the overdamped approximation is not justified, for instance, when self-propelled particles move in a low-viscosity medium or when their rotational diffusivity is enhanced by internal active processes or external control. Examples of various origins include biofilaments driven by molecular motors, living and artificial microflyers and interfacial surfers, field-controlled and superfluid microswimmers, vibration-driven granular particles and autonomous mini-robots with sensorial delays, etc. All of them extend active Brownian motion to the underdamped case, i.e., to active Langevin motion, which takes into account inertia. Despite a rich experimental background, there is a gap in the theory in the field where rotational inertia significantly affects the random walk of active particles on all time scales. In particular, although the well-known models of active Brownian and Ornstein-Uhlenbeck particles include a memory effect of the direction of motion, they are not applicable in the underdamped case, because the rotational inertia, which they do not account for, can partially prevent "memory loss" with increasing rotational diffusion. We describe the two-dimensional motion of a self-propelled particle with both translational and rotational inertia and velocity fluctuations. The proposed generalized analytical equations for the mean kinetic energy, mean-square displacement and noise-averaged trajectory of the self-propelled particle are confirmed by numerical simulations in a wide range of self-propulsion velocities, moments of inertia, rotational diffusivities, medium viscosities and observation times.
Collapse
Affiliation(s)
- E A Lisin
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 125412, Russia.
| | - O S Vaulina
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 125412, Russia.
| | - I I Lisina
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 125412, Russia.
| | - O F Petrov
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 125412, Russia.
| |
Collapse
|
4
|
Petrov OF, Statsenko KB, Vasiliev MM. Active Brownian motion of strongly coupled charged grains driven by laser radiation in plasma. Sci Rep 2022; 12:8618. [PMID: 35597777 PMCID: PMC9124211 DOI: 10.1038/s41598-022-12354-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/10/2022] [Indexed: 11/08/2022] Open
Abstract
The systems of active Brownian grains can be considered as open systems, in which there is an exchange of energy and matter with the environment. The collective phenomena of active Brownian grains can demonstrate analogies with ordinary phase transitions. We study the active Brownian motion of light-absorbing and strongly interacting grains far from equilibrium suspended in gas discharge under laser irradiation when the nature and intensity of the active motion depend on the effect of radiation. Active Brownian motion is caused by photophoresis, i.e., absorption of laser radiation at the metal-coated surface of the grain creates radiometric force, which in turn drives the grains. We experimentally observed the active Brownian motion of charged grains in the transition of the grain monolayer from the solid to liquid state. An analysis of the character of motion, including the mean-square and linear displacement and persistence length at various values of the randomization (coupling parameter) of the grain structure, was presented.
Collapse
Affiliation(s)
- Oleg F Petrov
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 125412, Russia.
| | - Konstantin B Statsenko
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 125412, Russia
| | - Mikhail M Vasiliev
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 125412, Russia
| |
Collapse
|
5
|
Petrov OF, Boltnev RE, Vasiliev MM. Experimental evolution of active Brownian grains driven by quantum effects in superfluid helium. Sci Rep 2022; 12:6085. [PMID: 35413969 PMCID: PMC9005707 DOI: 10.1038/s41598-022-09523-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Complex structures, consisting of a large number of interacting subsystems, have the ability to self-organize and evolve, when the scattering of energy coming from the outside ensures the maintenance of stationary ordered structures with an entropy less than the equilibrium entropy. One of the fundamental problems here is the role of quantum phenomena in the evolution of macroscopic objects. We provide experimental evidence for the active Brownian motion and evolution of structures driven by quantum effects for micron-sized grains levitating in superfluid helium. The active Brownian motion of grains was induced by quantum turbulence during the absorption of laser irradiation by grains. The intensity of Brownian motion associated with quantum vortices increased by 6-7 orders of magnitude compared to the values from the Einstein formula. We observed the grain structures in a state far from thermodynamic equilibrium and their evolution to more complex organized structures with lower entropy due to the quantum mechanism of exceedingly high entropy loss in superfluid helium.
Collapse
Affiliation(s)
- Oleg F Petrov
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 125412, Russia.
| | - Roman E Boltnev
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 125412, Russia
| | - Mikhail M Vasiliev
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 125412, Russia
| |
Collapse
|
6
|
Dynamic Entropy of Two-Dimensional Active Brownian Systems in Colloidal Plasmas. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051614. [PMID: 35268715 PMCID: PMC8911697 DOI: 10.3390/molecules27051614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 11/24/2022]
Abstract
We analyze the experimental data on the motion of active Brownian micrograins in RF discharge plasmas. In the experiments, two types of microparticles were used: first—plastic grains fully covered with metal, and second—Janus particles with a thin metal cap. We have tracked the trajectories of the separate grains and plotted the pair correlation functions of the observed structures. To examine the motion of the grains, we studied the dependencies of the MFPT dynamic entropy on the coarsening parameter, the fractal dimension of the system on its mean kinetic temperature, and the mean localization area of the grain on its mean kinetic temperature. Based on the obtained results, we conclude that the character of motion of our active Brownian systems changes as the power of an illuminating laser (and, therefore, the mean kinetic temperature of the grains) increases. Janus particles change their trajectories from more chaotic to spiral-like ones; in the case of fully covered particles, we observe the dynamical phase transition from the more ordered structure to the less ordered one.
Collapse
|
7
|
Alignments of a Microparticle Pair in a Glow Discharge. Molecules 2021; 26:molecules26247535. [PMID: 34946617 PMCID: PMC8707345 DOI: 10.3390/molecules26247535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Stability of a vertically aligned microparticle pair in a stratified glow DC discharge is experimentally investigated. Using laser perturbations, it is shown that, for the same discharge parameters, a pair of microparticles can be suspended in two stable configurations: vertical and horizontal. The interparticle interaction and the electric field of the stratum in the region of particle levitation are quantitatively investigated for the first time. The decharging effect of the lower (downstream) particle by the ion flow wake is also observed for the first time in a glow discharge. The obtained experimental data made it possible to check the analytical criteria for the configurational stability of the system.
Collapse
|
8
|
Fairushin II, Vasiliev MM, Petrov OF. Effect of Laser Radiation on the Dynamics of Active Brownian Macroparticles in an Extended Plasma-Dust Monolayer. Molecules 2021; 26:molecules26226974. [PMID: 34834065 PMCID: PMC8624351 DOI: 10.3390/molecules26226974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022] Open
Abstract
Using the modified method of Brownian dynamics, the dynamics of macroparticles with a uniform metal coating in a plasma-dust monolayer under the action of laser radiation was simulated. The time dependences of the root-mean-square and average linear displacements of particles were calculated for different initial effective parameters of nonideality and different intensities of laser radiation. A relationship was established that connects the effective parameter of nonideality of the dusty plasma system of active particles with the maximum value of the mean linear displacement of particles.
Collapse
Affiliation(s)
- Ilnaz Izailovich Fairushin
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia; (M.M.V.); (O.F.P.)
- Department of Computational Physics, Institute of Physics, Kazan Federal University, 420008 Kazan, Russia
- Correspondence:
| | | | - Oleg Fedorovich Petrov
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia; (M.M.V.); (O.F.P.)
| |
Collapse
|