1
|
Zi B, Zheng H, Zhou T, Lu Q, Chen M, Xiao B, Zhang Y, Qiu Z, Sun H, Zhao J, Luo Z, He T, Zhang J, Zhao Z, Liu Q. Changeable Active Sites by Pr Doping CuSA-TiO 2 Photocatalyst for Excellent Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305779. [PMID: 38764279 DOI: 10.1002/smll.202305779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/19/2023] [Indexed: 05/21/2024]
Abstract
Photocatalytic water splitting for clean hydrogen production has been a very attractive research field for decades. However, the insightful understanding of the actual active sites and their impact on catalytic performance is still ambiguous. Herein, a Pr-doped TiO2-supported Cu single atom (SA) photocatalyst is successfully synthesized (noted as Cu/Pr-TiO2). It is found that Pr dopants passivate the formation of oxygen vacancies, promoting the density of photogenerated electrons on the CuSAs, and optimizing the electronic structure and H* adsorption behavior on the CuSA active sites. The photocatalytic hydrogen evolution rate of the obtained Cu/Pr-TiO2 catalyst reaches 32.88 mmol g-1 h-1, 2.3 times higher than the Cu/TiO2. Innovatively, the excellent catalytic activity and performance is attributed to the active sites change from O atoms to CuSAs after Pr doping is found. This work provides new insight for understanding the accurate roles of single atoms in photocatalytic water splitting.
Collapse
Affiliation(s)
- Baoye Zi
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming, 650091, China
| | - Hongshun Zheng
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming, 650091, China
| | - Tong Zhou
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming, 650091, China
| | - Qingjie Lu
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming, 650091, China
| | - Mingpeng Chen
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming, 650091, China
| | - Bin Xiao
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming, 650091, China
| | - Yumin Zhang
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming, 650091, China
| | - Zhishi Qiu
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming, 650091, China
| | - Huachuan Sun
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming, 650091, China
| | - Jianhong Zhao
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming, 650091, China
| | - Zhongge Luo
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming, 650091, China
| | - Tianwei He
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming, 650091, China
| | - Jin Zhang
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming, 650091, China
| | - Zongyan Zhao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Qingju Liu
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/nano Materials & Technology, School of Materials Science and Engineering, Yunnan University, Kunming, 650091, China
| |
Collapse
|
2
|
Valero R, Morales-García Á, Illas F. Estimating Nonradiative Excited-State Lifetimes in Photoactive Semiconducting Nanostructures. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:2713-2721. [PMID: 38379918 PMCID: PMC10875665 DOI: 10.1021/acs.jpcc.3c08053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/22/2024]
Abstract
The time evolution of the exciton generated by light adsorption in a photocatalyst is an important feature that can be approached from full nonadiabatic molecular dynamics simulations. Here, a crucial parameter is the nonradiative recombination rate between the hole and the electron that form the exciton. In the present work, we explore the performance of a Fermi's golden rule-based approach on predicting the recombination rate in a set of photoactive titania nanostructures, relying solely on the coupling of the ground and first excited state. In this scheme the analysis of the first excited state is carried out by invoking Kasha's rule thus avoiding computationally expensive nonadiabatic molecular dynamics simulations and resulting in an affordable estimate of the recombination rate. Our results show that, compared to previous ones from nonadiabatic molecular dynamics simulations, semiquantitative recombination rates can be predicted for the smaller titania nanostructures, and qualitative values are obtained from the larger ones. The present scheme is expected to be useful in the field of computational heterogeneous photocatalysis whenever a complex and computationally expensive full nonadiabatic molecular dynamics cannot be carried out.
Collapse
Affiliation(s)
- Rosendo Valero
- Departament
de Ciència de Materials i Química Física &
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona. c/Martí i Franquès 1-11, 08028 Barcelona, Spain
- Headquarters
Research Institute, Zhejiang Huayou Cobalt, 018 Wuzhen East Rd, 314599 Jiaxing, Zhejiang, China
| | - Ángel Morales-García
- Departament
de Ciència de Materials i Química Física &
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona. c/Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Francesc Illas
- Departament
de Ciència de Materials i Química Física &
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona. c/Martí i Franquès 1-11, 08028 Barcelona, Spain
| |
Collapse
|
3
|
Yang D, Pu H, Dai P, Jiang W, Yi Y, Zhang T, Zhang S, Guo X, Li Y. Mechanism of p-Type Heteroatom Doping of Lithium Stannate for the Photodegradation of 2,4-Dichlorophenol: Enhanced Hole Oxidative Capability and Concentrations. Inorg Chem 2024; 63:1236-1246. [PMID: 38174906 DOI: 10.1021/acs.inorgchem.3c03636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A systematic evaluation of enhancing photocatalysis via aliovalent cation doping is conducted. Cation In3+, being p-type-doped, was chosen to substitute the Sn site (Sn4+) in Li2SnO3, and the photodegradation of 2,4-dichlorophenol was applied as a model reaction. Specifically, Li2Sn0.90In0.10O3 exhibited superior catalytic performance; the photodegradation efficiency reached about 100% within only 12 min. This efficiency is far greater than that of pure Li2SnO3 under identical conditions. Density functional theory calculations reveal that introducing In3+ increased the electron mobility, yet decreased the hole mobility, leading to photogenerated carrier separation. However, photoluminescence and time-resolved photoluminescence suggest that In3+ induced nonradiative coupling in the matrix, reducing the photogenerated carrier separation ratio compared with that of Li2SnO3. The optical band gap of Li2Sn0.90In0.10O3 was almost unchanged compared with that of Li2SnO3 via ultraviolet-visible absorption. The increased photocatalytic efficiency was ascribed to the lower valence band position and enhanced hole concentrations by valence band X-ray photoelectron spectroscopy and electrochemical measurements. Finally, a 2,4-dichlorophenol degradation pathway, an intermediate toxicity assessment, and a photocatalytic mechanism were proposed. This work offers insights into designing and optimizing semiconductor photocatalysts with high performance.
Collapse
Affiliation(s)
- Dingfeng Yang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd., Lijiatuo, Banan District, Chongqing 400054, People's Republic of China
- Chongqing Precision Medicine Industrial Technology Research Institute, Chongqing 400799, People's Republic of China
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Hongzheng Pu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd., Lijiatuo, Banan District, Chongqing 400054, People's Republic of China
| | - Peng Dai
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, People's Republic of China
| | - Wen Jiang
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, People's Republic of China
| | - Yuanxue Yi
- Chongqing Precision Medicine Industrial Technology Research Institute, Chongqing 400799, People's Republic of China
| | - Tao Zhang
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, People's Republic of China
| | - Shuming Zhang
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, People's Republic of China
| | - Xichuan Guo
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, People's Republic of China
| | - Yuanyuan Li
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, People's Republic of China
- Chongqing Precision Medicine Industrial Technology Research Institute, Chongqing 400799, People's Republic of China
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
4
|
Chang J, Chen H, Gao P, Chen J. Spin singlet pairing of bismuth in titania. J Chem Phys 2023; 159:174709. [PMID: 37933785 DOI: 10.1063/5.0176355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/01/2023] [Indexed: 11/08/2023] Open
Abstract
The formation of electron and hole traps in semiconductors via atomistic defects is the fundamental microscopic mechanism for tuning the electronic and photonic properties of these materials. Here we find in experiments that bismuth atoms doped into anatase TiO2 as substituents can appear as paired diatomic defects. Through first-principles density functional theory calculations, we reveal that the observed bismuth pair is separated by a medium distance of 6.37 Å through a delicate balance of Pauli repulsion and effective attractive interaction. We further clarify that the effective attractive interaction is related to the exchange coupling between the two bismuth defect states, which also leads to the formation of a spin singlet electronic state of the two unpaired electrons. Our study brings up a new type of defect state in TiO2, and motivates further experimental and theoretical studies of multi-electronic states in materials.
Collapse
Affiliation(s)
- Jing Chang
- School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Haoxiang Chen
- Institute of Condensed Matter and Material Physics, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Peng Gao
- School of Physics, Peking University, Beijing 100871, People's Republic of China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, People's Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, People's Republic of China
| | - Ji Chen
- School of Physics, Peking University, Beijing 100871, People's Republic of China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, People's Republic of China
- Frontiers Science Center for Nano-Optoelectronics, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
5
|
Wang H, Fu H, You P, Zhang C, Jiang Y, Meng S. Anomalous Dependence of Photocarrier Recombination Time on the Polaron Density of TiO 2(110). J Phys Chem Lett 2023; 14:8312-8319. [PMID: 37683279 DOI: 10.1021/acs.jpclett.3c01685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Polarons play a crucial role in energy conversion, but the microscopic mechanism remains unclear since they are susceptible to local atomic structures. Here, by employing ab initio nonadiabatic dynamic simulations, we investigate electron-hole (e-h) nonradiative recombination at the rutile TiO2(110) surface with varied amounts of oxygen vacancies (Vo). The isolated Vo facilitates e-h recombination through forming polarons compared to that in the defect-free surface. However, aggregated Vo forming clusters induce an order-of-magnitude acceleration of polaron diffusion by enhancing phonon excitations, which blocks the defect-mediated recombination and thus prolongs the photocarrier lifetime. We find that photoelectrons are driven to migrate toward the top surface due to polaron formation. Our results show the many-body effects of defects and polaron effects on determining the overall recombination rate, which has been ignored in the Shockley-Read-Hall model. The findings explain the controversial experimental observations and suggest that engineering Vo aggregation would instead improve photocatalysis efficiencies in polaronic materials.
Collapse
Affiliation(s)
- Huimin Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huixia Fu
- Center of Quantum Materials and Devices, College of Physics, Chongqing University, Chongqing 401331, China
| | - Peiwei You
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cui Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Ying Jiang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
6
|
Su J, Zhang J, Wang Y, Wang C, Niu Q, Sun R, Zhang W. Ab Initio Time-Domain Study of Charge Relaxation and Recombination in N-Doped Cu 2O. ACS OMEGA 2023; 8:28846-28850. [PMID: 37576677 PMCID: PMC10413821 DOI: 10.1021/acsomega.3c03916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023]
Abstract
Cu2O is a good photoelectric material with excellent performance, and its crystal structure, electronic structure, and optical properties have been extensively studied. To further illustrate the charge distribution and the carrier transport in this system, the e-h recombination dynamics was studied. It is found that N doping induced a shallower impurity band above the VBM, leading to significant charge localization around the impurity atom. NAMD simulation reveals that the N doping system possesses a longer e-h nonradiative recombination time scale. Therefore, we demonstrate that the formation of the impurity band and charge localization play an essential role in suppressing e-h recombination in N doping systems. This work is conducive for understanding the carrier transport mechanism in N-doped Cu2O.
Collapse
Affiliation(s)
- Jianfeng Su
- Department
of Mathematics and Physics, Luoyang Institute
of Science and Technology, Luoyang 471023, China
| | - Jiao Zhang
- Department
of Mathematics and Physics, Luoyang Institute
of Science and Technology, Luoyang 471023, China
| | - Yajie Wang
- Department
of Mathematics and Physics, Luoyang Institute
of Science and Technology, Luoyang 471023, China
| | - Changqing Wang
- Department
of Mathematics and Physics, Luoyang Institute
of Science and Technology, Luoyang 471023, China
| | - Qiang Niu
- Department
of Mathematics and Physics, Luoyang Institute
of Science and Technology, Luoyang 471023, China
| | - Ruirui Sun
- Department
of Mathematics and Physics, Luoyang Institute
of Science and Technology, Luoyang 471023, China
| | - Weiying Zhang
- School
of Physics and Electronic Information, Luoyang
Normal University, Luoyang 471022, China
| |
Collapse
|