1
|
Xu R, Yu H, Ren J, Zhang W, Kang Y, Wang Z, Feng F, Xia X, Liu JZ, Peng L, Zhang X, Pan B. Regulate Ion Transport in Subnanochannel Membranes by Ion-Pairing. J Am Chem Soc 2025; 147:17144-17151. [PMID: 40329776 DOI: 10.1021/jacs.5c02722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
The ability of biological ion channels to respond to environmental stimuli, regulate ion permeation rates, and selectively transport specific ions is essential for sustaining physiological functions and holds immense potential for various practical applications. In this study, we report a highly selective ion separation membrane capable of responding to ionic stimuli, thereby regulating the permeation rate of the target ions. This membrane is constructed from two-dimensional MXene nanosheets functionalized with γ-poly(glutamic acid) (γ-PGA) molecules. Its biomimetic ion channel structure provides spatial confinements, as well as ion recognition and response sites. Remarkably, the membrane demonstrates the ability to respond to stimulus ions, achieving regulation of target ion permeation rates by over 2 orders of magnitude and achieving a K+/Mg2+ selectivity exceeding 10.3 Unlike traditional nanochannel membranes, where ion transport is predominantly driven by ion-channel interactions, this membrane operates through an ion-ion interaction-dominated mechanism. The introduction of stimulus ions dynamically alters ion-pair formation within the subnanochannels, thereby modulating the permeation rates of target ions. This study provides a fresh perspective on ion transport mechanisms in nanoconfined environments, reflecting conditions closer to those in real-world systems. It underscores the pivotal role of ion-ion interactions in regulating ion transport and offers valuable insights into the design of next-generation ion separation membranes with tailored responsiveness.
Collapse
Affiliation(s)
- Rongming Xu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Hang Yu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Jiachun Ren
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Weiming Zhang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Yuan Kang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Zhuyuan Wang
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Fan Feng
- Department of Mechanical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Xiaoli Xia
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jefferson Zhe Liu
- Department of Mechanical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Luming Peng
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiwang Zhang
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Bingcai Pan
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Zhao J, Fan H, Zhong G, Wang C, Li Z, Bi J, Xie J, Chen T, Deng J, Li J, Tan B. Improving the ion sieving performance of MOF polycrystalline membranes based on interface modification. Dalton Trans 2025; 54:7801-7809. [PMID: 40261047 DOI: 10.1039/d5dt00724k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Metal-organic framework (MOF) membranes exhibit promising potential for high-precision molecule and ion sieving due to their uniform and tunable pore structures. Nevertheless, it remains a challenge to address interfacial compatibility to obtain a high-performance MOF membrane. This is because there is a weak interfacial interaction between the MOF and the substrate, which leads to non-selective areas. This work presents an interface-coating method to facilitate dense nucleation and rapid growth of MOF crystals on the substrate towards reinforcing interaction and eliminating defects. Polydopamine (PDA) and β-cyclodextrin (β-CD) were co-assembled on polyvinylidene fluoride (PVDF) substrates to modify the surface chemistry and enhance interfacial compatibility, thereby facilitating the dense growth of ZIF-8. The ZIF-8/PVDF membranes demonstrated an excellent K+ permeance of 0.33 mol m-2 h-1 and a K+/Mg2+ selectivity of 30.16. The simulation results indicate that the channel of Mg2+ through ZIF-8 must overcome a greater transport energy barrier than that of K+, resulting in a higher selectivity of K+/Mg2+.
Collapse
Affiliation(s)
- Jianfei Zhao
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Haoran Fan
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Gaofeng Zhong
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Chenfeng Wang
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Zhan Li
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Jintong Bi
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Jingle Xie
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Tongdan Chen
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Juanli Deng
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Jiang Li
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Bojun Tan
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China.
| |
Collapse
|
3
|
Li X, Lu B, He J, Fan X, Zhai J. V-ATPase-Inspired Artificially Rectified Nanochannel Ion Pumps Using a TpPa-SO 3/TiO 2-C 3N 4 Membrane. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409834. [PMID: 40103430 DOI: 10.1002/smll.202409834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/22/2025] [Indexed: 03/20/2025]
Abstract
The cation transport pump is a critical process in the realm of organismal energy utilization and acquisition. In this study, a TpPa-SO3/TiO2-C3N4 nanochannel membrane is fabricated to emulate the energy-consuming ion pump mechanism of V-ATPase. The channels exhibit ion rectification properties, excellent cation selectivity due to negatively charged TpPa-SO3 groups, while the TiO2-C3N4 heterojunction acted as the light-harnessing component for counter-gradient ion transport, enabling light-driven cation pumping through their synergistic effect. Asymmetric visible light irradiation on one side of the TpPa-SO3/TiO2-C3N4 nanochannel membrane generates a built-in electric field across the membrane due to the intrinsic photoelectronic properties of TiO2-C3N4, driving cation transport against the concentration gradients and demonstrating an ion-pumping effect. Impressively, the nanochannels can utilize external light energy to generate a chemical potential gradient, enabling an entropy reduction process similar to reverse concentration gradient transport in living organisms. These distinctive ion rectification and pumping properties offer great potential for advancements in ion circuits and energy conversion systems, expanding the frontiers of scientific exploration.
Collapse
Affiliation(s)
- Xuejiang Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Bingxin Lu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Jianwei He
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Xia Fan
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Jin Zhai
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
4
|
Kang X, Yu M, Xu Y, Cao Z, Balme S, Ma T. Nanochannel functionalization using POFs: Progress and prospects. Adv Colloid Interface Sci 2025; 342:103533. [PMID: 40318384 DOI: 10.1016/j.cis.2025.103533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
Biomimetic nanochannels, inspired by natural ion channels found in living organisms, are synthetic systems designed to replicate the highly selective and efficient ion/molecule transport processes essential for various biological functions. These artificial channels mimic the structural and functional properties of their biological counterparts, offering precise control over ion and molecular transport. Porous organic framework materials (POFs), including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), have emerged as promising materials for functionalizing nanochannels due to their unique structures and exceptional properties. This functionalization strategy not only enhances the performance of synthetic nanochannels but also broadens their application potential across various fields. This review comprehensively examines the recent progress in the preparation and application of POFs stereoscopic-functionalized solid nanochannels. Special emphasis is placed on their practical applications, including proton conduction, ion-selective membranes, photo-responsive materials, sensing and detection, chiral separation, and catalysis. Finally, the future development prospects and challenges in this research area are discussed, highlighting opportunities for advancing the design and application of biomimetic nanochannels.
Collapse
Affiliation(s)
- Xuan Kang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Mingyi Yu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yuan Xu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Sebastien Balme
- Institut Européen des Membranes, UMR5635 UM ENSM CNRS, Place Eugène Bataillon, 34095 Montpellier, Cedex 5, France
| | - Tianji Ma
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| |
Collapse
|
5
|
Han J, Lv B, Wang J, Lei L, Liu Y, Li S, Wang K, Liu J, Liu Z, Wang L. Light-boosted simultaneous acid and salinity gradient energy recovery from wastewater via a nanochannel membrane with multi-objective ion separation ability. WATER RESEARCH 2025; 281:123670. [PMID: 40280006 DOI: 10.1016/j.watres.2025.123670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/25/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
The discharge of industrial wastewater has surged to unprecedented levels due to rapid industrialization. Developing effective strategies for the concurrent recovery of resources and energy from wastewater presents a promising pathway toward sustainable development. In this study, a composite nanochannel membrane with light-boosted ion separation capabilities was designed for the concurrent recovery of acid and salinity gradient energy from metallurgical industrial wastewater. The membrane demonstrated remarkable photothermal conversion efficiency, utilizing the synergy between localized surface plasmon resonance of Ti3C2Tx component and molecular vibration of Cu-TCPP component to achieve rapid temperature rise from room temperature to 139.5 °C within 60 s under illumination. This photothermal effect created an effective temperature gradient within nanochannels, enhancing the separation efficiency for both H⁺/Cl⁻ and H⁺/Fe2+ pairs by amplifying the differences in diffusion energy barriers. When applied to acidic wastewater, the membrane achieved an outstanding salinity gradient energy conversion power density of 7.31 W/m2 over an expanded testing area, along with a H+/Fe2+ selectivity of 64.18 for acid recovery. Both energy harvesting and acid recovery performance surpass those of state-of-the-art membranes under identical testing conditions. This work presents a critical strategy for energy conversion and resource recovery from wastewater, contributing to sustainable solutions for energy, environmental, and resource challenges.
Collapse
Affiliation(s)
- Jinming Han
- Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| | - Bohao Lv
- Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| | - Jin Wang
- Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China.
| | - Lei Lei
- Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| | - Yanzheng Liu
- Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| | - Shangzhen Li
- Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| | - Kexin Wang
- Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| | - Jihao Liu
- Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| | - Zhiyan Liu
- Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China
| | - Lei Wang
- Key Laboratory of Membrane Separation of Shaanxi Province, School of Environmental & Municipal Engineering, Research Institute of Membrane Separation Technology of Shaanxi Province, Xi'an University of Architecture and Technology, No. 13 Yan Ta Road, Xi'an 710000, China.
| |
Collapse
|
6
|
Fu Q, Ma Z, Gao J. Biomimetic ion channels with subnanometer sizes for ion sieving: a mini-review. NANOSCALE 2025; 17:9021-9039. [PMID: 40127218 DOI: 10.1039/d5nr00758e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
The remarkable ion selectivity of biological systems has inspired the development of artificial ion channels with Ångström-scale precision, expanding their potential applications in ion separation, energy conversion, and water purification. This mini-review systematically examines fundamental ion-sieving mechanisms operating at the subnanoscale, highlighting advanced fabrication strategies involving synthetic ion channels on lipid bilayers and solid-state ion channels. We further explore membrane material innovations spanning zero-dimensional nanopores to three-dimensional crystalline frameworks, emphasizing structure-function relationships in channel design. The discussion concludes with critical perspectives on scalability challenges and future research directions, outlining pathways toward next-generation sustainable ion sieving technologies.
Collapse
Affiliation(s)
- Qianqian Fu
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China.
| | - Zhaoyu Ma
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China.
| | - Jun Gao
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China.
- Shandong Energy Institute, Qingdao 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| |
Collapse
|
7
|
Liu Y, Wang Y, Sengupta B, Kazi OA, Martinson ABF, Elam JW, Darling SB. Pillared Laminar Vermiculite Membranes with Tunable Monovalent and Multivalent Ion Selectivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417994. [PMID: 40026056 PMCID: PMC11983263 DOI: 10.1002/adma.202417994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/21/2025] [Indexed: 03/04/2025]
Abstract
Effective membrane separation of Li+ from Na+ and Mg2+ is crucial for lithium extraction from water yet challenging for conventional polymeric membranes. Two dimensional (2D) membranes with ordered laminar structures and tunable physicochemical properties offer distinctive ion-sieving capabilities promising for lithium extraction. Recently, phyllosilicates are introduced as abundant and cost-effective source materials for such membranes. However, their water instability and low inherent ion transport selectivity hinder practical applications. Herein, a new class of laminar membranes with excellent stability and tunable ion sieving is reported by incorporating inorganic alumina pillars into vermiculite interlayers. Crosslinking vermiculite flakes with alumina pillars significantly strengthens interlamellar interactions, resulting in robust water stability. Doping of Na+ before the pillaring process reverses the membrane's surface charge, substantially boosting Li+ separation from multivalent cations via electrostatic interactions. Lithium extraction is often complicated by the presence of co-existing monovalent cations (e.g., Na+) at higher concentrations. Here, by introducing excess Na+ into the membrane after the pillaring process, the separation of Li+ from monovalent cations is enhanced through steric effects. This work realizes both monovalent/multivalent and monovalent/monovalent selective ion sieving with the same membrane platform. A separation mechanism is proposed based on Donnan exclusion and size exclusion, providing new insights for membrane design for resource recovery applications.
Collapse
Affiliation(s)
- Yining Liu
- Advanced Materials for Energy‐Water Systems Energy Frontier Research CenterArgonne National LaboratoryLemontIL60439USA
- Chemical Sciences and Engineering DivisionArgonne National LaboratoryLemontIL60439USA
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Yuqin Wang
- Advanced Materials for Energy‐Water Systems Energy Frontier Research CenterArgonne National LaboratoryLemontIL60439USA
- Chemical Sciences and Engineering DivisionArgonne National LaboratoryLemontIL60439USA
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Bratin Sengupta
- Advanced Materials for Energy‐Water Systems Energy Frontier Research CenterArgonne National LaboratoryLemontIL60439USA
- Applied Materials DivisionArgonne National LaboratoryLemontIL60439USA
- Northwestern Center for Water ResearchNorthwestern UniversityEvanstonIL60201USA
| | - Omar A. Kazi
- Advanced Materials for Energy‐Water Systems Energy Frontier Research CenterArgonne National LaboratoryLemontIL60439USA
- Chemical Sciences and Engineering DivisionArgonne National LaboratoryLemontIL60439USA
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| | - Alex B. F. Martinson
- Advanced Materials for Energy‐Water Systems Energy Frontier Research CenterArgonne National LaboratoryLemontIL60439USA
- Materials Science DivisionArgonne National LaboratoryLemontIL60439USA
| | - Jeffrey W. Elam
- Advanced Materials for Energy‐Water Systems Energy Frontier Research CenterArgonne National LaboratoryLemontIL60439USA
- Applied Materials DivisionArgonne National LaboratoryLemontIL60439USA
| | - Seth B. Darling
- Advanced Materials for Energy‐Water Systems Energy Frontier Research CenterArgonne National LaboratoryLemontIL60439USA
- Chemical Sciences and Engineering DivisionArgonne National LaboratoryLemontIL60439USA
- Pritzker School of Molecular EngineeringUniversity of ChicagoChicagoIL60637USA
| |
Collapse
|
8
|
Wang J, Zhang X, Yu Z, Gao Y, Lu Q, Ma C, Liu K, Yuan Q, Yang Y. Fast water transport and ionic sieving in ultrathin stacked nanoporous 2D membranes. Natl Sci Rev 2025; 12:nwae482. [PMID: 39931187 PMCID: PMC11809252 DOI: 10.1093/nsr/nwae482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/16/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025] Open
Abstract
Atomically thin nanoporous 2D membranes, featuring unique sieving characteristics for molecules and ions, have significant potential for seawater desalination. However, they face a common trade-off between permeability and selectivity. Here, we report an ultrathin stacked nanoporous graphene membrane (SNGM) created by layering atomically thin graphene nanomesh. This design achieves highly efficient and selective sieving of water molecules and ions. The SNGMs showcase in-plane nanopores for optimal size-exclusive water input and output, and interlayer 2D nanochannels between adjacent graphene nanomesh membranes for rapid water transport and precise ion/molecular sieving. The resulting SNGMs effectively address the trade-off between water permeability and ion selectivity in conventional desalination membranes, delivering a water permeability of ∼ 1-2 orders of magnitude higher than that of commercial membranes, while maintaining a comparable ion rejection ratio (>95% for NaCl). This advance marks a significant leap forward in adopting 2D nanoporous membranes for desalination technology.
Collapse
Affiliation(s)
- Jingfeng Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, School of Power and Mechanical Engineering, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, China
| | - Xiaoming Zhang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, School of Power and Mechanical Engineering, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, China
| | - Zehua Yu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, School of Power and Mechanical Engineering, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, China
| | - Yuyan Gao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Qingqing Lu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, School of Power and Mechanical Engineering, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, China
| | - Chao Ma
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Kang Liu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, School of Power and Mechanical Engineering, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, China
| | - Quan Yuan
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, School of Power and Mechanical Engineering, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, School of Power and Mechanical Engineering, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, China
| |
Collapse
|
9
|
Wen H, Wang J, Dai Z, Liu X, Liang S, Xu F, Hu Z, Yang Z, Jin P, Yang J, Van der Bruggen B, Yuan S. Ultrathin Azine Covalent Organic Framework Membrane for Highly-Efficient Nanofluidic Osmotic Energy Generator. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410140. [PMID: 39945047 DOI: 10.1002/smll.202410140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/02/2025] [Indexed: 03/28/2025]
Abstract
Charged covalent organic framework (COF) membranes have gained wide interest as the key component in the reverse electrodialysis technique to harness salinity energy. However, maintaining rapid ion transport and high selectivity in a Ca2+-rich environment remains a formidable challenge. Herein, a highly cation-conductive azine COF membrane is synthesized via a layer-by-layer chemical reaction between 2,4-dihydroxy-1,3,5-diphenyltrialdehyde (DHTA) and hydrazine hydrate (HZ). The osmotic energy generator based on this membrane delivers a high power density of 17.8 W m-2 under 2.5 M/0.05 M CaCl2, outperforming the TFP-HZ membrane (3.2 W m-2), commercial benchmark (5 W m-2), and other literature reported membranes owing to the simultaneous modulation of charges in angstrom scale channels and selective layer thickness. Moreover, this osmotic power density is comparable to that in a NaCl gradient (2.5 M/0.05 M, 16.9 W m-2), which is rare. These results indicate that the DHTA-HZ membrane is highly suitable for application in hypersaline environments containing Ca2+, serving as an inspiration for the development of COF-based nanofluidic membranes with high power output efficiency in a practical high-salinity environment.
Collapse
Affiliation(s)
- He Wen
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Wuhan, Hubei, 430074, China
| | - Jing Wang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Wuhan, Hubei, 430074, China
- Hubei Provincial Engineering Laboratory for Solid Waste Treatment Disposal and Recycling, Wuhan, Hubei, 430074, China
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ziwen Dai
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Wuhan, Hubei, 430074, China
| | - Xing Liu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Wuhan, Hubei, 430074, China
| | - Sha Liang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Wuhan, Hubei, 430074, China
| | - Fang Xu
- Wenzhou Haichen Technology Development Co., Ltd., Wenzhou, Zhejiang, 325700, China
| | - Zhen Hu
- Wuhan Huzhenyu Environmental Technology Co., Ltd., Wuhan, Hubei, 430000, China
| | - Zhao Yang
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
| | - Pengrui Jin
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
| | - Jiakuan Yang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Wuhan, Hubei, 430074, China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
| | - Shushan Yuan
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Wuhan, Hubei, 430074, China
- Hubei Three Gorges Laboratory, Yichang, 443007, China
| |
Collapse
|
10
|
Tian X, Ye C, Zhang L, Sugumar MK, Zhao Y, McKeown NB, Margadonna S, Tan R. Enhancing Membrane Materials for Efficient Li Recycling and Recovery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2402335. [PMID: 39676484 PMCID: PMC11795731 DOI: 10.1002/adma.202402335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/26/2024] [Indexed: 12/17/2024]
Abstract
Rapid uptake of lithium-centric technology, e.g., electric vehicles and large-scale energy storage, is increasing the demand for efficient technologies for lithium extraction from aqueous sources. Among various lithium-extraction technologies, membrane processes hold great promise due to energy efficiency and flexible operation in a continuous process with potential commercial viability. However, membrane separators face challenges such as the extraction efficiency due to the limited selectivity toward lithium relative to other species. Low selectivity can be ascribed to the uncontrollable selective channels and inefficient exclusion functions. However, recent selectivity enhancements for other membrane applications, such as in gas separation and energy storage, suggest that this may also be possible for lithium extraction. This review article focuses on the innovations in the membrane chemistries based on rational design following separation principles and unveiling the theories behind enhanced selectivity. Furthermore, recent progress in membrane-based lithium extraction technologies is summarized with the emphasis on inorganic, organic, and composite materials. The challenges and opportunities for developing the next generation of selective membranes for lithium recovery are also pointed out.
Collapse
Affiliation(s)
- Xingpeng Tian
- Warwick Electrochemical EngineeringWMGUniversity of WarwickCoventryCV4 7ALUK
- EaStChem School of ChemistryUniversity of EdinburghEdinburghEH9 3FJUK
| | - Chunchun Ye
- EaStChem School of ChemistryUniversity of EdinburghEdinburghEH9 3FJUK
| | - Liyuan Zhang
- School of Metallurgy and EnvironmentCentral South UniversityChangsha410083P. R. China
| | - Manoj K. Sugumar
- Warwick Electrochemical EngineeringWMGUniversity of WarwickCoventryCV4 7ALUK
| | - Yan Zhao
- School of Energy and Power EngineeringJiangsu UniversityZhenjiang212013China
| | - Neil B. McKeown
- EaStChem School of ChemistryUniversity of EdinburghEdinburghEH9 3FJUK
| | - Serena Margadonna
- Department of Chemical EngineeringSwansea UniversitySwanseaSA1 8ENUK
| | - Rui Tan
- Warwick Electrochemical EngineeringWMGUniversity of WarwickCoventryCV4 7ALUK
- Department of Chemical EngineeringSwansea UniversitySwanseaSA1 8ENUK
| |
Collapse
|
11
|
Li X, Zuo P, Ge X, Yang Z, Xu T. Constructing new-generation ion exchange membranes under confinement regime. Natl Sci Rev 2025; 12:nwae439. [PMID: 39830406 PMCID: PMC11737391 DOI: 10.1093/nsr/nwae439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/29/2024] [Accepted: 11/27/2024] [Indexed: 01/22/2025] Open
Abstract
Ion exchange membranes (IEMs) enable fast and selective ion transport and the partition of electrode reactions, playing an important role in the fields of precise ion separation, renewable energy storage and conversion, and clean energy production. Traditional IEMs form ion channels at the nanometer-scale via the assembly of flexible polymeric chains, which are trapped in the permeability/conductivity and selectivity trade-off dilemma due to a high swelling propensity. New-generation IEMs have shown great potential to break this intrinsic limitation by using microporous framework channels for ion transport under a confinement regime. In this Review, we first describe the fundamental principles of ion transport in charged channels from nanometer to sub-nanometer scale. Then, we focus on the construction of new-generation IEMs and highlight the microporous confinement effects from sub-2-nm to sub-1-nm and further to ultra-micropores. The enhanced ion transport properties brought by the intense size sieving and channel interaction are elucidated, and the corresponding applications including lithium separation, flow battery, water electrolysis, and ammonia synthesis are introduced. Finally, we prospect the future development of new-generation IEMs with respect to the intricate microstructure observation, in-situ ion transport visualization, and large-scale membrane fabrication.
Collapse
Affiliation(s)
- Xingya Li
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Peipei Zuo
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Xiaolin Ge
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Zhengjin Yang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Tongwen Xu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
12
|
Tivony R. Synthetic ion channels made of DNA. Curr Opin Chem Biol 2025; 84:102567. [PMID: 39742663 DOI: 10.1016/j.cbpa.2024.102567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Natural ion channels have long inspired the design of synthetic nanopores with protein-like features. A significant leap towards this endeavor has been made possible using DNA origami. The exploitation of DNA as a building material has enabled the construction of biomimetic DNA nanopores with a range of pore dimensions and stimuli-responsive capabilities. However, structural fluctuations and ion leakage across the walls of DNA nanopores greatly limit their use in various applications like label-free sensing and as a research tool in functional studies of ion channels. This review outlines some of the guiding principles for biomimetic engineering of DNA-based ion channels, discusses the weaknesses of current DNA nanopore designs, and presents recent efforts to alleviate these limitations.
Collapse
Affiliation(s)
- Ran Tivony
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| |
Collapse
|
13
|
You Y, Ma Y, Zeng X, Wang Y, Du J, Qian Y, Yang G, Su Y, Lei W, Zhao S, Qing Y, Wu Y, Li J. Tailoring Robust 2D Nanochannels by Radical Polymerization for Efficient Molecular Sieving. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409556. [PMID: 39737840 PMCID: PMC11848538 DOI: 10.1002/advs.202409556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/07/2024] [Indexed: 01/01/2025]
Abstract
Two-dimensional (2D) nanochannels have demonstrated outstanding performance for sieving specific molecules or ions, owing to their uniform molecular channel sizes and interlayer physical/chemical properties. However, controllably tuning nanochannel spaces with specific sizes and simultaneously achieving high mechanical strength remain the main challenges. In this work, the inter-sheet gallery d-spacing of graphene oxide (GO) membrane is successfully tailored with high mechanical strength via a general radical-induced polymerization strategy. The introduced amide groups from N-Vinylformamide significantly reinforce the 2D nanochannels within the freestanding membranes, resulting in an ultrahigh tensile strength of up to 105 MPa. The d-spacing of the membrane is controllably tuned within a range of 0.799-1.410 nm, resulting in a variable water permeance of up to 218 L m-2 h-1 bar-1 (1304% higher than that of the pristine GO membranes). In particular, the tailored membranes demonstrate excellent water permeance stability (140 L m-2 h-1 bar-1) in a 200-h long-term operation and high selectivity of solutes under harsh conditions, including a wide range of pH from 4.0 to 10.0, up to a loading pressure of 12 bar and an external temperature of 40 °C. This approach comprehensively achieves a balance between sieving performance and mechanical strength, satisfying the requirements for the next-generation molecular sieving membranes.
Collapse
Affiliation(s)
- Yue You
- Institute for Frontier MaterialsDeakin UniversityGeelongVictoria3220Australia
| | - Yuxi Ma
- Department of Applied Chemistry and Environmental ScienceSchool of ScienceRMIT UniversityMelbourneVictoria3000Australia
| | - Xianghui Zeng
- Faculty of MaterialsWuhan University of Science & TechnologyWuhan430081China
| | - Yichao Wang
- Department of Applied Chemistry and Environmental ScienceSchool of ScienceRMIT UniversityMelbourneVictoria3000Australia
| | - Juan Du
- Institute for Frontier MaterialsDeakin UniversityGeelongVictoria3220Australia
| | - Yijun Qian
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical IndustryCollege of EnergySoochow UniversitySuzhou215006China
| | - Guoliang Yang
- Department of Applied Chemistry and Environmental ScienceSchool of ScienceRMIT UniversityMelbourneVictoria3000Australia
| | - Yuyu Su
- Department of Chemical and Environmental Engineering, School of EngineeringRMIT UniversityMelbourneVictoria3000Australia
| | - Weiwei Lei
- Department of Applied Chemistry and Environmental ScienceSchool of ScienceRMIT UniversityMelbourneVictoria3000Australia
| | - Shuaifei Zhao
- Institute for Frontier MaterialsDeakin UniversityGeelongVictoria3220Australia
| | - Yan Qing
- College of Materials Science and EngineeringCentral South University of Forestry and TechnologyChangsha410004China
| | - Yiqiang Wu
- College of Materials Science and EngineeringCentral South University of Forestry and TechnologyChangsha410004China
| | - Jingliang Li
- Institute for Frontier MaterialsDeakin UniversityGeelongVictoria3220Australia
| |
Collapse
|
14
|
Kohata A, Kinbara K. Synthetic ion channels in biomembranes. Curr Opin Chem Biol 2025; 84:102544. [PMID: 39571506 DOI: 10.1016/j.cbpa.2024.102544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 02/04/2025]
Abstract
Ion transport across cell membranes is crucial in maintaining ion homeostasis in cells. Synthetic molecules that can mimic the functions of natural ion channel proteins would possess great potential as therapeutic agents by promoting apoptosis or interfering with autophagic processes through perturbing the intracellular pH or inducing oxidative and osmotic stresses. However, little is known about the underlying mechanisms in terms of direct correlation between ion transport and biological functions. This review summarizes recent progress in the area of synthetic transmembrane ion transport systems, focusing on the channel type, with an emphasis on their bioapplications as anticancer agents.
Collapse
Affiliation(s)
- Ai Kohata
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Kazushi Kinbara
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan; Research Center for Autonomous Systems Materialogy (ASMat), Institute of Integrated Research, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
15
|
Huang Y, Wu C, Cao Y, Zheng J, Zeng B, Li X, Li M, Tang J. Scalable integration of photoresponsive highly aligned nanochannels for self-powered ionic devices. SCIENCE ADVANCES 2024; 10:eads5591. [PMID: 39705341 DOI: 10.1126/sciadv.ads5591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/18/2024] [Indexed: 12/22/2024]
Abstract
Artificial ionic nanochannels with light perception capabilities hold promise for creating ionic devices. Nevertheless, most research primarily focuses on regulating single nanochannels, leaving the cumulative effect of numerous nanochannels and their integration underexplored. We herein develop a biomimetic photoreceptor based on photoresponsive highly aligned nanochannels (pHANCs), which exhibit uniform channel heights, phototunable surface properties, and excellent compatibility with microfabrication techniques, enabling the scalable fabrication and integration into functional ionic devices. These pHANCs demonstrate exceptional ion selectivity and permeability due to the high surface charges and well-ordered conduits, resulting in outstanding energy harvesting from concentration gradients. Large-scale fabrication of pHANCs has been successfully realized, wherein hundreds of biomimetic photoreceptors produce an ultrahigh voltage over 76 volts, which has not been achieved previously. In addition, we demonstrate that the biomimetic photoreceptor can be further upscaled to be a self-powered ionic image sensor, capable of sensing and decoding incident light information.
Collapse
Affiliation(s)
- Yaxin Huang
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Changjin Wu
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Yingnan Cao
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Jing Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Binglin Zeng
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Xiaofeng Li
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Mingliang Li
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong 999077, China
- HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, Hong Kong 999077, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), The University of Hong Kong, Hong Kong, 999077 China
| |
Collapse
|
16
|
Biswabhusan D, Animesh P, Yeh LH, Gopinadhan K. Angstrom Scale Ionic Memristors' Engineering with van der Waals Materials: A Route to Highly Tunable Memory States. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69556-69563. [PMID: 39629867 DOI: 10.1021/acsami.4c14521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Memristors that mimic brain functions are crucial for energy-efficient neuromorphic devices. Ion channels that emulate biological synapses are still in the early stages of development, especially the tunability of memory states. Here, we demonstrate that cations such as K+, Na+, Ca2+, and Al3+ intercalated in the interlayer spaces of vermiculite result in highly confined channels of size 3-5 Å. They host exotic memristor properties through ion exchange dynamics, even at high salt concentrations of 1 M. The bipolar memristor characteristics observed are tunable with frequency, geometric asymmetry, ion concentration, and intercalants. Notably, we observe polarization-flipping memristor behavior in two cases: one with Al3+ ions and another with devices having a geometric asymmetry ratio greater than 15. This inversion is attributed to the overscreening of counterions due to their accumulation at the channel entrance. Our results suggest that ion exchange dynamics, ion-ion interactions, and ion accumulation/depletion mechanisms, particularly with multivalent ions, can be harnessed to develop advanced memristor devices.
Collapse
Affiliation(s)
- Dhal Biswabhusan
- Department of Physics, Indian Institute of Technology, Gandhinagar, Gujarat 382355, India
| | - Puzari Animesh
- Department of Physics, Indian Institute of Technology, Gandhinagar, Gujarat 382355, India
| | - Li-Hsien Yeh
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Advanced Manufacturing Research Center, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Kalon Gopinadhan
- Department of Physics, Indian Institute of Technology, Gandhinagar, Gujarat 382355, India
- Department of Materials Engineering, Indian Institute of Technology, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
17
|
Kim GW, Lee M, Bae J, Han J, Park S, Shim W. Li-ion transport in two-dimensional nanofluidic membranes. NANO CONVERGENCE 2024; 11:54. [PMID: 39666234 PMCID: PMC11638449 DOI: 10.1186/s40580-024-00465-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
The growing demand for lithium, driven by its critical role in lithium-ion batteries (LIBs) and other applications, has intensified the need for efficient extraction methods from aqua-based resources such as seawater. Among various approaches, 2D channel membranes have emerged as promising candidates due to their tunable ion selectivity and scalability. While significant progress has been made in achieving high Li+/Mg2+ selectivity, enhancing Li+ ion selectivity over Na+ ion, the dominant monovalent cation in seawater, remains a challenge due to their similar properties. This review provides a comprehensive analysis of the fundamental mechanisms underlying Li+ selectivity in 2D channel membranes, focusing on the dehydration and diffusion processes that dictate ion transport. Inspired by the principles of biological ion channels, we identify key factors-channel size, surface charge, and binding sites-that influence energy barriers and shape the interplay between dehydration and diffusion. We highlight recent progress in leveraging these factors to enhance Li+/Na+ selectivity and address the challenges posed by counteracting effects in ion transport. While substantial advancements have been made, the lack of comprehensive principles guiding the interplay of these variables across permeation steps represents a key obstacle to optimizing Li+/Na+ selectivity. Nonetheless, with their inherent chemical stability and fabrication scalability, 2D channel membranes offer significant potential for lithium extraction if these challenges can be addressed. This review provides insights into the current state of 2D channel membrane technologies and outlines future directions for achieving enhanced Li+ ion selectivity, particularly in seawater applications.
Collapse
Affiliation(s)
- Gyu Won Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Korea
| | - Minwoo Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Korea
| | - Jihong Bae
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Korea
| | - Jihoon Han
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Korea
| | - Seokmin Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Korea
| | - Wooyoung Shim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 120-749, Korea.
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, Korea.
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Korea.
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
18
|
Wang X, Zhang H, Wei G, Xing J, Chen S, Quan X. Comediation of voltage gating and ion charge in MXene membrane for controllable and selective monovalent cation separation. SCIENCE ADVANCES 2024; 10:eado3998. [PMID: 39630891 PMCID: PMC11616687 DOI: 10.1126/sciadv.ado3998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Artificial ion channels with controllable mono/monovalent cation separation fulfill important roles in biomedicine, ion separation, and energy conversion. However, it remains a daunting challenge to develop an artificial ion channel similar to biological ion channels due to ion-ion competitive transport and lack of ion-gating ability of channels. Here, we report a conductive MXene membrane with polydopamine-confined angstrom-scale channels and propose a voltage gating and ion charge comediation strategy to concurrently achieve gated and selective mono/monovalent cation separation. The membrane shows a highly switchable "on-off" ratio of ∼9.9 for K+ transport and an excellent K+/Li+ selectivity of 40.9, outperforming the ion selectivity of reported membranes with electrical gating (typically 1.5 to 6). Theoretical simulations reveal that the introduced high-charge cations such as Mg2+ enable the preferential distribution of target K+ over competing Li+ at the channel entrance, and the surface potential reduces the ionic transport energy barrier for allowing K+ to pass quickly through the channel.
Collapse
Affiliation(s)
| | | | - Gaoliang Wei
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiajian Xing
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
19
|
Xu S, Lin H, Li G, Han Q, Wang J, Liu F. Heterogeneous Covalent Organic Framework Membranes Mediated by Polycations for Efficient Ions Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405539. [PMID: 39478106 DOI: 10.1002/advs.202405539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/10/2024] [Indexed: 12/28/2024]
Abstract
Precise ions sieving at angstrom-scale is gaining tremendous attention thanks to its significant impact at the water-energy nexus. Herein, a novel polycation-modulated interfacial polymerization (IP) strategy is developed to prepare a heterogeneously charged covalent organic frameworks (COFs) membrane. Cationic poly(diallyldimethylammonium chloride) (PDDA) regulates the growth and assembly of anionic COFs nanosheets, which thus provides a negative, smooth top surface and positive, rough bottom surface, indicating the presence of heterogeneously charged angstrom-scale channels through the membrane. Experiments and simulations are conducted to understand the facilitated ions transport behavior relative to specific interactions raised by heterogeneously charged channels and angstrom-scale steric hinderance as well, rendering the membrane with robust mono-/divalent cations sieving capabilities. The selectivity (61.6) of Li+ to Mg2+ in mixed saline under the continuous cross-flow filtration mode is superior to most of the reported nanofiltration membranes. This polycation-mediated interfacial polymerization strategy offers a compelling opportunity to develop versatile heterogeneously charged COF membranes for exquisite ion sieving.
Collapse
Affiliation(s)
- Shuting Xu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haibo Lin
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guiliang Li
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiu Han
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianqiang Wang
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fu Liu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
20
|
Wu B, Yan Y, Chu X, Miao J, Ge Q, Lin X, Ge L, Qian J. Reverse-Selective Anion Separation Relies on Charged "Hourglass" Gate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404061. [PMID: 39072922 DOI: 10.1002/smll.202404061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/04/2024] [Indexed: 07/30/2024]
Abstract
According to the hydration size and charge property of separated ions, the transport channel can be constructed to achieve precision ion separation, but the ion geometry as a separation parameter to design the channel structure is rarely reported. Herein, a reverse-selective anion separation membrane composed of a metal-organic frameworks (MOFs) layer with a charged "hourglass" channel as an ion-selective switch to manipulate oxoanion transport is developed. The gate in "hourglass" with tetrahedral geometry similar to the oxoanion (such as SO2- 4, Cr 2O2- 7, and MnO- 4) boosts the transmission effect oxoanion much larger than Cl- through geometric matching and Coulomb interaction. Specific channel structure exhibits an abnormal selectivity for SO2- 4/Cl- of 20, Cr 2O2- 7/Cl- of 6.6, and MnO- 4/Cl- of 4.0 in a binary-ion system. The transfer behavior of SO2- 4 in the channel revealed by molecular dynamics simulation and density functional theory calculation further indicates the mechanism of the abnormal separation performance. The universality of the membrane structure is validated by the formation of different nitrogen-containing modified layers, which also achieves in situ growth of the MOFs layer, and exhibits similar reversal separation performance. The geometric configuration control of ion transport channels presents a novel effective strategy to realize the precise separation of target ions.
Collapse
Affiliation(s)
- Bin Wu
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Yunfei Yan
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Xiaorui Chu
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Jibin Miao
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Qianqian Ge
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Xiaocheng Lin
- College of Chemical Engineering, School of Future Membrane Technology, Fuzhou University, Fuzhou, 350116, China
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Liang Ge
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Jiasheng Qian
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, China
| |
Collapse
|
21
|
Li L, Liu B, Li Z. Metal-organic framework-based membranes for ion separation/selection from salt lake brines and seawater. NANOSCALE 2024; 16:19543-19563. [PMID: 39360896 DOI: 10.1039/d4nr02454k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Nanofiltration (NF) technologies have evolved into a stage ready for industrial commercialization. NF membranes with unique separation characteristics are widely used for ion selection in water environments. Although many materials have been synthesized and functionalized for specific ion separation, the permeability-selectivity trade-off is still a major challenge. Metal-organic frameworks (MOFs), as a class of promising materials to meet industrial demands, are gaining increasing attention. Many experimental and theoretical studies have been conducted on the applications of MOF-based membranes in ion selection. This review focuses on MOF-based NF membranes for ion separation/selection from seawater and salt lake brines, including their applications in industry. First, a brief discussion on the development of membrane technology for ion selection is given, with the principles of ion separation via NF membranes, industrial implementations, and technical difficulties being discussed. Next, the benefits and challenges of using MOF membranes in NF processes are elaborated, including the basic properties of MOFs, approaches to fabricate MOF membranes for efficient ion selection and challenges in constructing industrially viable membranes. Finally, state-of-the-art studies on key characteristics of MOFs for NF membrane fabrication are presented. It indicates that the utilization of MOF-based membranes has significant potential to improve ion separation performance. However, the lack of sufficient data under industrial conditions highlights the need for further development in this area.
Collapse
Affiliation(s)
- Lirong Li
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
- School of Electrical, Energy and Power Engineering, YangZhou University, Yangzhou, Jiangsu 225127, China
| | - Biyuan Liu
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Zhigang Li
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
22
|
Huang W, Chen Z, Cheng P, Shi W. Strong size sieving effect in a rigid oxalate-based metal-organic framework for selective lithium extraction. Chem Commun (Camb) 2024; 60:11972-11975. [PMID: 39344498 DOI: 10.1039/d4cc04101a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
An oxalate-based metal-organic framework Eu-C2O4 was synthesized at gram-scale and studied as a selective adsorbent for Li+ ions, and it exhibited high Li+/Na+ selectivity in aqueous solution. A detailed mechanism study revealed that the key was the well-matched chelating sites of the framework for Li+ ion extraction.
Collapse
Affiliation(s)
- Wenhao Huang
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Zhonghang Chen
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Peng Cheng
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Wei Shi
- Frontiers Science Center for New Organic Matter, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
23
|
Hoenig E, Han Y, Xu K, Li J, Wang M, Liu C. In situ generation of (sub) nanometer pores in MoS 2 membranes for ion-selective transport. Nat Commun 2024; 15:7911. [PMID: 39256368 PMCID: PMC11387774 DOI: 10.1038/s41467-024-52109-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Ion selective membranes are fundamental components of biological, energy, and computing systems. The fabrication of solid-state ultrathin membranes that can separate ions of similar size and the same charge with both high selectivity and permeance remains a challenge, however. Here, we present a method, utilizing the application of a remote electric field, to fabricate a high-density of (sub)nm pores in situ. This method takes advantage of the grain boundaries in few-layer polycrystalline MoS2 to enable the synthesis of nanoporous membranes with average pore size tunable from <1 to ~4 nm in diameter (with in situ pore expansion resolution of ~0.2 nm2 s-1). These membranes demonstrate selective transport of monovalent ions (K+, Na+ and Li+) as well as divalent ions (Mg2+ and Ca2+), outperforming existing two-dimensional material nanoporous membranes that display similar total permeance. We investigate the mechanism of selectivity using molecular dynamics simulations and unveil that the interactions between cations and the sluggish water confined to the pore, as well as cation-anion interactions, result in the different transport behaviors observed between ions.
Collapse
Affiliation(s)
- Eli Hoenig
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
| | - Yu Han
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Kangli Xu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Jingyi Li
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Mingzhan Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Chong Liu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
24
|
Li Z, Hall AT, Wang Y, Li Y, Byrne DO, Scammell LR, Whitney RR, Allen FI, Cumings J, Noy A. Ion transport and ultra-efficient osmotic power generation in boron nitride nanotube porins. SCIENCE ADVANCES 2024; 10:eado8081. [PMID: 39241077 PMCID: PMC11378945 DOI: 10.1126/sciadv.ado8081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/01/2024] [Indexed: 09/08/2024]
Abstract
Nanotube porins form transmembrane nanomaterial-derived scaffolds that mimic the geometry and functionality of biological membrane channels. We report synthesis, transport properties, and osmotic energy harvesting performance of another member of the nanotube porin family: boron nitride nanotube porins (BNNTPs). Cryo-transmission electron microscopy imaging, liposome transport assays, and DNA translocation experiments show that BNNTPs reconstitute into lipid membranes to form functional channels of ~2-nm diameter. Ion transport studies reveal ion conductance characteristics of individual BNNTPs, which show an unusual C1/4 scaling with ion concentration and pronounced pH sensitivity. Reversal potential measurements indicate that BNNTPs have strong cation selectivity at neutral pH, attributable to the high negative charge on the channel. BNNTPs also deliver very large power density up to 12 kW/m2 in the osmotic gradient transport experiments at neutral pH, surpassing that of other BNNT-based devices by two orders of magnitude under similar conditions. Our results suggest that BNNTPs are a promising platform for mass transport and osmotic power generation.
Collapse
Affiliation(s)
- Zhongwu Li
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Alex T Hall
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Yaqing Wang
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Yuhao Li
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Dana O Byrne
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | - Frances I Allen
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA 94720, USA
| | - John Cumings
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Aleksandr Noy
- Materials Science Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
- School of Natural Sciences, University of California, Merced, Merced, CA 93434, USA
| |
Collapse
|
25
|
Olov N, Nour S, Harris AR, Li D, Cook M, Williams RJ, Cheeseman S, Nisbet DR. Using Nanoscale Passports To Understand and Unlock Ion Channels as Gatekeepers of the Cell. ACS NANO 2024; 18:22709-22733. [PMID: 39136685 DOI: 10.1021/acsnano.4c05654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Natural ion channels are proteins embedded in the cell membrane that control many aspects of cell and human physiology by acting as gatekeepers, regulating the flow of ions in and out of cells. Advances in nanotechnology have influenced the methods for studying ion channels in vitro, as well as ways to unlock the delivery of therapeutics by modulating them in vivo. This review provides an overview of nanotechnology-enabled approaches for ion channel research with a focus on the synthesis and applications of synthetic ion channels. Further, the uses of nanotechnology for therapeutic applications are critically analyzed. Finally, we provide an outlook on the opportunities and challenges at the intersection of nanotechnology and ion channels. This work highlights the key role of nanoscale interactions in the operation and modulation of ion channels, which may prompt insights into nanotechnology-enabled mechanisms to study and exploit these systems in the near future.
Collapse
Affiliation(s)
- Nafiseh Olov
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| | - Shirin Nour
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Polymer Science Group, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexander R Harris
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| | - Dan Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark Cook
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Department of Medicine, St Vincent's Hospital, Melbourne, Fitzroy, VIC 3065, Australia
| | - Richard J Williams
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3217, Australia
- IMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC 3217, Australia
| | - Samuel Cheeseman
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| | - David R Nisbet
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| |
Collapse
|
26
|
Zhao Y, Liu J, Lu G, Zhang J, Wan L, Peng S, Li C, Wang Y, Wang M, He H, Xin JH, Ding Y, Zheng S. Diurnal humidity cycle driven selective ion transport across clustered polycation membrane. Nat Commun 2024; 15:7161. [PMID: 39169012 PMCID: PMC11339353 DOI: 10.1038/s41467-024-51505-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
The ability to manipulate the flux of ions across membranes is a key aspect of diverse sectors including water desalination, blood ion monitoring, purification, electrochemical energy conversion and storage. Here we illustrate the potential of using daily changes in environmental humidity as a continuous driving force for generating selective ion flux. Specifically, self-assembled membranes featuring channels composed of polycation clusters are sandwiched between two layers of ionic liquids. One ionic liquid layer is kept isolated from the ambient air, whereas the other is exposed directly to the environment. When in contact with ambient air, the device showcases its capacity to spontaneously produce ion current, with promising power density. This result stems from the moisture content difference of ionic liquid layers across the membrane caused by the ongoing process of moisture absorption/desorption, which instigates selective transmembrane ion flux. Cation flux across the polycation clusters is greatly inhibited because of intensified charge repulsion. However, anions transport across polycation clusters is amplified. Our research underscores the potential of daily cycling humidity as a reliable energy source to trigger ion current and convert it into electrical current.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Department of Chemistry, School of Chemistry and Life Resources, Renmin University of China, Beijing, China
- School of Fashion and Textiles, Hong Kong Polytechnic University, Hong Kong, China
| | - Ju Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Gang Lu
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Jinliang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Liyang Wan
- School of Computing, University of Connecticut, CT, Bridgeport, USA
| | - Shan Peng
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
- College of Chemistry and Materials Science, Hebei University, Baoding, China
| | - Chao Li
- Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, China.
| | - Yanlei Wang
- Department of Chemistry, School of Chemistry and Life Resources, Renmin University of China, Beijing, China.
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.
| | - Mingzhan Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - John H Xin
- School of Fashion and Textiles, Hong Kong Polytechnic University, Hong Kong, China.
| | - Yulong Ding
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Shuang Zheng
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
27
|
Liu K, Epsztein R, Lin S, Qu J, Sun M. Ion-Ion Selectivity of Synthetic Membranes with Confined Nanostructures. ACS NANO 2024; 18:21633-21650. [PMID: 39114876 DOI: 10.1021/acsnano.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Synthetic membranes featuring confined nanostructures have emerged as a prominent category of leading materials that can selectively separate target ions from complex water matrices. Further advancements in these membranes will pressingly rely on the ability to elucidate the inherent connection between transmembrane ion permeation behaviors and the ion-selective nanostructures. In this review, we first abstract state-of-the-art nanostructures with a diversity of spatial confinements in current synthetic membranes. Next, the underlying mechanisms that govern ion permeation under the spatial nanoconfinement are analyzed. We then proceed to assess ion-selective membrane materials with a focus on their structural merits that allow ultrahigh selectivity for a wide range of monovalent and divalent ions. We also highlight recent advancements in experimental methodologies for measuring ionic permeability, hydration numbers, and energy barriers to transport. We conclude by putting forth the future research prospects and challenges in the realm of high-performance ion-selective membranes.
Collapse
Affiliation(s)
- Kairui Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Razi Epsztein
- Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Shihong Lin
- Department of Civil and Environmental Engineering and Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Meng Sun
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
28
|
Ni F, Wang Z, Feng X. On-Water Surface Synthesis of Two-Dimensional Polymer Membranes for Sustainable Energy Devices. Acc Chem Res 2024; 57:2414-2427. [PMID: 39126386 PMCID: PMC11339920 DOI: 10.1021/acs.accounts.4c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
ConspectusIon-selective membranes are key components for sustainable energy devices, including osmotic power generators, electrolyzers, fuel cells, and batteries. These membranes facilitate the flow of desired ions (permeability) while efficiently blocking unwanted ions (selectivity), which forms the basis for energy conversion and storage technologies. To improve the performance of energy devices, the pursuit of high-quality membranes has garnered substantial interest, which has led to the exploration of numerous candidates, such as polymeric membranes (e.g., polyamide and polyelectrolyte), laminar membranes (e.g., transition metal carbide (MXene) and graphene oxide (GO)) and nanoporous 2D membranes (e.g., single-layer MoS2 and porous graphene). Despite impressive progress, the trade-off effect between ion permeability and selectivity remains a major scientific and technological challenge for these membranes, impeding the efficiency and stability of the resulting energy devices.Two-dimensional polymers (2DPs), which represent monolayer to few-layer covalent organic frameworks (COFs) with periodicity in two directions, have emerged as a new candidate for ion-selective membranes. The crystalline 2DP membranes (2DPMs) are typically fabricated either by bulk crystal exfoliation followed by filtration or by direct interfacial synthesis. Recently, the development of surfactant-monolayer-assisted interfacial synthesis (SMAIS) method by our group has been pivotal, enabling the synthesis of various highly crystalline and large-area 2DPMs with tunable thicknesses (1 to 100 nm) and large crystalline domain sizes (up to 120 μm2). Compared to other membranes, 2DPMs exhibit well-defined one-dimensional (1D) channels, customizable surface charge, ultrahigh porosity, and ultrathin thickness, enabling them to overcome the permeability-selectivity trade-off challenge. Leveraging these attributes, 2DPMs have established their critical roles in diverse energy devices, including osmotic power generators and metal ion batteries, opening the door for next-generation technology aimed at sustainability with a low carbon footprint.In this Account, we review our achievements in synthesizing 2DPMs through the SMAIS method and highlight their selective-ion-transport properties and applications in sustainable energy devices. We initially provide an overview of the SMAIS method for producing highly crystalline 2DPMs by utilizing the programmable assembly and enhanced reactivity/selectivity on the water surface. Subsequently, we discuss the critical structural parameters of 2DPMs, including pore sizes, charged sites, crystallinity, and thickness, to elucidate their roles in selective ion transport. Furthermore, we present the burgeoning landscape of energy device applications for 2DPMs, including their use in osmotic power generators and as electrode coating in metal ion batteries. Finally, we conclude persistent challenges and future prospects encountered in synthetic chemistry, material science, and energy device applications within this rapidly evolving field.
Collapse
Affiliation(s)
- Feng Ni
- Department
of Synthetic Materials and Functional Devices, Max Planck Institute of Microstructure Physics, Halle (Saale) 06120, Germany
| | - Zhiyong Wang
- Department
of Synthetic Materials and Functional Devices, Max Planck Institute of Microstructure Physics, Halle (Saale) 06120, Germany
- Center
for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry
and Food Chemistry, Technische Universität
Dresden, Dresden 01062, Germany
| | - Xinliang Feng
- Department
of Synthetic Materials and Functional Devices, Max Planck Institute of Microstructure Physics, Halle (Saale) 06120, Germany
- Center
for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry
and Food Chemistry, Technische Universität
Dresden, Dresden 01062, Germany
| |
Collapse
|
29
|
Seo J, Ha S, Kim SJ. Investigation of Operational Parameters for Nanoelectrokinetic Purification and Preconcentration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16443-16453. [PMID: 39048092 DOI: 10.1021/acs.langmuir.4c01773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
This work reports on experimental investigations into the operational parameters of nanoelectrokinetic purification and preconcentration, especially utilizing on ion concentration polarization (ICP). ICP as a nanoscale electrokinetic phenomenon has demonstrated promising advances in various fields utilizing an ion depletion zone (IDZ) with a steep electric field gradient inside the ICP layer. However, the inevitable electrokinetic instability occurring within the IDZ has posed a challenge in operating the ICP system stably. To address the need for a stable and efficient ICP operation in various devices and applications, we propose an operational strategy along with conducted research to determine optimal operating ranges. In order to investigate the operational parameters, a unit voltage (VTH) is introduced as the threshold for initiating ICP. We examined the applicability of VTH across various operating ranges to ensure its effectiveness and versatility. In ICP purification, we categorize three modes (steady, burst, and unsteady) based on IDZ expansion and stability under varying VTH and flow rate conditions, presenting optimal operational conditions that minimize the voltage margin. In ICP preconcentration, a systematic investigation is conducted to observe the influence of background electrolyte concentration and voltage conditions on preconcentration efficiency, offering insights into the correlation between preconcentration factor, electrical conditions, and preconcentration time. Therefore, this research would contribute to the practical understanding of nanoelectrokinetics, providing insight into experimental designs. These findings are expected to offer valuable guidance to researchers aiming to utilize ICP's potential across a spectrum of applications, from purification to preconcentration, in the realm of micro/nanofluidic systems.
Collapse
Affiliation(s)
- Joowon Seo
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungjae Ha
- ProvaLabs, Inc., Seoul 08826, Republic of Korea
| | - Sung Jae Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
- SOFT Foundry Institute, Seoul National University, Seoul 08826, Republic of Korea
- Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
30
|
Du L, Li J, Kong X, Lu D, Liu Z, Guo W. Understanding the K +/Na +-Selectivity-Enabled Osmotic Power Generation: High Selectivity May Not Be Indispensable. J Phys Chem Lett 2024; 15:7755-7762. [PMID: 39046908 DOI: 10.1021/acs.jpclett.4c01689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
By mixing ionic solutions, considerable energy can be harvested from entropy change. Recently, we proposed a concept of potassium-permselectivity enabled osmotic power generation (PoPee-OPG) by mixing equimolar KCl and NaCl solutions via artificial potassium ion channels (APICs, Natl. Sci. Rev. 2023, 10, nwad260). However, a fundamental understanding of the relationship between the K+/Na+ selectivity and optimal performance remains unexplored. Herein, we establish a primitive molecular thermodynamic model to investigate the energy extraction process. We find PoPee-OPG differs from previous charge-selectivity-based techniques, such as the salinity gradient power generation, in two distinct ways. First, the extractable energy density and efficiency positively depend on concentration. More surprisingly, a very high potassium selectivity is not indispensable for satisfactory efficiency and energy density. An optimal K+/Na+ selectivity region of 3 to 10 is found. This somewhat counterintuitive discovery provides a renewed understanding of the emerging PoPee-OPG, and it predicts a broad applicability among existing APICs.
Collapse
Affiliation(s)
- Linhan Du
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540, United States
| | - Jipeng Li
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Xian Kong
- School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
| | - Diannan Lu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zheng Liu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Wei Guo
- Center for Quantum Physics and Intelligent Sciences, Department of Physics, Capital Normal University, Beijing 100048, China
| |
Collapse
|
31
|
Wu B, Gan N, Lin Y, Zhang Y, Zhang J, Qiu Y, Cao X, Yu J, Matsuyama H. Ion-Selective Transport Promotion Enabled by Angstrom-Scale Nanochannels in Dendrimer-Assembled Polyamide Nanofilm for Efficient Electrodialysis. NANO LETTERS 2024; 24:8650-8657. [PMID: 38949785 DOI: 10.1021/acs.nanolett.4c01997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The ion permeability and selectivity of membranes are crucial in nanofluidic behavior, impacting industries ranging from traditional to advanced manufacturing. Herein, we demonstrate the engineering of ion-conductive membranes featuring angstrom-scale ion-transport channels by introducing ionic polyamidoamine (PAMAM) dendrimers for ion separation. The exterior quaternary ammonium-rich structure contributes to significant electrostatic charge exclusion due to enhanced local charge density; the interior protoplasmic channels of PAMAM dendrimer are assembled to provide additional degrees of free volume. This facilitates the monovalent ion transfer while maintaining continuity and efficient ion screening. The dendrimer-assembled hybrid membrane achieves high monovalent ion permeance of 2.81 mol m-2 h-1 (K+), reaching excellent mono/multivalent selectivity up to 20.1 (K+/Mg2+) and surpassing the permselectivities of state-of-the-art membranes. Both experimental results and simulating calculations suggest that the impressive ion selectivity arises from the significant disparity in transport energy barrier between mono/multivalent ions, induced by the "exterior-interior" synergistic effects of bifunctional membrane channels.
Collapse
Affiliation(s)
- Baolong Wu
- National Engineering Research Center for Comprehensive Utilization of Salt Lake Resources, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ning Gan
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Yuqing Lin
- National Engineering Research Center for Comprehensive Utilization of Salt Lake Resources, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yiren Zhang
- National Engineering Research Center for Comprehensive Utilization of Salt Lake Resources, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiayu Zhang
- National Engineering Research Center for Comprehensive Utilization of Salt Lake Resources, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yulong Qiu
- National Engineering Research Center for Comprehensive Utilization of Salt Lake Resources, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xingzhong Cao
- Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jianguo Yu
- National Engineering Research Center for Comprehensive Utilization of Salt Lake Resources, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 6500034, Japan
| |
Collapse
|
32
|
Xian W, Wu D, Lai Z, Wang S, Sun Q. Advancing Ion Separation: Covalent-Organic-Framework Membranes for Sustainable Energy and Water Applications. Acc Chem Res 2024; 57:1973-1984. [PMID: 38950424 DOI: 10.1021/acs.accounts.4c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
ConspectusMembranes are pivotal in a myriad of energy production processes and modern separation techniques. They are essential in devices for energy generation, facilities for extracting energy elements, and plants for wastewater treatment, each of which hinges on effective ion separation. While biological ion channels show exceptional permeability and selectivity, designing synthetic membranes with defined pore architecture and chemistry on the (sub)nanometer scale has been challenging. Consequently, a typical trade-off emerges: highly permeable membranes often sacrifice selectivity and vice versa. To tackle this dilemma, a comprehensive understanding and modeling of synthetic membranes across various scales is imperative. This lays the foundation for establishing design criteria for advanced membrane materials. Key attributes for such materials encompass appropriately sized pores, a narrow pore size distribution, and finely tuned interactions between desired permeants and the membrane. The advent of covalent-organic-framework (COF) membranes offers promising solutions to the challenges faced by conventional membranes in selective ion separation within the water-energy nexus. COFs are molecular Legos, facilitating the precise integration of small organic structs into extended, porous, crystalline architectures through covalent linkage. This unique molecular architecture allows for precise control over pore sizes, shapes, and distributions within the membrane. Additionally, COFs offer the flexibility to modify their pore spaces with distinct functionalities. This adaptability not only enhances their permeability but also facilitates tailored interactions with specific ions. As a result, COF membranes are positioned as prime candidates to achieve both superior permeability and selectivity in ion separation processes.In this Account, we delineate our endeavors aimed at leveraging the distinctive attributes of COFs to augment ion separation processes, tackling fundamental inquiries while identifying avenues for further exploration. Our strategies for fabricating COF membranes with enhanced ion selectivity encompass the following: (1) crafting (sub)nanoscale ion channels to enhance permselectivity, thereby amplifying energy production; (2) implementing a multivariate (MTV) synthesis method to control charge density within nanochannels, optimizing ion transport efficiency; (3) modifying the pore environment within confined mass transfer channels to establish distinct pathways for ion transport. For each strategy, we expound on its chemical foundations and offer illustrative examples that underscore fundamental principles. Our efforts have culminated in the creation of groundbreaking membrane materials that surpass traditional counterparts, propelling advancements in sustainable energy conversion, waste heat utilization, energy element extraction, and pollutant removal. These innovations are poised to redefine energy systems and industrial wastewater management practices. In conclusion, we outline future research directions and highlight key challenges that need addressing to enhance the ion/molecular recognition capabilities and practical applications of COF membranes. Looking forward, we anticipate ongoing advancements in functionalization and fabrication techniques, leading to enhanced selectivity and permeability, ultimately rivaling the capabilities of biological membranes.
Collapse
Affiliation(s)
- Weipeng Xian
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Di Wu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhuozhi Lai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Sai Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
33
|
Mehrafrooz B, Yu L, Pandey L, Siwy ZS, Wanunu M, Aksimentiev A. Electro-osmotic Flow Generation via a Sticky Ion Action. ACS NANO 2024; 18:17521-17533. [PMID: 38832758 PMCID: PMC11233251 DOI: 10.1021/acsnano.4c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Selective transport of ions through nanometer-sized pores is fundamental to cell biology and central to many technological processes such as water desalination and electrical energy storage. Conventional methods for generating ion selectivity include placement of fixed electrical charges at the inner surface of a nanopore through either point mutations in a protein pore or chemical treatment of a solid-state nanopore surface, with each nanopore type requiring a custom approach. Here, we describe a general method for transforming a nanoscale pore into a highly selective, anion-conducting channel capable of generating a giant electro-osmotic effect. Our molecular dynamics simulations and reverse potential measurements show that exposure of a biological nanopore to high concentrations of guanidinium chloride renders the nanopore surface positively charged due to transient binding of guanidinium cations to the protein surface. A comparison of four biological nanopores reveals the relationship between ion selectivity, nanopore shape, composition of the nanopore surface, and electro-osmotic flow. Guanidinium ions are also found to produce anion selectivity and a giant electro-osmotic flow in solid-state nanopores via the same mechanism. Our sticky-ion approach to generate electro-osmotic flow can have numerous applications in controlling molecular transport at the nanoscale and for detection, identification, and sequencing of individual proteins.
Collapse
Affiliation(s)
- Behzad Mehrafrooz
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Luning Yu
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Laxmi Pandey
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Zuzanna S Siwy
- Department of Physics, University of California at Irvine, Irvine, California 92697, United States
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Aleksei Aksimentiev
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
34
|
Calegari Andrade MF, Aluru NR, Pham TA. Nonlinear Effects of Hydrophobic Confinement on the Electronic Structure and Dielectric Response of Water. J Phys Chem Lett 2024; 15:6872-6879. [PMID: 38934582 DOI: 10.1021/acs.jpclett.4c01242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Fundamental studies of the dielectrics of confined water are critical to understand the ion transport across biological and synthetic nanochannels. The relevance of these fundamental studies, however, surmounts the difficulty of probing water's dielectric constant as a function of a fine variation in confinement. In this work, we explore the computational efficiency of machine learning potentials to derive the confinement effects on the dielectric constant, polarization, and dipole moment of water. Our simulations predict an enhancement of the axial dielectric constant of water under extreme confinement, arising from either the formation of ferroelectric structures of ordered water or larger dipole fluctuations facilitated by the disruption of water's H-bond network. Our study highlights the impact of hydrophobic nanoconfinement on the dielectric constant and on the ionic and electronic structure of water molecules, pointing to the importance of geometric flexibility and electronic polarizability to properly model confinement effects on water.
Collapse
Affiliation(s)
- Marcos F Calegari Andrade
- Quantum Simulations Group, Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Laboratory for Energy Applications for the Future, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - N R Aluru
- Walker Department of Mechanical Engineering, Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Tuan Anh Pham
- Quantum Simulations Group, Materials Science Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Laboratory for Energy Applications for the Future, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
35
|
Huang D, Zou K, Wu Y, Li K, Zhang Z, Liu T, Chen W, Yan Z, Zhou S, Kong XY, Jiang L, Wen L. TRPM4-Inspired Polymeric Nanochannels with Preferential Cation Transport for High-Efficiency Salinity-Gradient Energy Conversion. J Am Chem Soc 2024. [PMID: 38842082 DOI: 10.1021/jacs.4c02629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Biological ion channels exhibit switchable cation transport with ultrahigh selectivity for efficient energy conversion, such as Ca2+-activated TRPM4 channels tuned by cation-π interactions, but achieving an analogous highly selective function is challenging in artificial nanochannels. Here, we design a TRPM4-inspired cation-selective nanochannel (CN) assembled by two poly(ether sulfone)s, respectively, with sulfonate acid and indole moieties, which act as cation-selective activators to manage Na+/Cl- selectivity via ionic and cation-π interactions. The cation selectivity of CNs can be activated by Na+, and thereby the Na+ transference number significantly improves from 0.720 to 0.982 (Na+/Cl- selectivity ratio from 2.6 to 54.6) under a 50-fold salinity gradient, surpassing the K+ transference number (0.886) and Li+ transference number (0.900). The TRPM4-inspired nanochannel membrane enabled a maximum output power density of 5.7 W m-2 for salinity-gradient power harvesting. Moreover, a record energy conversion efficiency of up to 46.5% is provided, superior to most nanochannel membranes (below 30%). This work proposes a novel strategy to biomimetic nanochannels for highly selective cation transport and high-efficiency salinity-gradient energy conversion.
Collapse
Affiliation(s)
- Dehua Huang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kehan Zou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuge Wu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ke Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhehua Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tianchi Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Weipeng Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Zidi Yan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shengyang Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou Jiangsu 215123, PR China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei Anhui 230026, PR China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou Jiangsu 215123, PR China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei Anhui 230026, PR China
| |
Collapse
|
36
|
Zhou H, Tang T, Hu R, Jiang Y, Yuan G, Wang H, Wang C, Hu S. Ionic Current Saturation Enabled by Cation Gating Effect in Metal-Organic-Framework Membranes. NANO LETTERS 2024; 24:6296-6301. [PMID: 38747343 DOI: 10.1021/acs.nanolett.4c00991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Ion transport through nanoporous two-dimensional (2D) membranes is predicted to be tunable by controlling the charging status of the membranes' planar surfaces, the behavior of which though remains to be assessed experimentally. Here we investigate ion transport through intrinsically porous membranes made of 2D metal-organic-framework layers. In the presence of certain cations, we observe a linear-to-nonlinear transition of the ionic current in response to the applied electric field, the behavior of which is analogous to the cation gating effect in the biological ion channels. Specifically, the ionic currents saturate at transmembrane voltages exceeding a few hundreds of millivolts, depending on the concentration of the gating cations. This is attributed to the binding of cations at the membranes' surfaces, tuning the charging states there and affecting the entry/exit process of translocating ions. Our work also provides 2D membranes as candidates for building nanofluidic devices with tunable transport properties.
Collapse
Affiliation(s)
- Han Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Ting Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Rong Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yu Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Gang Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, People's Republic of China
| | - Cheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Sheng Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, People's Republic of China
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
37
|
Zhao C, Feng F, Hou J, Hu J, Su Y, Liu JZ, Hill M, Freeman BD, Wang H, Zhang H. Unlocking Direct Lithium Extraction in Harsh Conditions through Thiol-Functionalized Metal-Organic Framework Subnanofluidic Membranes. J Am Chem Soc 2024; 146:14058-14066. [PMID: 38733559 DOI: 10.1021/jacs.4c02477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Metal-organic framework (MOF) membranes with high ion selectivity are highly desirable for direct lithium-ion (Li+) separation from industrial brines. However, very few MOF membranes can efficiently separate Li+ from brines of high Mg2+/Li+ concentration ratios and keep stable in ultrahigh Mg2+-concentrated brines. This work reports a type of MOF-channel membranes (MOFCMs) by growing UiO-66-(SH)2 into the nanochannels of polymer substrates to improve the efficiency of MOF membranes for challenging Li+ extraction. The resulting membranes demonstrate excellent monovalent metal ion selectivity over divalent metal ions, with Li+/Mg2+ selectivity up to 103 since Mg2+ should overcome a higher energy barrier than Li+ when transported through the MOF pores, as confirmed by molecular dynamics simulations. Under dual-ion diffusion, as the Mg2+/Li+ mole ratio of the feed solution increases from 0.2 to 30, the membrane Li+/Mg2+ selectivity decreases from 1516 to 19, corresponding to the purity of lithium products between 99.9 and 95.0%. Further research on multi-ion diffusion that involves Mg2+ and three monovalent metal ions (K+, Na+, and Li+, referred to as M+) in the feed solutions shows a significant improvement in Li+/Mg2+ separation efficiency. The Li+/Mg2+ selectivity can go up to 1114 when the Mg2+/M+ molar concentration ratio is 1:1, and it remains at 19 when the ratio is 30:1. The membrane selectivity is also stable for 30 days in a highly concentrated solution with a high Mg2+/Li+ concentration ratio. These results indicate the feasibility of the MOFCMs for direct lithium extraction from brines with Mg2+ concentrations up to 3.5 M. This study provides an alternative strategy for designing efficient MOF membranes in extracting valuable minerals in the future.
Collapse
Affiliation(s)
- Chen Zhao
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Fan Feng
- Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jue Hou
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Jian Hu
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Yuyu Su
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Jefferson Zhe Liu
- Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthew Hill
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Benny D Freeman
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
38
|
Liu J, Li B, Lu G, Wang G, Zheng J, Huang L, Feng Y, Xu S, Jiang Y, Liu N. Toward Selective Transport of Monovalent Metal Ions with High Permeability Based on Crown Ether-Encapsulated Metal-Organic Framework Sub-Nanochannels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26634-26642. [PMID: 38722947 DOI: 10.1021/acsami.4c05672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Achieving selective transport of monovalent metal ions with high precision and permeability analogues to biological protein ion channels has long been explored for fundamental research and various applications, such as ion sieving, mineral extraction, and energy harvesting and conversion. However, it still remains a significant challenge to construct artificial nanofluidic devices to realize the trade-off effects between selective ion transportation and high ion permeability. In this work, we report a bioinspired functional micropipet with in situ growth of crown ether-encapsulated metal-organic frameworks (MOFs) inside the tip and realize selective transport of monovalent metal ions. The functional ion-selective micropipet with sub-nanochannels was constructed by the interfacial growth method with the formation of composite MOFs consisting of ZIF-8 and 15-crown-5. The resulting micropipet device exhibited obvious monovalent ion selectivity and high flux of Li+ due to the synergistic effects of size sieving in subnanoconfined space and specific coordination of 15-crown-5 toward Na+. The selectivity of Li+/Na+, Li+/K+, Li+/Ca2+, and Li+/Mg2+ with 15-crown-5@ZIF-8-functionalized micropipet reached 3.9, 5.2, 105.8, and 122.4, respectively, which had an obvious enhancement compared to that with ZIF-8. Notably, the ion flux of Li+ can reach up to 93.8 ± 3.6 mol h-1·m-2 that is much higher than previously reported values. Furthermore, the functional micropipet with 15-crown-5@ZIF-8 sub-nanochannels exhibited stable Li+ selectivity under various conditions, such as different ion concentrations, pH values, and mixed ion solutions. This work not only provides new opportunities for the development of MOF-based nanofluidic devices for selective ion transport but also facilitates the promising practical applications in lithium extraction from salt-like brines, sewage treatment, and other related aspects.
Collapse
Affiliation(s)
- Jiahao Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Baijun Li
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guangwen Lu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofeng Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, China
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Juanjuan Zheng
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, China
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Liying Huang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, China
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yueyue Feng
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, China
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Shiwei Xu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, China
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yanan Jiang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Nannan Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, China
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| |
Collapse
|
39
|
Xu T, Wu B, Li W, Li Y, Zhu Y, Sheng F, Li Q, Ge L, Li X, Wang H, Xu T. Perfect confinement of crown ethers in MOF membrane for complete dehydration and fast transport of monovalent ions. SCIENCE ADVANCES 2024; 10:eadn0944. [PMID: 38718127 PMCID: PMC11078184 DOI: 10.1126/sciadv.adn0944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
Fast transport of monovalent ions is imperative in selective monovalent ion separation based on membranes. Here, we report the in situ growth of crown ether@UiO-66 membranes at a mild condition, where dibenzo-18-crown-6 (DB18C6) or dibenzo-15-crown-5 is perfectly confined in the UiO-66 cavity. Crown ether@UiO-66 membranes exhibit enhanced monovalent ion transport rates and mono-/divalent ion selectivity, due to the combination of size sieving and interaction screening effects toward the complete monovalent ion dehydration. Specifically, the DB18C6@UiO-66 membrane shows a permeation rate (e.g., K+) of 1.2 mol per square meter per hour and a mono-/divalent ion selectivity (e.g., K+/Mg2+) of 57. Theoretical calculations and simulations illustrate that, presumably, ions are completely dehydrated while transporting through the DB18C6@UiO-66 cavity with a lower energy barrier than that of the UiO-66 cavity. This work provides a strategy to develop efficient ion separation membranes via integrating size sieving and interaction screening and to illuminate the effect of ion dehydration on fast ion transport.
Collapse
Affiliation(s)
- Tingting Xu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Bin Wu
- School of Chemistry and Chemical Engineering, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei 230601, China
| | - Wenmin Li
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yifan Li
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yanran Zhu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Fangmeng Sheng
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Qiuhua Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Liang Ge
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Xingya Li
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Tongwen Xu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
40
|
Wan K, He J, Shi X. Construction of High Accuracy Machine Learning Interatomic Potential for Surface/Interface of Nanomaterials-A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305758. [PMID: 37640376 DOI: 10.1002/adma.202305758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/24/2023] [Indexed: 08/31/2023]
Abstract
The inherent discontinuity and unique dimensional attributes of nanomaterial surfaces and interfaces bestow them with various exceptional properties. These properties, however, also introduce difficulties for both experimental and computational studies. The advent of machine learning interatomic potential (MLIP) addresses some of the limitations associated with empirical force fields, presenting a valuable avenue for accurate simulations of these surfaces/interfaces of nanomaterials. Central to this approach is the idea of capturing the relationship between system configuration and potential energy, leveraging the proficiency of machine learning (ML) to precisely approximate high-dimensional functions. This review offers an in-depth examination of MLIP principles and their execution and elaborates on their applications in the realm of nanomaterial surface and interface systems. The prevailing challenges faced by this potent methodology are also discussed.
Collapse
Affiliation(s)
- Kaiwei Wan
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Jianxin He
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xinghua Shi
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
41
|
Zhou M, Zhang P, Zhang M, Jin X, Zhang Y, Liu B, Quan D, Jia M, Zhang Z, Zhang Z, Kong XY, Jiang L. Bioinspired Light-Driven Proton Pump: Engineering Band Alignment of WS 2 with PEDOT:PSS and PDINN. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308277. [PMID: 38044301 DOI: 10.1002/smll.202308277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/14/2023] [Indexed: 12/05/2023]
Abstract
Bioinspired two-dimensional (2D) nanofluidic systems for photo-induced ion transport have attracted great attention, as they open a new pathway to enabling light-to-ionic energy conversion. However, there is still a great challenge in achieving a satisfactory performance. It is noticed that organic solar cells (OSCs, light-harvesting device based on photovoltaic effect) commonly require hole/electron transport layer materials (TLMs), PEDOT:PSS (PE) and PDINN (PD), respectively, to promote the energy conversion. Inspired by such a strategy, an artificial proton pump by coupling a nanofluidic system with TLMs is proposed, in which the PE- and PD-functionalized tungsten disulfide (WS2) multilayers construct a heterogeneous membrane, realizing an excellent output power of ≈1.13 nW. The proton transport is fine-regulated due to the TLMs-engineered band structure of WS2. Clearly, the incorporating TLMs of OSCs into 2D nanofluidic systems offers a feasible and promising approach for band edge engineering and promoting the light-to-ionic energy conversion.
Collapse
Affiliation(s)
- Min Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peikun Zhang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Ming Zhang
- State Key Laboratory of Organic/Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoyan Jin
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuhui Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Biying Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Di Quan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Meijuan Jia
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhiguo Zhang
- State Key Laboratory of Organic/Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhuhua Zhang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Science and Technology Center for Quantum Biology, National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, Zhejiang, 310051, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Science and Technology Center for Quantum Biology, National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, Zhejiang, 310051, P. R. China
| |
Collapse
|
42
|
Lei YJ, Zhao L, Lai WH, Huang Z, Sun B, Jaumaux P, Sun K, Wang YX, Wang G. Electrochemical coupling in subnanometer pores/channels for rechargeable batteries. Chem Soc Rev 2024; 53:3829-3895. [PMID: 38436202 DOI: 10.1039/d3cs01043k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Subnanometer pores/channels (SNPCs) play crucial roles in regulating electrochemical redox reactions for rechargeable batteries. The delicately designed and tailored porous structure of SNPCs not only provides ample space for ion storage but also facilitates efficient ion diffusion within the electrodes in batteries, which can greatly improve the electrochemical performance. However, due to current technological limitations, it is challenging to synthesize and control the quality, storage, and transport of nanopores at the subnanometer scale, as well as to understand the relationship between SNPCs and performances. In this review, we systematically classify and summarize materials with SNPCs from a structural perspective, dividing them into one-dimensional (1D) SNPCs, two-dimensional (2D) SNPCs, and three-dimensional (3D) SNPCs. We also unveil the unique physicochemical properties of SNPCs and analyse electrochemical couplings in SNPCs for rechargeable batteries, including cathodes, anodes, electrolytes, and functional materials. Finally, we discuss the challenges that SNPCs may face in electrochemical reactions in batteries and propose future research directions.
Collapse
Affiliation(s)
- Yao-Jie Lei
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Lingfei Zhao
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia
| | - Wei-Hong Lai
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia
| | - Zefu Huang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Bing Sun
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Pauline Jaumaux
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Kening Sun
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, P. R. China.
| | - Yun-Xiao Wang
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, P. R. China.
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
43
|
Fang M, Yan Z, Ying Y, Hu CK, Xi X, Zhang G, Zhang X, Chen XC, Tang Z, Li L. Boosting Osmotic Energy Harvesting from Organic Solutions by Ultrathin Covalent Organic Framework Membranes. NANO LETTERS 2024; 24:4618-4624. [PMID: 38588453 DOI: 10.1021/acs.nanolett.4c00768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Extracting osmotic energy from waste organic solutions via reverse electrodialysis represents a promising approach to reuse such industrial wastes and helps to mitigate the ever-growing energy needs. Herein, a molecularly thin membrane of covalent organic frameworks is engineered via interfacial polymerization to investigate its ion transport behavior in organic solutions. Interestingly, a significant deviation from linearity between ion conductance and reciprocal viscosity is observed, attributed to the nanoscale confinement effect on intermolecular interactions. This finding suggests a potential strategy to modulate the influence of apprarent viscosity on transmembrane transport. The osmotic energy harvesting of the ultrathin membrane in organic systems was studied, achieving an unprecedented output power density of over 84.5 W m-2 at a 1000-fold salinity gradient with a benign conversion efficiency and excellent stability. These findings provide a meaningful stepping stone for future studies seeking to fully leverage the potentials of organic systems in energy harvesting applications.
Collapse
Affiliation(s)
- Munan Fang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhuang Yan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yue Ying
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chun-Kui Hu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Xiaoyi Xi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guangjie Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaopeng Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xia-Chao Chen
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lianshan Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Centre for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
44
|
Huang WL, Wang XD, Ao YF, Wang QQ, Wang DX. Mimicking the Shape and Function of the ClC Chloride Channel Selective Pore by Combining a Molecular Hourglass Shape with Anion-π Interactions. Chemistry 2024; 30:e202304222. [PMID: 38270386 DOI: 10.1002/chem.202304222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/26/2024]
Abstract
ClC is the main family of natural chloride channel proteins that transport Cl- across the cell membrane with high selectivity. The chloride transport and selectivity are determined by the hourglass-shaped pore and the filter located in the central and narrow region of the pore. Artificial unimolecular channel that mimics both the shape and function of the ClC selective pore is attractive, because it could provide simple molecular model to probe the intriguing mechanism and structure-function relevance of ClC. Here we elaborated upon the concept of molecular hourglass plus anion-π interactions for this purpose. The concept was validated by experimental results of molecular hourglasses using shape-persistent 1,3-alternate tetraoxacalix[2]arene[2]triazine as the central macrocyclic skeleton to control the conductance and selectivity, and anion-π interactions as the driving force to facilitate the chloride dehydration and movement along the channel.
Collapse
Affiliation(s)
- Wen-Long Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Xu-Dong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
45
|
Hou J, Zhao C, Zhang H. Bio-Inspired Subnanofluidics: Advanced Fabrication and Functionalization. SMALL METHODS 2024; 8:e2300278. [PMID: 37203269 DOI: 10.1002/smtd.202300278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/02/2023] [Indexed: 05/20/2023]
Abstract
Biological ion channels can realize high-speed and high-selective ion transport through the protein filter with the sub-1-nanometer channel. Inspired by biological ion channels, various kinds of artificial subnanopores, subnanochannels, and subnanoslits with improved ion selectivity and permeability are recently developed for efficient separation, energy conversion, and biosensing. This review article discusses the advanced fabrication and functionalization methods for constructing subnanofluidic pores, channels, tubes, and slits, which have shown great potential for various applications. Novel fabrication methods for producing subnanofluidics, including top-down techniques such as electron beam etching, ion irradiation, and electrochemical etching, as well as bottom-up approaches starting from advanced microporous frameworks, microporous polymers, lipid bilayer embedded subnanochannels, and stacked 2D materials are well summarized. Meanwhile, the functionalization methods of subnanochannels are discussed based on the introduction of functional groups, which are classified into direct synthesis, covalent bond modifications, and functional molecule fillings. These methods have enabled the construction of subnanochannels with precise control of structure, size, and functionality. The current progress, challenges, and future directions in the field of subnanofluidic are also discussed.
Collapse
Affiliation(s)
- Jue Hou
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Chen Zhao
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
46
|
Liu P, Kong XY, Jiang L, Wen L. Ion transport in nanofluidics under external fields. Chem Soc Rev 2024; 53:2972-3001. [PMID: 38345093 DOI: 10.1039/d3cs00367a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Nanofluidic channels with tailored ion transport dynamics are usually used as channels for ion transport, to enable high-performance ion regulation behaviors. The rational construction of nanofluidics and the introduction of external fields are of vital significance to the advancement and development of these ion transport properties. Focusing on the recent advances of nanofluidics, in this review, various dimensional nanomaterials and their derived homogeneous/heterogeneous nanofluidics are first briefly introduced. Then we discuss the basic principles and properties of ion transport in nanofluidics. As the major part of this review, we focus on recent progress in ion transport in nanofluidics regulated by external physical fields (electric field, light, heat, pressure, etc.) and chemical fields (pH, concentration gradient, chemical reaction, etc.), and reveal the advantages and ion regulation mechanisms of each type. Moreover, the representative applications of these nanofluidic channels in sensing, ionic devices, energy conversion, and other areas are summarized. Finally, the major challenges that need to be addressed in this research field and the future perspective of nanofluidics development and practical applications are briefly illustrated.
Collapse
Affiliation(s)
- Pei Liu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, P. R. China
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, P. R. China
| |
Collapse
|
47
|
Wang M, Xiong Q, Wang M, Lewis NHC, Ying D, Yan G, Hoenig E, Han Y, Lee OS, Peng G, Zhou H, Schatz GC, Liu C. Lanthanide transport in angstrom-scale MoS 2-based two-dimensional channels. SCIENCE ADVANCES 2024; 10:eadh1330. [PMID: 38489373 PMCID: PMC10942105 DOI: 10.1126/sciadv.adh1330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024]
Abstract
Rare earth elements (REEs), critical to modern industry, are difficult to separate and purify, given their similar physicochemical properties originating from the lanthanide contraction. Here, we systematically study the transport of lanthanide ions (Ln3+) in artificially confined angstrom-scale two-dimensional channels using MoS2-based building blocks in an aqueous environment. The results show that the uptake and permeability of Ln3+ assume a well-defined volcano shape peaked at Sm3+. This transport behavior is rooted from the tradeoff between the barrier for dehydration and the strength of interactions of lanthanide ions in the confinement channels, reminiscent of the Sabatier principle. Molecular dynamics simulations reveal that Sm3+, with moderate hydration free energy and intermediate affinity for channel interaction, exhibit the smallest dehydration degree, consequently resulting in the highest permeability. Our work not only highlights the distinct mass transport properties under extreme confinement but also demonstrates the potential of dialing confinement dimension and chemistry for greener REEs separation.
Collapse
Affiliation(s)
- Mingzhan Wang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Qinsi Xiong
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Maoyu Wang
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Nicholas H. C. Lewis
- Department of Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Dongchen Ying
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Gangbin Yan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Eli Hoenig
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Yu Han
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - One-Sun Lee
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Guiming Peng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Hua Zhou
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - George C. Schatz
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Chong Liu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
48
|
Mo RJ, Chen S, Huang LQ, Ding XL, Rafique S, Xia XH, Li ZQ. Regulating ion affinity and dehydration of metal-organic framework sub-nanochannels for high-precision ion separation. Nat Commun 2024; 15:2145. [PMID: 38459053 PMCID: PMC10924084 DOI: 10.1038/s41467-024-46378-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
Membrane consisting of ordered sub-nanochannels has been pursued in ion separation technology to achieve applications including desalination, environment management, and energy conversion. However, high-precision ion separation has not yet been achieved owing to the lack of deep understanding of ion transport mechanism in confined environments. Biological ion channels can conduct ions with ultrahigh permeability and selectivity, which is inseparable from the important role of channel size and "ion-channel" interaction. Here, inspired by the biological systems, we report the high-precision separation of monovalent and divalent cations in functionalized metal-organic framework (MOF) membranes (UiO-66-(X)2, X = NH2, SH, OH and OCH3). We find that the functional group (X) and size of the MOF sub-nanochannel synergistically regulate the ion binding affinity and dehydration process, which is the key in enlarging the transport activation energy difference between target and interference ions to improve the separation performance. The K+/Mg2+ selectivity of the UiO-66-(OCH3)2 membrane reaches as high as 1567.8. This work provides a gateway to the understanding of ion transport mechanism and development of high-precision ion separation membranes.
Collapse
Affiliation(s)
- Ri-Jian Mo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Shuang Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Li-Qiu Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Xin-Lei Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Saima Rafique
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.
| | - Zhong-Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.
| |
Collapse
|
49
|
Lei D, Zhang Z, Jiang L. Bioinspired 2D nanofluidic membranes for energy applications. Chem Soc Rev 2024; 53:2300-2325. [PMID: 38284167 DOI: 10.1039/d3cs00382e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Bioinspired two-dimensional (2D) nanofluidic membranes have been explored for the creation of high-performance ion transport systems that can mimic the delicate transport functions of living organisms. Advanced energy devices made from these membranes show excellent energy storage and conversion capabilities. Further research and development in this area are essential to unlock the full potential of energy devices and facilitate the development of high-performance equipment toward real-world applications and a sustainable future. However, there has been minimal review and summarization of 2D nanofluidic membranes in recent years. Thus, it is necessary to carry out an extensive review to provide a survey library for researchers in related fields. In this review, the classification and the raw materials that are used to construct 2D nanofluidic membranes are first presented. Second, the top-down and bottom-up methods for constructing 2D membranes are introduced. Next, the applications of bioinspired 2D membranes in osmotic energy, hydraulic energy, mechanical energy, photoelectric conversion, lithium batteries, and flow batteries are discussed in detail. Finally, the opportunities and challenges that 2D nanofluidic membranes are likely to face in the future are envisioned. This review aims to provide a broad knowledge base for constructing high-performance bioinspired 2D nanofluidic membranes for advanced energy applications.
Collapse
Affiliation(s)
- Dandan Lei
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, 215123, Suzhou, Jiangsu, China
| | - Zhen Zhang
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, 215123, Suzhou, Jiangsu, China
| | - Lei Jiang
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, 215123, Suzhou, Jiangsu, China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| |
Collapse
|
50
|
Fan K, Zhou S, Xie L, Jia S, Zhao L, Liu X, Liang K, Jiang L, Kong B. Interfacial Assembly of 2D Graphene-Derived Ion Channels for Water-Based Green Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307849. [PMID: 37873917 DOI: 10.1002/adma.202307849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Indexed: 10/25/2023]
Abstract
The utilization of sustained and green energy is believed to alleviate increasing menace of global environmental concerns and energy dilemma. Interfacial assembly of 2D graphene-derived ion channels (2D-GDICs) with tunable ion/fluid transport behavior enables efficient harvesting of renewable green energy from ubiquitous water, especially for osmotic energy harvesting. In this review, various interfacial assembly strategies for fabricating diverse 2D-GDICs are summarized and their ion transport properties are discussed. This review analyzes how particular structure and charge density/distribution of 2D-GDIC can be modulated to minimize internal resistance of ion/fluid transport and enhance energy conversion efficiency, and highlights stimuli-responsive functions and stability of 2D-GDIC and further examines the possibility of integrating 2D-GDIC with other energy conversion systems. Notably, the presented preparation and applications of 2D-GDIC also inspire and guide other 2D materials to fabricate sophisticated ion channels for targeted applications. Finally, potential challenges in this field is analyzed and a prospect to future developments toward high-performance or large-scale real-word applications is offered.
Collapse
Affiliation(s)
- Kun Fan
- College of Electrical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shan Zhou
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Lei Xie
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Shenli Jia
- College of Electrical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Lihua Zhao
- College of Electrical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiangyang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kang Liang
- School of Chemical Engineering and Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Lei Jiang
- Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
- Shandong Research Institute, Fudan University, Shandong, 250103, China
| |
Collapse
|