1
|
Liu S, Zhou J, Yu L, Liu Y, Huang Y, Ouyang Y, Liu GK, Xu XH, Shibata N. Nitrogen-Based Organofluorine Functional Molecules: Synthesis and Applications. Chem Rev 2025. [PMID: 40261821 DOI: 10.1021/acs.chemrev.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Fluorine and nitrogen form a successful partnership in organic synthesis, medicinal chemistry, and material sciences. Although fluorine-nitrogen chemistry has a long and rich history, this field has received increasing interest and made remarkable progress over the past two decades, driven by recent advancements in transition metal and organocatalysis and photochemistry. This review, emphasizing contributions from 2015 to 2023, aims to update the state of the art of the synthesis and applications of nitrogen-based organofluorine functional molecules in organic synthesis and medicinal chemistry. In dedicated sections, we first focus on fluorine-containing reagents organized according to the type of fluorine-containing groups attached to nitrogen, including N-F, N-RF, N-SRF, and N-ORF. This review also covers nitrogen-linked fluorine-containing building blocks, catalysts, pharmaceuticals, and agrochemicals, underlining these components' broad applicability and growing importance in modern chemistry.
Collapse
Affiliation(s)
- Shuai Liu
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- National Engineering Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, China
| | - Jun Zhou
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lu Yu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Yingle Liu
- School of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan 643000, China
| | - Yangen Huang
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yao Ouyang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Guo-Kai Liu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xiu-Hua Xu
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences & Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
2
|
Zhang S, Li B, Li S. Configuration Retention in P-Trifluoromethyl Phosphine Enabled Rh(I)-Catalyzed Decarbonylative Coupling of Carboxylates and Boroxines. J Am Chem Soc 2025; 147:11700-11706. [PMID: 40130774 DOI: 10.1021/jacs.5c03546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
As compared with asymmetric catalysis, the memory of chirality provides another promising strategy to introduce chiral centers in light of numerous chiral starting materials that can be accessed. Decarboxylative coupling has become an important strategy for C-C or C-X bond formation over decades of development for its versatility and the low cost and structural diversity of carboxylic acids. However, the memory of chirality or more general configuration retention in this transformation has seldom been studied. Here, we report a novel π acceptor-type ligand P-trifluoromethyl phosphine enabled Rh(I)-catalyzed decarbonylative coupling of carboxylates and boroxines. The configuration of the α-carbon can be fully retained in this transformation for chiral, cis-, or trans-substrates. Several P-trifluoromethyl phosphine-Rh(I) carbonyl complexes were prepared and their v(CO) values were compared with known complexes, which indicated that the π-accepting property of the ligand is important to the decarbonylative reaction.
Collapse
Affiliation(s)
- Shouzhi Zhang
- School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510006, China
| | - Bo Li
- School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510006, China
| | - Suhua Li
- School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
3
|
Cermjani E, Deckers C, Maskos M, Rehm TH. Selective Decarboxylative Fluorination of β-Keto Acids in Aqueous Media: 19F-NMR-Assisted Batch Optimization and Transfer to Continuous Flow. Chemistry 2025; 31:e202404435. [PMID: 39715020 DOI: 10.1002/chem.202404435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
The selective decarboxylative fluorination of 3-oxo-3-phenylpropionic acid is used as a benchmark reaction to optimize it under biocompatible conditions in batch and to transfer it to continuous flow mode. The reaction conditions are varied with respect to temperature, fluorinating reagents, inorganic base additives, and pH, as these parameters have been identified as having a significant impact on the process. The formation of the products and any by-products is analyzed using gas chromatography (GC) and 19F nuclear magnetic resonance spectroscopy (NMR). Once optimal conditions have been determined, the reaction is carried out using an automated continuous laboratory synthesis system that features a mesostructured capillary reactor and an integrated 19F-NMR spectrometer for real-time monitoring of the reaction. The work presented here represents the initial phase of a multi-step continuous flow process that will include additional biocatalyzed downstream reactions in future applications.
Collapse
Affiliation(s)
- Egzon Cermjani
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Strasse 18-20, 55129, Mainz, Germany
- Johannes Gutenberg-University Mainz, Department of Chemistry, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Christoph Deckers
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Strasse 18-20, 55129, Mainz, Germany
| | - Michael Maskos
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Strasse 18-20, 55129, Mainz, Germany
- Johannes Gutenberg-University Mainz, Department of Chemistry, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Thomas H Rehm
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Strasse 18-20, 55129, Mainz, Germany
| |
Collapse
|
4
|
Mulka R, Su D, Huang WS, Zhang L, Huang H, Lai X, Li Y, Xue XS. FluoBase: a fluorinated agents database. J Cheminform 2025; 17:19. [PMID: 39934826 DOI: 10.1186/s13321-025-00949-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
Organofluorine compounds, owing to their unique physicochemical properties, play an increasingly crucial role in fields such as medicine, pesticides, and advanced materials. Fluorinated reagents are indispensable for developing efficient synthetic methods for organofluorine compounds and serve as the cornerstone of organofluorine chemistry. Equally important are fluorinated functional molecules, which contribute specific properties necessary for applications in pharmaceuticals, agrochemicals, and materials science. However, information about these agents' structure, properties, and functions is scattered throughout vast literature, making it inconvenient for synthetic chemists to access and utilize them effectively. Recognizing the need for a dedicated and organized resource, we present FluoBase-a comprehensive fluorinated agents database designed to streamline access to key information about fluorinated agents. FluoBase aims to become the premier resource for information related to fluorine chemistry, serving the scientific community and anyone interested in the applications of fluorine chemistry and machine learning for property predictions. FluoBase is freely available at https://fluobase.siochemdb.com . Scientific contribution FluoBase is a database designed to provide comprehensive information on the structures, properties, and functions of fluorinated agents and functional molecules. FluoBase aims to become the premier resource for fluorine chemistry, serving the scientific community and anyone interested in the applications of fluorine chemistry and machine learning for property predictions.
Collapse
Affiliation(s)
- Rafal Mulka
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Dan Su
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-Lane Xiangshan, Hangzhou, 310024, China
| | - Wen-Shuo Huang
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-Lane Xiangshan, Hangzhou, 310024, China
| | - Li Zhang
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-Lane Xiangshan, Hangzhou, 310024, China
| | - Huaihai Huang
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-Lane Xiangshan, Hangzhou, 310024, China
| | - Xiaoyu Lai
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yao Li
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| | - Xiao-Song Xue
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-Lane Xiangshan, Hangzhou, 310024, China.
| |
Collapse
|
5
|
Yuan LR, Zi Y, Ji SJ, Xu XP. Radical-Initiated Dearomative Annulation of Tryptamine-Derived Isocyanides: Selective Synthesis of CF 3-Substituted β-Aza-spiroindolines and β-Carbolines. J Org Chem 2024; 89:15979-15989. [PMID: 39436351 DOI: 10.1021/acs.joc.4c02302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
A mild approach for synthesizing CF3-substituted β-aza-spiroindolines and β-carbolines from tryptamine-derived isocyanides via site-selective radical annulations has been reported. The crucial role of C2 substituents in the selective annulation process has been clarified. The approach shows good generality and practical applicability, highlighting its effectiveness and versatility.
Collapse
Affiliation(s)
- Luo-Rong Yuan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - You Zi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Xiao-Ping Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
- Innovation Center for Chemical Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
6
|
Huang Q, Lou C, Lv L, Li Z. Photoinduced fluoroalkylation-peroxidation of alkenes enabled by ligand-to-iron charge transfer mediated decarboxylation. Chem Commun (Camb) 2024; 60:12389-12392. [PMID: 39370965 DOI: 10.1039/d4cc04650a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
We report here a photoinduced iron-catalyzed fluoroalkylation-peroxidation of activated and/or unactivated alkenes with fluoroalkyl carboxylic acids and hydroperoxide. The ligand-to-iron charge transfer strategy effectively overcomes the high redox potential of the fluoroalkyl carboxylic acids, facilitating the difunctionalization reaction to occur smoothly under mild reaction conditions. The late-stage functionalization of drug and natural product derivatives was also demonstrated.
Collapse
Affiliation(s)
- Qiuwei Huang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.
| | - Chenhao Lou
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.
| | - Leiyang Lv
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.
| | - Zhiping Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
7
|
Zhang X, Liu G, Sun X, Wan LS, Zhou Y. A Metal-Free Direct Decarboxylative Fluoroacylation of Indole Carboxylic Acids with Fluorinated Acids. J Org Chem 2024; 89:14591-14595. [PMID: 39323110 DOI: 10.1021/acs.joc.4c01842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
A straightforward preparation of diversified fluorinated indol-3-yl ketones was developed by the direct decarboxylative fluoroacylation of indole carboxylic acids. The reaction could be performed on a gram scale under net conditions. Neither a metal catalyst nor an additive was employed. This methodology featured simple reaction conditions, high efficiency, exclusive selectivity, a broad substrate scope, and easy operation, which allowed it to meet the green chemistry requirement of the modern pharmaceutical industry. Control experiments confirmed that a radical process might be involved in the tandem decarboxylative fluoroacylation sequence.
Collapse
Affiliation(s)
- Xingxing Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guangyuan Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xing Sun
- Hebei Chemical and Pharmaceutical College, Shijiazhuang 050026, China
| | - Luo-Sheng Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yirong Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
8
|
Yang X, Yang F, Zhang X. Iodine-mediated decarboxylative coupling to synthesize β-sulfonyl-ene-amines/2,3-diarythio-pyrroles from α-amino acids and sodium sulfinates. Org Biomol Chem 2024; 22:7321-7326. [PMID: 39171619 DOI: 10.1039/d4ob01149j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
A novel process has been developed for the selective synthesis of β-sulfonyl-enamines and 2,3-diarylthiopyrroles. This process utilizes the decarboxylative coupling and β-C(sp3)-H functionalization of α-amino acids. In this reaction, iodine functions dually as a tandem catalyst to initiate the decarboxylation of α-amino acids and as an oxidant to facilitate the formation of organic sulfides. This innovative approach not only simplifies the synthesis but also enhances the yield and selectivity of the desired products.
Collapse
Affiliation(s)
- Xiaodong Yang
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Feng Yang
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Xiaoya Zhang
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| |
Collapse
|
9
|
Pu W, Wan S, Zhou Q, Gong Y, Fu X, Mu G, Zhang G, Wang C. Copper-Catalyzed Intramolecular Decarboxylative C(sp2)-Heteroatom Cross-Couplings: Mechanism Insights and Synthetic Applications. J Org Chem 2024; 89:11939-11949. [PMID: 39177441 DOI: 10.1021/acs.joc.4c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Decarboxylative C(sp2)-heteroatom cross-coupling reactions hold extraordinary potential for the sustainable preparation of biologically active scaffolds. Herein, we report a copper sulfate/1,10-phenathroline catalytic system for the decarboxylative intramolecular C(sp2)-O, C(sp2)-S, and C(sp2)-N coupling reactions leading to the construction of a series of benzo[b]furans, benzo[b]thiophenes, and indole derivatives from the corresponding coumarins, thiocoumarins, or quinolones, respectively. Our mechanistic study based on benzo[b]furan formation suggests a three-step process of the transformations, which consists of (i) base-mediated hydrolytic ring opening of coumarin, (ii) copper-oxygen co-initiated radical decarboxylation, and (iii) copper-catalyzed C-heteroatom cross coupling. Application of this method in the total synthesis of egonol, a bioactive natural product, was demonstrated successfully, with an overall yield of 51.7%.
Collapse
Affiliation(s)
- Wenchen Pu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Shunli Wan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qiang Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yanqiu Gong
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xuewen Fu
- Jinhua Huanke Environmental Technology Co., Ltd., Jinhua 321000, China
| | - Guanmin Mu
- Orient Baolin Technology Development (Beijing) Co., Ltd., Beijing 100000, China
| | - Guolin Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Chun Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
10
|
Sun BQ, Yang J, Fan L, Xu Q, Wang S, Zhong H, Xiang HY. Base-Promoted Nucleophilic Phosphorylation of Benzyl Fluorides via C(sp 3)-F Cleavage. J Org Chem 2024; 89:11739-11746. [PMID: 39110911 DOI: 10.1021/acs.joc.4c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Herein, a transition-metal-free phosphorylation of benzyl fluorides with P(O)-H compounds is disclosed. In the presence of tBuOK, various benzyl fluorides react with P(O)-H compounds to produce the corresponding benzyl phosphine oxides, phosphinates, and phosphonates in good to high yields. This base-promoted phosphorylation reaction offers a facile and general strategy for the construction of a C(sp3)-P bond.
Collapse
Affiliation(s)
- Bing-Qian Sun
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, P. R. China
| | - Jia Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, P. R. China
| | - Lei Fan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, P. R. China
| | - Qian Xu
- Hunan Research Institute of Chemical Industry, Changsha 410014, P. R. China
| | - Shuai Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, P. R. China
| | - Hong Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
11
|
Grygorenko OO, Melnykov KP. Fluorinated building blocks in drug design: new pathways and targets. Future Med Chem 2024; 16:1375-1378. [PMID: 39073841 PMCID: PMC11352780 DOI: 10.1080/17568919.2024.2379229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Affiliation(s)
- Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyïv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv, 01601, Ukraine
| | - Kostiantyn P Melnykov
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyïv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv, 01601, Ukraine
| |
Collapse
|
12
|
Ford J, Ortalli S, Gouverneur V. The 18F-Difluoromethyl Group: Challenges, Impact and Outlook. Angew Chem Int Ed Engl 2024; 63:e202404957. [PMID: 38640422 DOI: 10.1002/anie.202404957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
The difluoromethyl functionality has proven useful in drug discovery, as it can modulate the properties of bioactive molecules. For PET imaging, this structural motif has been largely underexploited in (pre)clinical radiotracers due to a lack of user-friendly radiosynthetic routes. This Minireview provides an overview of the challenges facing radiochemists and summarises the efforts made to date to access 18F-difluoromethyl-containing radiotracers. Two distinct approaches have prevailed, the first of which relies on 18F-fluorination. A second approach consists of a 18F-difluoromethylation process, which uses 18F-labelled reagents capable of releasing key reactive intermediates such as the [18F]CF2H radical or [18F]difluorocarbene. Finally, we provide an outlook for future directions in the radiosynthesis of [18F]CF2H compounds and their application in tracer radiosynthesis.
Collapse
Affiliation(s)
- Joseph Ford
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Sebastiano Ortalli
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Véronique Gouverneur
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| |
Collapse
|
13
|
Yu Q, Zhou D, Ma J, Song C. Decarboxylative Nucleophilic Fluorination of Aliphatic Carboxylic Acids. Org Lett 2024; 26:4257-4261. [PMID: 38738813 DOI: 10.1021/acs.orglett.4c01185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Herein, we present a decarboxylative nucleophilic fluorination of carboxylic acids with a silver catalyst. This strategy enables the synthesis of a myriad of diverse and valuable fluorinated motifs under mild conditions, demonstrating good functional-group tolerance and utility in late-stage functionalization. In contrast to traditional electrophilic fluorination, this nucleophilic method utilizes a more readily available nucleophilic fluorinating reagent, providing substantial advantages in terms of cost efficiency, broad substrate scope, and functional-group compatibility.
Collapse
Affiliation(s)
- Qian Yu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Donglin Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Junjun Ma
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chunlan Song
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
14
|
Yan Q, Yuan QJ, Shatskiy A, Alvey GR, Stepanova EV, Liu JQ, Kärkäs MD, Wang XS. General Approach to Amides through Decarboxylative Radical Cross-Coupling of Carboxylic Acids and Isocyanides. Org Lett 2024; 26:3380-3385. [PMID: 38607963 PMCID: PMC11059110 DOI: 10.1021/acs.orglett.4c00872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Herein, we report a silver-catalyzed protocol for decarboxylative cross-coupling between carboxylic acids and isocyanides, leading to linear amide products through a free-radical mechanism. The disclosed approach provides a general entry to a variety of decorated amides, accommodating a diverse array of radical precursors, including aryl, heteroaryl, alkynyl, alkenyl, and alkyl carboxylic acids. Notably, the protocol proved to be efficient for decarboxylative late-stage functionalization of several elaborate pharmaceuticals, demonstrating its potential applications.
Collapse
Affiliation(s)
- Qing Yan
- School
of Chemistry and Materials Science, Jiangsu
Key Laboratory of Green Synthesis for Functional Materials, Jiangsu
Normal University, Xuzhou, Jiangsu 221116, China
| | - Qing-Jia Yuan
- School
of Chemistry and Materials Science, Jiangsu
Key Laboratory of Green Synthesis for Functional Materials, Jiangsu
Normal University, Xuzhou, Jiangsu 221116, China
| | - Andrey Shatskiy
- Department
of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Gregory R. Alvey
- Department
of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Elena V. Stepanova
- Department
of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Research
School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russia
| | - Jian-Quan Liu
- School
of Chemistry and Materials Science, Jiangsu
Key Laboratory of Green Synthesis for Functional Materials, Jiangsu
Normal University, Xuzhou, Jiangsu 221116, China
| | - Markus D. Kärkäs
- Department
of Chemistry, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Xiang-Shan Wang
- School
of Chemistry and Materials Science, Jiangsu
Key Laboratory of Green Synthesis for Functional Materials, Jiangsu
Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
15
|
Li X, Majumder S, Tang X, Dolbier WR. Zinc 1,1,2,2-Tetrafluoroethanesulfinate: A Synthetically Useful Oxidative and Photoredox Source of the 1,1,2,2-Tetrafluoroethyl Radical. J Org Chem 2024; 89:5485-5490. [PMID: 38554099 DOI: 10.1021/acs.joc.3c02948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
1,1,2,2-Tetrafluoroethyl-containing molecules are of potential importance in drug discovery, but the efficient synthesis of such compounds is still relatively unexplored due to the lack of readily available reagents for the incorporation of the HCF2CF2 group. Herein, we introduce a new reagent, zinc 1,1,2,2-tetrafluoroethanesulfinate, which can be useful for the oxidative tetrafluoroethylation of arylboronic acids and heteroarenes as well as for a novel photoredox, three component hydro-tetrafluoroethylation of two alkenes of complementary reactivity.
Collapse
Affiliation(s)
- Xinjin Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- College of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Satyajit Majumder
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Xiaojun Tang
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - William R Dolbier
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
16
|
Zhu H, Gao C, Yu T, Xu C, Wang M. O-Trifluoromethylation of Carboxylic Acids via the Formation and Activation of Acyloxy(phenyl)trifluoromethyl-λ 3-Iodanes. Angew Chem Int Ed Engl 2024; 63:e202400449. [PMID: 38483081 DOI: 10.1002/anie.202400449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Indexed: 04/10/2024]
Abstract
Here we report the challenging O-trifluoromethylation of carboxylic acids via the formation and activation of acyloxy(phenyl)trifluoromethyl-λ3-iodanes. The method provides an easy access to various potentially valuable and hitherto elusive trifluoromethyl carboxylic esters. A remarkably wide range of substrates with commonly encountered functional groups are compatible with this reaction, including aromatic and aliphatic carboxylic acids, as well as Food and Drug Administration (FDA) approved drugs and pharmaceutically relevant molecules. The reaction mechanism and the origins of the enhanced reactivity by zinc chloride (ZnCl2) were discussed from experimental evidence and density functional theory (DFT) calculation.
Collapse
Affiliation(s)
- Hongye Zhu
- Department Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Chi Gao
- Department Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Ting Yu
- Department Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Cong Xu
- Department Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Mang Wang
- Department Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| |
Collapse
|
17
|
Kiaku C, Martinage D, Sicim Y, Leech MC, Walsh JM, Poole DL, Mason J, Goodall ICA, Devo P, Lam K. eFluorination of Activated Alcohols Using Collidinium Tetrafluoroborate. Org Lett 2024; 26:2697-2701. [PMID: 37204455 DOI: 10.1021/acs.orglett.3c00976] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tertiary C-F bonds are important structural designs; however, they suffer from challenging synthesis. Current methodologies use corrosive amine-HF salts or expensive and hazardous catalysts and reagents. Our group recently introduced collidinium tetrafluoroborate as an efficient fluorinating agent for anodic decarboxyfluorination reactions. Nevertheless, tertiary carboxylic acids are less readily available and more challenging to prepare than their alcohol analogues. Herein we report a practical, mild, and cheap electrochemical method to achieve deoxyfluorination of hindered carbon centers.
Collapse
Affiliation(s)
- Cyrille Kiaku
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, U.K
| | - Dorian Martinage
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, U.K
| | - Yasemin Sicim
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, U.K
| | - Matthew C Leech
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, U.K
| | - Jamie M Walsh
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, U.K
| | - Darren L Poole
- Discovery High-Throughput Chemistry, Medicinal Chemistry, GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, Hertfordshire, U.K
| | - Joseph Mason
- Discovery High-Throughput Chemistry, Medicinal Chemistry, GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, Hertfordshire, U.K
| | - Iain C A Goodall
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, U.K
| | - Perry Devo
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, U.K
| | - Kevin Lam
- School of Science, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, U.K
| |
Collapse
|
18
|
Xie X, Dong S, Hong K, Huang J, Xu X. Catalytic Asymmetric Difluoroalkylation Using In Situ Generated Difluoroenol Species as the Privileged Synthon. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307520. [PMID: 38318687 PMCID: PMC11005710 DOI: 10.1002/advs.202307520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Indexed: 02/07/2024]
Abstract
A robust and practical difluoroalkylation synthon, α,α-difluoroenol species, which generated in situ from trifluoromethyl diazo compounds and water in the presence of dirhodium complex, is disclosed. As compared to the presynthesized difluoroenoxysilane and in situ formed difluoroenolate under basic conditions, this difluoroenol intermediate displayed versatile reactivity, resulting in dramatically improved enantioselectivity under mild conditions. As demonstrated in catalytic asymmetric aldol reaction and Mannich reactions with ketones or imines in the presence of chiral organocatalysts, quinine-derived urea, and chiral phosphoric acid (CPA), respectively, this relay catalysis strategy provides an effective platform for applying asymmetric fluorination chemistry. Moreover, this method features a novel 1,2-difunctionalization process via installation of a carbonyl motif and an alkyl group on two vicinal carbons, which is a complementary protocol to the metal carbene gem-difunctionalization reaction.
Collapse
Affiliation(s)
- Xiongda Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Shanliang Dong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Kemiao Hong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Jingjing Huang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Xinfang Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
19
|
Xie X, Li J, Li W, Li Y, Guo K, Zhu Y, Chen K. Silver-Catalyzed Decarboxylative Remote Fluorination via a Zwitterion-Promoted 1,4-Heteroaryl Migration. Org Lett 2024; 26:2228-2232. [PMID: 38457330 DOI: 10.1021/acs.orglett.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
A silver-catalyzed decarboxylative remote fluorination via a zwitterion-promoted 1,4-heteroaryl migration has been developed. A variety of heteroaryl-tethered benzyl fluorides have been readily synthesized with good regioselectivity under mild conditions. The zwitterion of the substrate is suggested to accelerate the 1,4-heteroaryl migration, which determines the regioselectivity of this transformation.
Collapse
Affiliation(s)
- Xiaofei Xie
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Weinan Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Guo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Hebei Normal University for Nationalities, Chengde 067000, China
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Chen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
20
|
Yu J, Liu T, Sun W, Zhang Y. Electrochemical Decarboxylative Elimination of Carboxylic Acids to Alkenes. Org Lett 2023; 25:7816-7821. [PMID: 37870311 DOI: 10.1021/acs.orglett.3c02997] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
An electrochemical strategy for the decarboxylative elimination of carboxylic acids to alkenes at room temperature has been developed. This mild and oxidant-free method provides a green alternative to traditional thermal decarboxylation reactions. Structurally diverse aliphatic carboxylic acids, including biologically active drugs, underwent smooth conversion to the corresponding alkenes in good to excellent yields.
Collapse
Affiliation(s)
- Jiage Yu
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Teng Liu
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Wanhao Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100871, P. R. China
| | - Yunfei Zhang
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
21
|
Qi J, Xu J, Ang HT, Wang B, Gupta NK, Dubbaka SR, O'Neill P, Mao X, Lum Y, Wu J. Electrophotochemical Synthesis Facilitated Trifluoromethylation of Arenes Using Trifluoroacetic Acid. J Am Chem Soc 2023. [PMID: 37920956 DOI: 10.1021/jacs.3c10148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The trifluoromethyl (CF3) group is an essential moiety in medicinal chemistry due to its unique physicochemical properties. While trifluoroacetic acid (TFA) is an inexpensive and easily accessible reagent, its use as a source of CF3 is highly challenging due to its high oxidation potential. In this study, we present a novel electrophotochemical approach that enables the use of TFA as the CF3 source for the selective, catalyst- and oxidant-free trifluoromethylation of (hetero)arenes. Key to our approach is the selective oxidation of TFA over arenes, generating CF3 radicals through oxidative decarboxylation. This strategy enables the sustainable and environmentally-friendly synthesis of CF3-, CF2H- and perfluoroalkyl-containing (hetero)arenes with a broad range of substrates. Importantly, our results demonstrate significantly improved chemoselectivity by light irradiation, opening up new possibilities for the synthetic and medicinal applications of TFA as an ideal yet underutilized CF3 source.
Collapse
Affiliation(s)
- Jing Qi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jinhui Xu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Hwee Ting Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Bingbing Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Nipun Kumar Gupta
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, 2 Fusionopolis Way, 138634, Singapore
| | - Srinivas Reddy Dubbaka
- Pfizer Asia Manufacturing Pte Ltd., Manufacturing Technology Development Centre (MTDC), Synapse Building, #05-17, 3 Biopolis Drive, 138623, Singapore
| | - Patrick O'Neill
- Pfizer Ireland Pharmaceuticals, Process Development Centre, Ringaskiddy (PDC), Co-Cork 637578, Ireland
| | - Xianwen Mao
- Department of Materials Science and Engineering, National University of Singapore,9 Engineering Drive 1117575, Singapore
| | - Yanwei Lum
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117575, Singapore
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
22
|
Sumii Y, Shibata N. Current State of Microflow Trifluoromethylation Reactions. CHEM REC 2023; 23:e202300117. [PMID: 37309300 DOI: 10.1002/tcr.202300117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/25/2023] [Indexed: 06/14/2023]
Abstract
The trifluoromethyl group is a powerful structural motif in drugs and polymers; thus, developing trifluoromethylation reactions is an important area of research in organic chemistry. Over the past few decades, significant progress has been made in developing new methods for the trifluoromethylation of organic molecules, ranging from nucleophilic and electrophilic approaches to transition-metal catalysis, photocatalysis, and electrolytic reactions. While these reactions were initially developed in batch systems, more recent microflow versions are highly attractive for industrial applications owing to their scalability, safety, and time efficiency. In this review, we discuss the current state of microflow trifluoromethylation. Approaches for microflow trifluoromethylation based on different trifluoromethylation reagents are described, including continuous flow, flow photochemical, microfluidic electrochemical reactions, and large-scale microflow reactions.
Collapse
Affiliation(s)
- Yuji Sumii
- Department of Engineering, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya, 466-8555, Japan
| | - Norio Shibata
- Department of Engineering, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya, 466-8555, Japan
- Department of Nanopharmaceutical Sciences, Department of Engineering, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya, 466-8555, Japan
| |
Collapse
|
23
|
Kawamura S, Sodeoka M. Understanding and Controlling Fluorinated Diacyl Peroxides and Fluoroalkyl Radicals in Alkene Fluoroalkylations. CHEM REC 2023; 23:e202300202. [PMID: 37522613 DOI: 10.1002/tcr.202300202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/11/2023] [Indexed: 08/01/2023]
Abstract
The demand for practical methods for the synthesis of novel fluoroalkyl molecules is increasing owing to their diverse applications. Our group has achieved efficient difunctionalizing fluoroalkylations of alkenes using fluorinated carboxylic anhydrides as user-friendly fluoroalkyl sources. Fluorinated diacyl peroxide, prepared in situ from carboxylic anhydrides, enables the development of novel reactions when used as a radical fluoroalkylating reagent. In this account, we aim to provide an in-depth understanding of the structure, bonding, and reactivity of fluorinated diacyl peroxides and radicals as well as their control in fluoroalkylation reactions. In the first part of this account, the physical properties and reactivity of diacyl peroxides and fluoroalkyl radicals are described. In the subsequent part, we categorize the reactions into copper-catalyzed and metal-free methods utilizing the oxidizing properties of fluorinated diacyl peroxides. We also outline examples and mechanisms.
Collapse
Affiliation(s)
- Shintaro Kawamura
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mikiko Sodeoka
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
24
|
Liu Y, Sui JL, Yu WQ, Xiong BQ, Tang KW, Zhong LJ. Visible-Light-Promoted Decarboxylative Alkylation/Cyclization of Vinylcycloalkanes. J Org Chem 2023. [PMID: 37339016 DOI: 10.1021/acs.joc.3c00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
An efficient strategy for visible-light-promoted decarboxylative alkylation of vinylcyclopropanes with alkyl N-(acyloxy)phthalimide esters through the dual C-C bond and single N-O bond cleavage, employing triphenylphosphine and lithium iodide as the photoredox system to synthesize 2-alkylated 3,4-dihydronaphthalenes, has been established. This alkylation/cyclization involves a radical process and undergoes a sequence of N-(acyloxy)phthalimide ester single-electron reduction, N-O bond cleavage, decarboxylative, alkyl radical addition, C-C bond cleavage, and intramolecular cyclization. Moreover, using the photocatalyst Na2-Eosin Y instead of triphenylphosphine and lithium iodide, the vinyl transfer products are acquired when vinylcyclobutanes or vinylcyclopentanes are utilized as alkyl radical receptors.
Collapse
Affiliation(s)
- Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jia-Li Sui
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Wen-Qin Yu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
25
|
Gan L, Xu T, Tan Q, Cen M, Wang L, Zhao J, Liu K, Liu L, Chen WH, Han LB, Nycz JE, Chen T. Metal-free highly chemo-selective bisphosphorylation and deoxyphosphorylation of carboxylic acids. Chem Sci 2023; 14:5519-5526. [PMID: 37234892 PMCID: PMC10207878 DOI: 10.1039/d3sc01148h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Carboxylic acids are readily available in both the natural and synthetic world. Their direct utilization for preparing organophosphorus compounds would greatly benefit the development of organophosphorus chemistry. In this manuscript, we describe a novel and practical phosphorylating reaction under transition metal-free reaction conditions that can selectively convert carboxylic acids into the P-C-O-P motif-containing compounds through bisphosphorylation, and the benzyl phosphorus compounds through deoxyphosphorylation. This strategy provides a new route for carboxylic acid conversion as the alkyl source, enabling highly efficient and practical synthesis of the corresponding value-added organophosphorus compounds with high chemo-selectivity and wide substrate scope, including the late modification of complex APIs (active pharmaceutical ingredients). Moreover, this reaction also indicates a new strategy for converting carboxylic acids into alkenes by coupling this work and the subsequent WHE reaction with ketones and aldehydes. We anticipate that this new mode of transforming carboxylic acids will find wide application in chemical synthesis.
Collapse
Affiliation(s)
- Liguang Gan
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 China
| | - Tianhao Xu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 China
| | - Qihang Tan
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 China
| | - Mengjie Cen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 China
| | - Lingling Wang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 China
| | - Jingwei Zhao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 China
| | - Kuang Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 China
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 China
| | - Wen-Hao Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 China
| | - Li-Biao Han
- Zhejiang Yangfan New Materials Co. Ltd Shangyu 312369 Zhejiang China
| | - Jacek E Nycz
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice ul. Szkolna 9 PL-40007 Katowice Poland
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 China
| |
Collapse
|
26
|
Abstract
Sulfoxides are ubiquitous in both naturally and synthetically bioactive molecules. We report herein a redox-neutral and mild approach for radical sulfinylation of redox-active esters via dual photoredox and copper catalysis, furnishing a series of functionalized sulfoxides. The reaction could accommodate a range of tertiary, secondary, and primary carboxylic acids, as well as exhibit wide functional group compatibility. The chemistry features a high degree of practicality, is scalable, and allows late-stage modification of bioactive pharmaceuticals.
Collapse
Affiliation(s)
- Shi-Hui He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Guang-Le Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Xing-Yu Gong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Gui-Zhen Ao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
- Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People's Republic of China
| |
Collapse
|
27
|
Sancheti SP, Mondal DJ, Patil NT. Fluorination of α-Imino Gold Carbenes to Access C 3-Fluorinated Aza-Heterocycles. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Shashank P. Sancheti
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Dibya Jyoti Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Nitin T. Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| |
Collapse
|
28
|
Ramkumar N, Baumane L, Zacs D, Veliks J. Merging Copper(I) Photoredox Catalysis and Iodine(III) Chemistry for the Oxy-monofluoromethylation of Alkenes. Angew Chem Int Ed Engl 2023; 62:e202219027. [PMID: 36692216 DOI: 10.1002/anie.202219027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/25/2023]
Abstract
A simple process for the oxy-monofluoromethylation of alkenes is described. In combination with visible-light copper(I) photoredox catalysis, an easily accessible iodine(III) reagent containing monofluoroacetoxy ligands serves as a powerful source of a monofluoromethyl (CH2 F) radical, enabling the step economical synthesis of γ-fluoro-acetates from a broad range of olefinic substrates under mild conditions. Applications to late-stage diversification of alkenes derived from complex molecules, amino acids and the synthesis of fluoromethylated heterocycles are also demonstrated.
Collapse
Affiliation(s)
- Nagarajan Ramkumar
- Latvian Institute of Organic Synthesis, Aizkraukles iela 21, LV-1006, Riga, Latvia
| | - Larisa Baumane
- Latvian Institute of Organic Synthesis, Aizkraukles iela 21, LV-1006, Riga, Latvia
| | - Dzintars Zacs
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes iela 3, LV-1076, Riga, Latvia
| | - Janis Veliks
- Latvian Institute of Organic Synthesis, Aizkraukles iela 21, LV-1006, Riga, Latvia
| |
Collapse
|
29
|
Tang L, Lv G, Cheng R, Yang F, Zhou Q. Three-Component Perfluoroalkylvinylation of Alkenes Enabled by Dual DBU/Fe Catalysis. Chemistry 2023; 29:e202203332. [PMID: 36351885 DOI: 10.1002/chem.202203332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/11/2022]
Abstract
Herein, a simple and efficient strategy that involves dual 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)/iron-catalyzed alkene perfluoroalkylvinylation by using perfluoroalkyl iodides and 2-aminonaphthalene-1,4-diones as coupling partners is demonstrated. In terms of the developed catalytic system, various styrenes and aliphatic alkenes are well-tolerated, leading to the accurate preparation of perfluoroalkyl-containing 2-aminonaphthalene-1,4-diones in excellent regioselectivity. Moreover, the protocol can be readily applied in late-stage modifications of natural products and pharmaceuticals. The title reactions are featured by easily accessible and inexpensive catalysts and substrates, broad substrate applicability, and mild reaction conditions. Mechanistic investigations reveal a tandem C-I cleavable alkylation and C-C vinylation enabled by cooperative DBU/iron catalysis.
Collapse
Affiliation(s)
- Lin Tang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China.,Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang, 464000, P.R. China
| | - Ge Lv
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China
| | - Ruimin Cheng
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China
| | - Fang Yang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P.R. China
| |
Collapse
|
30
|
Chen HC, Liu CY, Angamuthu V, Chen WC, Wen CS, Hou DR. Synthesis of Optically Active Organofluorides by Ring Opening of Oxazolidinone-Fused Aziridines. Org Lett 2023; 25:190-194. [PMID: 36576235 DOI: 10.1021/acs.orglett.2c04042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A general method for synthesizing optically active, primary, secondary, and tertiary organofluorides was developed. This chiral pool synthesis utilized the skeleton of arabinose to generate diastereomerically pure 2-oxazolidinone-fused aziridines, which underwent ring opening with a fluoride anion. The adducts, polyoxygenated organofluorides, were useful precursors to various fluorinated compounds, such as fluorinated amino acids.
Collapse
Affiliation(s)
- Hung-Che Chen
- Department of Chemistry, National Central University, No. 300 Jhong-Da Road, Jhong-li, Taoyuan, Taiwan 32001
| | - Chi-Yun Liu
- Department of Chemistry, National Central University, No. 300 Jhong-Da Road, Jhong-li, Taoyuan, Taiwan 32001
| | - Venkatachalam Angamuthu
- Department of Chemistry, National Central University, No. 300 Jhong-Da Road, Jhong-li, Taoyuan, Taiwan 32001
| | - Wei-Chen Chen
- Department of Chemistry, National Central University, No. 300 Jhong-Da Road, Jhong-li, Taoyuan, Taiwan 32001
| | - Chi-Sheng Wen
- Department of Chemistry, National Central University, No. 300 Jhong-Da Road, Jhong-li, Taoyuan, Taiwan 32001
| | - Duen-Ren Hou
- Department of Chemistry, National Central University, No. 300 Jhong-Da Road, Jhong-li, Taoyuan, Taiwan 32001
| |
Collapse
|
31
|
Bao M, Lopez K, Gurung R, Arman H, Doyle MP. Stereoretentive Catalytic [3+2]-Cycloaddition/Rearrangement/Decarboxylation Reactions of Indoles with Non-Racemic Donor–Acceptor Cyclopropanes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ming Bao
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, Texas 78249, United States
| | - Karlos Lopez
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, Texas 78249, United States
| | - Raj Gurung
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, Texas 78249, United States
| | - Hadi Arman
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, Texas 78249, United States
| | - Michael P. Doyle
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, Texas 78249, United States
| |
Collapse
|
32
|
Sindhe H, Saiyed N, Kamble A, Mounika Reddy M, Singh A, Sharma S. Catalytic and Chemodivergent Synthesis of 1-Substituted 9 H-Pyrrolo[1,2- a]indoles via Annulation of β-CF 3 Enones with 3-Substituted Indoles. J Org Chem 2023; 88:230-244. [PMID: 36503232 DOI: 10.1021/acs.joc.2c02240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemodivergent reactions are more advantageous in organic synthesis that yield diversely functionalized scaffolds from common starting materials. Herein, we report an efficient metal-free chemodivergent protocol for the synthesis of 1-substituted 9H-pyrrolo[1,2-a]indole derivatives in the presence of catalytic amounts of Lewis acid/Brønsted acid conditions using 3-substituted indoles and β-trifluoromethyl-α,β-unsaturated ketones. Fine-tuning of the catalyst and solvent system in the reaction conditions deliver the trifluoromethyl, trifluoroethylcarboxylate, or carboxylic acid substituents on the C1-position of 9H-pyrrolo[1,2-a]indole derivatives in situ. It is postulated that the solvent and LA/BA catalyst interaction was found to be crucial for the catalytic C-F activation in these transformations.
Collapse
Affiliation(s)
- Haritha Sindhe
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Nehanaz Saiyed
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Akshay Kamble
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Malladi Mounika Reddy
- Department of Natural Products, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Amardeep Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Satyasheel Sharma
- Department of Natural Products, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
33
|
Yu N, Huang J, Leng F. Direct fluoroalkylthiolation of indoles with iodofluoroethane enabled by Na 2S 2O 4. RSC Adv 2022; 13:730-733. [PMID: 36683774 PMCID: PMC9808600 DOI: 10.1039/d2ra07430c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/12/2022] [Indexed: 01/04/2023] Open
Abstract
In this paper, we report an efficient approach for the direct fluoroalkylthiolation of indoles with iodofluoroethane in the presence of Na2S2O4. In this work, we employed readily available iodofluoroethane and Na2S2O4 as fluoroalkylthiolation reagents, featuring mild conditions and a wide range of indole substrates. In addition, fluoroalkylthiolated 2,3'-biindole derivatives can also be prepared by this method.
Collapse
Affiliation(s)
- Nianhua Yu
- School of Pharmaceutical Sciences, Capital Medical UniversityBeijing 100069P. R. China
| | - Jianjian Huang
- School of Pharmaceutical Sciences, Capital Medical UniversityBeijing 100069P. R. China
| | - Faqiang Leng
- School of Pharmaceutical Sciences, Capital Medical UniversityBeijing 100069P. R. China
| |
Collapse
|
34
|
Wang L, Chen Z, Fan G, Liu X, Liu P. Organophotoredox and Hydrogen Atom Transfer Cocatalyzed C-H Alkylation of Quinoxalin-2(1 H)-ones with Aldehydes, Amides, Alcohols, Ethers, or Cycloalkanes. J Org Chem 2022; 87:14580-14587. [PMID: 36206555 DOI: 10.1021/acs.joc.2c01967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Described is a mild method that merges organophotoredox catalysis with hydrogen atom transfer to enable C-H alkylation of quinoxalin-2(1H)-ones with feedstock aldehydes, amides, alcohols, ethers, or cycloalkanes. This reaction occurred under environmentally benign and external oxidant-free reaction conditions, providing a general and sustainable access to various C3-alkylated quinoxalinone derivatives with broad substituent diversity and good functional group compatibility.
Collapse
Affiliation(s)
- Liling Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Zhaoxing Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Guohua Fan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Xiaozu Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Peijun Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
35
|
Tang L, Lv G, Fu Y, Chang XP, Cheng R, Wang L, Zhou Q. Bifunctional 1,8-Diazabicyclo[5.4.0]undec-7-ene for Visible Light-Induced Heck-Type Perfluoroalkylation of Alkenes. J Org Chem 2022; 87:14763-14777. [DOI: 10.1021/acs.joc.2c02093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lin Tang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
- China Province Key Laboratory of Utilization of Non-metallic Mineral in the South of Henan, Xinyang, Henan 464000, China
| | - Ge Lv
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Ya Fu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Xue-Ping Chang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Ruimin Cheng
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Lingling Wang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| |
Collapse
|
36
|
He YY, Zhu MS, Gao Y, Hu XQ. Access to quinolinones via DMAP-catalysed cascade reaction of 2-substituted benzoic acids with organic azides. Chem Commun (Camb) 2022; 58:11272-11275. [PMID: 36112125 DOI: 10.1039/d2cc04406d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report a DMAP-catalysed Curtius rearrangement and intramolecular cyclisation cascade reaction of 2-substituted aryl carboxylic acids with organic azides for the first time. This protocol features simple operation, broad scope and metal-free conditions, furnishing a broad spectrum of biologically attractive heterocycles. The synthetic virtue of this reaction was demonstrated by gram-scale synthesis and applicability toward drug-like molecules.
Collapse
Affiliation(s)
- Yuan-Yuan He
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China.
| | - Mei-Shan Zhu
- Hubei Jinghong Chemical Co., Ltd, No. 32, Tianshun Avenue, Yujiahu Industrial Park, Xiangyang, 441048, China
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
37
|
Liu X, Shi F, Jin C, Liu B, Lei M, Tan J. Stereospecific synthesis of monofluoroalkenes and their deuterated analogues via Ag-catalyzed decarboxylation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Regiocontrolled Rh(III)-catalyzed C-C coupling/C-N cyclization mediated by distinctive 1,2-migratory insertion of gem-difluoromethylene allenes: reaction development and mechanistic insight. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Wang L, Yu J, Duan Z, Jin J, Zhang Y. Cobalt-catalyzed synthesis of aryl ketones and aldehydes from redox-active esters. Org Biomol Chem 2022; 20:6554-6557. [PMID: 35929778 DOI: 10.1039/d2ob01275h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cobalt-catalyzed decarboxylative oxidation of benzylic redox-active esters is described. This protocol efficiently converts secondary or primary aliphatic carboxylic acids into aromatic ketones or aldehydes. A wide range of substrates selectively reacted in good to excellent yields with broad functional group tolerance. Notably, various biologically active molecules could also work well, which indicated the synthetic application of such a methodology.
Collapse
Affiliation(s)
- Lan Wang
- Department of Chemistry, China Agricultural University, Beijing 100193, China.
| | - Jiage Yu
- Department of Chemistry, China Agricultural University, Beijing 100193, China.
| | - Zeqing Duan
- Department of Chemistry, China Agricultural University, Beijing 100193, China.
| | - Jingrong Jin
- Department of Chemistry, China Agricultural University, Beijing 100193, China.
| | - Yunfei Zhang
- Department of Chemistry, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
40
|
Zhang Y, Qian J, Wang M, Huang Y, Hu P. Visible-Light-Induced Decarboxylative Fluorination of Aliphatic Carboxylic Acids Catalyzed by Iron. Org Lett 2022; 24:5972-5976. [PMID: 35950813 DOI: 10.1021/acs.orglett.2c02242] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An efficient and inexpensive protocol for the direct decarboxylative fluorination of aliphatic carboxylic acids catalyzed with iron salts under visible light is presented. This new method allows the facile fluorination of a diverse array of carboxylic acids even on gram scale using a Schlenk flask without loss of efficiency. Mechanistic studies suggest that the photoinduced ligand-to-metal charge transfer process enables the generation of the key step to generate the carboxyl radical intermediates.
Collapse
Affiliation(s)
- Yu Zhang
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiahui Qian
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Miao Wang
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yahao Huang
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Peng Hu
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
41
|
Madani A, Anghileri L, Heydenreich M, Möller HM, Pieber B. Benzylic Fluorination Induced by a Charge-Transfer Complex with a Solvent-Dependent Selectivity Switch. Org Lett 2022; 24:5376-5380. [PMID: 35848228 PMCID: PMC9344467 DOI: 10.1021/acs.orglett.2c02050] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
![]()
We present a divergent strategy for the fluorination
of phenylacetic
acid derivatives that is induced by a charge-transfer complex between
Selectfluor and 4-(dimethylamino)pyridine. A comprehensive investigation
of the conditions revealed a critical role of the solvent on the reaction
outcome. In the presence of water, decarboxylative fluorination through
a single-electron oxidation is dominant. Non-aqueous conditions result
in the clean formation of α-fluoro-α-arylcarboxylic acids.
Collapse
Affiliation(s)
- Amiera Madani
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Lucia Anghileri
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Matthias Heydenreich
- Institute of Chemistry/Analytical Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Heiko M Möller
- Institute of Chemistry/Analytical Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Bartholomäus Pieber
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
42
|
Guo C, Han X, Feng Y, Liu Z, Li Y, Liu H, Zhang L, Dong Y, Li X. Straightforward Synthesis of Alkyl Fluorides via Visible-Light-Induced Hydromono- and Difluoroalkylations of Alkenes with α-Fluoro Carboxylic Acids. J Org Chem 2022; 87:9232-9241. [PMID: 35748751 DOI: 10.1021/acs.joc.2c00965] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We herein report the first visible-light-induced hydromono- and difluoroalkylations of alkenes with inexpensive and easily accessible α-fluoro carboxylic acids. This metal-free protocol exhibits mild conditions, high efficiency, and excellent functional-group tolerance, providing a straightforward approach to mono- and difluoroalkylated alkanes. Moreover, the fluorine effect on the hydrofluoroalkylation reaction is discussed in detail.
Collapse
Affiliation(s)
- Chunfang Guo
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255000, P. R. China.,Shandong Vocational College of Light Industry, Zhoucun Mishan Road, Zibo 255300, P. R. China
| | - Xuliang Han
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255000, P. R. China
| | - Yu Feng
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255000, P. R. China
| | - Zhaolong Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255000, P. R. China
| | - Yueyun Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255000, P. R. China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255000, P. R. China
| | - Lizhi Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255000, P. R. China
| | - Yunhui Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255000, P. R. China
| | - Xinjin Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255000, P. R. China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
43
|
Li P, Yang X, Liu J, Zhang Y, Wang L, Gao Y. Photo‐driven Radical Addition/Cyclization of Biaryl Vinyl Ketones with CF3SO2Na and ArCF2CO2K without an External Photocatalyst. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pinhua Li
- Huaibei Normal University Department of Chemistry Dongshan Road 235000 Huaibei CHINA
| | - Xingyu Yang
- Huaibei Normal University Department of Chemistry Huaibei CHINA
| | - Jie Liu
- Huaibei Normal University Department of Chemistry Huaibei CHINA
| | - Yicheng Zhang
- Huaibei Normal University Department of Chemistry Huaibei CHINA
| | - Lei Wang
- Huaibei Normal University Department of Chemistry Huaibei CHINA
| | - Yanhui Gao
- Huaibei Normal University Department of chemistry CHINA
| |
Collapse
|
44
|
Yan G. Photochemical and Electrochemical Strategies for Hydrodefluorination of Fluorinated Organic Compounds. Chemistry 2022; 28:e202200231. [PMID: 35301767 DOI: 10.1002/chem.202200231] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Indexed: 12/20/2022]
Abstract
Hydrodefluorination (HDF) is a very important fundamental transformation for conversion of the C-F bond into the C-H bond in organic synthesis. In the past decade, much progress has been achieved with HDF through the utility of low-valent metals, transition-metal complexes and main-group Lewis acids. Recently, novel methods have been introduced for this purpose through photo- and electrochemical pathways, which are of great significance, due to their considerable environmental and economical advantages. This Review highlights the HDF of fluorinated organic compounds (FOCs) through photo- and electrochemical strategies, along with mechanistic insights.
Collapse
Affiliation(s)
- Guobing Yan
- Department of Chemistry, College of Jiyang, Zhejiang A&F University, Zhuji, Zhejiang, 311800, P. R. China
| |
Collapse
|
45
|
Visible-light-induced direct hydrodifluoromethylation of alkenes with difluoromethyltriphenylphosphonium iodide salt. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Pal S, Chandra G, Patel S, Singh S. Fluorinated Nucleosides: Synthesis, Modulation in Conformation and Therapeutic Application. CHEM REC 2022; 22:e202100335. [PMID: 35253973 DOI: 10.1002/tcr.202100335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/22/2022] [Indexed: 12/17/2022]
Abstract
Over the last twenty years, fluorination on nucleoside has established itself as the most promising tool to use to get biologically active compounds that could sustain the clinical trial by affecting the pharmacodynamics and pharmacokinetic properties. Due to fluorine's inherent unique properties and its judicious introduction into the molecule, makes the corresponding nucleoside metabolically very stable, lipophilic, and opens a new site of intermolecular binding. Fluorination on various nucleosides has been extensively studied as a result, a series of fluorinated nucleosides come up for different therapeutic uses which are either approved by the FDA or under the advanced stage of the clinical trial. Here in this review, we are summarizing the latest development in the chemistry of fluorination on nucleoside that led to varieties of new analogs like carbocyclic, acyclic, and conformationally biased nucleoside and their biological properties, the influence of fluorine on conformation, oligonucleotide stability, and their use in therapeutics.
Collapse
Affiliation(s)
- Shantanu Pal
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar Argul, Odisha, India, 752050
| | - Girish Chandra
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar, India, 824236
| | - Samridhi Patel
- Department of Chemistry, School of Physical and Chemical Sciences, Central University of South Bihar, SH-7, Gaya Panchanpur Road, Gaya, Bihar, India, 824236
| | - Sakshi Singh
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar Argul, Odisha, India, 752050
| |
Collapse
|
47
|
Shao N, Monnier V, Charles L, Rodriguez J, Bressy C, Quintard A. Multi‐catalytic Enantioselective Synthesis of 1,3‐Diols Containing a Tetrasubstituted Fluorinated Stereocenter. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Na Shao
- Aix Marseille Univ, CNRS, Centrale Marseille iSm2 Marseille France
| | - Valérie Monnier
- Aix Marseille Univ, CNRS, Centrale Marseille FSCM Marseille France
| | | | - Jean Rodriguez
- Aix Marseille Univ, CNRS, Centrale Marseille iSm2 Marseille France
| | - Cyril Bressy
- Aix Marseille Univ, CNRS, Centrale Marseille iSm2 Marseille France
| | - Adrien Quintard
- Aix Marseille Univ, CNRS, Centrale Marseille iSm2 Marseille France
| |
Collapse
|
48
|
Butcher TW, Amberg WM, Hartwig JF. Transition‐Metal‐Catalyzed Monofluoroalkylation: Strategies for the Synthesis of Alkyl Fluorides by C−C Bond Formation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Trevor W. Butcher
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | - Willi M. Amberg
- Department of Chemistry and Applied Biosciences Laboratory of Organic Chemistry ETH Zϋrich 8093 Zϋrich Switzerland
| | - John F. Hartwig
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| |
Collapse
|
49
|
Guo C, Liu Z, Li X, Han X, Li Y, Liu H, Zhang L, Li X, Dong Y. Silver-catalyzed monofluoroalkylation of heteroarenes with α-fluorocarboxylic acids: an insight into the solvent effect. Chem Commun (Camb) 2022; 58:1147-1150. [PMID: 34981099 DOI: 10.1039/d1cc06466e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mild and efficient method for direct C-H monofluoroalkylation of heteroarenes with easily accessible and inexpensive α-fluorocarboxylic acids has been developed. This silver-catalyzed reaction affords mono- and bis-monofluoroalkylated heteroarenes in good yields under mild conditions, and the solvent effect on the monofluoroalkylation reaction is discussed in detail.
Collapse
Affiliation(s)
- Chunfang Guo
- College of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, China. .,Shandong Vocational College of Light Industry, Zhoucun Mishan Road, Zibo, 255300, China
| | - Zhaolong Liu
- College of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, China.
| | - Xiangye Li
- College of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, China.
| | - Xuliang Han
- College of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, China.
| | - Yueyun Li
- College of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, China.
| | - Hui Liu
- College of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, China.
| | - Lizhi Zhang
- College of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, China.
| | - Xinjin Li
- College of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, China. .,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yunhui Dong
- College of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo, 255000, China.
| |
Collapse
|
50
|
Yan S, Yu W, Zhang J, Fan H, Lu Z, Zhang Z, Wang T. Access to gem-Difluoroalkenes via Organic Photoredox-Catalyzed gem-Difluoroallylation of Alkyl Iodides. J Org Chem 2022; 87:1574-1584. [PMID: 34964644 DOI: 10.1021/acs.joc.1c02659] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An organic photoredox-catalyzed gem-difluoroallylation of α-trifluoromethyl alkenes with alkyl iodides via C-F bond cleavage for the synthesis of gem-difluoroalkene derivatives is reported. This transition-metal-free transformation utilized a readily available organic dye 4CzIPN as the sole photocatalyst and employed a common chemical N,N,N',N'-tetramethylethylenediamine as the radical activator of alkyl iodides via halogen-atom transfer. In addition, a variety of iodides, including primary, secondary, and tertiary alkyl iodides, were tolerated and provided good to high yields.
Collapse
Affiliation(s)
- Songlin Yan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Weijie Yu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Jianye Zhang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Hongmei Fan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Zhifeng Lu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Zhenming Zhang
- Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| | - Tao Wang
- National Research Center for Carbohydrate Synthesis and Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P.R. China
| |
Collapse
|