1
|
Lee S, Abbas MS, Yoo D, Lee K, Fabunmi TG, Lee E, Kim HI, Kim I, Jang D, Lee S, Lee J, Park KT, Lee C, Kim M, Lee YS, Chang CS, Yi GC. Pulsed-Mode Metalorganic Vapor-Phase Epitaxy of GaN on Graphene-Coated c-Sapphire for Freestanding GaN Thin Films. NANO LETTERS 2023; 23:11578-11585. [PMID: 38051017 DOI: 10.1021/acs.nanolett.3c03333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
We report the growth of high-quality GaN epitaxial thin films on graphene-coated c-sapphire substrates using pulsed-mode metalorganic vapor-phase epitaxy, together with the fabrication of freestanding GaN films by simple mechanical exfoliation for transferable light-emitting diodes (LEDs). High-quality GaN films grown on the graphene-coated sapphire substrates were easily lifted off by using thermal release tape and transferred onto foreign substrates. Furthermore, we revealed that the pulsed operation of ammonia flow during GaN growth was a critical factor for the fabrication of high-quality freestanding GaN films. These films, exhibiting excellent single crystallinity, were utilized to fabricate transferable GaN LEDs by heteroepitaxially growing InxGa1-xN/GaN multiple quantum wells and a p-GaN layer on the GaN films, showing their potential application in advanced optoelectronic devices.
Collapse
Affiliation(s)
- Seokje Lee
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Muhammad S Abbas
- Department of Physics, Sungkyunkwan University College of Natural Science, Suwon 16419, Republic of Korea
- Centre for Advanced Studies in Physics (CASP), Government College University Lahore, Lahore 54000, Pakistan
| | - Dongha Yoo
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Keundong Lee
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Tobiloba G Fabunmi
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunsu Lee
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Han Ik Kim
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Imhwan Kim
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Daniel Jang
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sangmin Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jusang Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki-Tae Park
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Changgu Lee
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University College of Engineering, Suwon 16419, Republic of Korea
| | - Miyoung Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Yun Seog Lee
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Celesta S Chang
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Gyu-Chul Yi
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Hu L, Deng J, Xie Y, Qian F, Dong Y, Xu C. In Situ Growth of Graphene on Polyimide for High-Responsivity Flexible PbS-Graphene Photodetectors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1339. [PMID: 37110924 PMCID: PMC10147023 DOI: 10.3390/nano13081339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Graphene is an ideal material for flexible optoelectronic devices due to its excellent electrical and optical properties. However, the extremely high growth temperature of graphene has greatly limited the direct fabrication of graphene-based devices on flexible substrates. Here, we have realized in situ growth of graphene on a flexible polyimide substrate. Based on the multi-temperature-zone chemical vapor deposition cooperated with bonding a Cu-foil catalyst onto the substrate, the growth temperature of graphene was controlled at only 300 °C, enabling the structural stability of polyimide during growth. Thus, large-area high-quality monolayer graphene film was successfully in situ grown on polyimide. Furthermore, a PbS-graphene flexible photodetector was fabricated using the graphene. The responsivity of the device reached 105 A/W with 792 nm laser illumination. The in-situ growth ensures good contact between graphene and substrate; therefore, the device performance can remain stable after multiple bending. Our results provide a highly reliable and mass-producible path for graphene-based flexible devices.
Collapse
Affiliation(s)
- Liangchen Hu
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
| | - Jun Deng
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
| | - Yiyang Xie
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
| | - Fengsong Qian
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
| | - Yibo Dong
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chen Xu
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
| |
Collapse
|
3
|
Hu L, Dong Y, Xie Y, Qian F, Chang P, Fan M, Deng J, Xu C. In Situ Growth of Graphene Catalyzed by a Phase-Change Material at 400 °C for Wafer-Scale Optoelectronic Device Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206738. [PMID: 36592430 DOI: 10.1002/smll.202206738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The use of metal foil catalysts in the chemical vapor deposition of graphene films makes graphene transfer an ineluctable part of graphene device fabrication, which greatly limits industrialization. Here, an oxide phase-change material (V2 O5 ) is found to have the same catalytic effect on graphene growth as conventional metals. A uniform large-area graphene film can be obtained on a 10 nm V2 O5 film. Density functional theory is used to quantitatively analyze the catalytic effect of V2 O5 . Due to the high resistance property of V2 O5 at room temperature, the obtained graphene can be directly used in devices with V2 O5 as an intercalation layer. A wafer-scale graphene-V2 O5 -Si (GVS) Schottky photodetector array is successfully fabricated. When illuminated by a 792 nm laser, the responsivity of the photodetector can reach 266 mA W-1 at 0 V bias and 420 mA W-1 at 2 V. The transfer-free device fabrication process enables high feasibility for industrialization.
Collapse
Affiliation(s)
- Liangchen Hu
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing, 100124, China
| | - Yibo Dong
- Institute of Photonic Chips, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yiyang Xie
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing, 100124, China
| | - Fengsong Qian
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing, 100124, China
| | - Pengying Chang
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing, 100124, China
| | - Mengqi Fan
- School of Integrated Circuits, Peking University, Beijing, 100871, China
| | - Jun Deng
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing, 100124, China
| | - Chen Xu
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Ministry of Education, Beijing, 100124, China
| |
Collapse
|