1
|
Li A, Cao X, Fu R, Guo S, Fei Q. Biocatalysis of CO 2 and CH 4: Key enzymes and challenges. Biotechnol Adv 2024; 72:108347. [PMID: 38527656 DOI: 10.1016/j.biotechadv.2024.108347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Mitigating greenhouse gas emissions is a critical challenge for promoting global sustainability. The utilization of CO2 and CH4 as substrates for the production of valuable products offers a promising avenue for establishing an eco-friendly economy. Biocatalysis, a sustainable process utilizing enzymes to facilitate biochemical reactions, plays a significant role in upcycling greenhouse gases. This review provides a comprehensive overview of the enzymes and associated reactions involved in the biocatalytic conversion of CO2 and CH4. Furthermore, the challenges facing the field are discussed, paving the way for future research directions focused on developing robust enzymes and systems for the efficient fixation of CO2 and CH4.
Collapse
Affiliation(s)
- Aipeng Li
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xupeng Cao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rongzhan Fu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Shuqi Guo
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qiang Fei
- Xi'an Key Laboratory of C1 Compound Bioconversion Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
2
|
Zhu Y, Xie F, Wun TCK, Li K, Lin H, Tsoi CC, Jia H, Chai Y, Zhao Q, Lo BT, Leu S, Jia Y, Ren K, Zhang X. Bio-Inspired Microreactors Continuously Synthesize Glucose Precursor from CO 2 with an Energy Conversion Efficiency 3.3 Times of Rice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305629. [PMID: 38044316 PMCID: PMC10853710 DOI: 10.1002/advs.202305629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/07/2023] [Indexed: 12/05/2023]
Abstract
Excessive CO2 and food shortage are two grand challenges of human society. Directly converting CO2 into food materials can simultaneously alleviate both, like what green crops do in nature. Nevertheless, natural photosynthesis has a limited energy efficiency due to low activity and specificity of key enzyme D-ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). To enhance the efficiency, many prior studies focused on engineering the enzymes, but this study chooses to learn from the nature to design more efficient reactors. This work is original in mimicking the stacked structure of thylakoids in chloroplasts to immobilize RuBisCO in a microreactor using the layer-by-layer strategy, obtaining the continuous conversion of CO2 into glucose precursor at 1.9 nmol min-1 with enhanced activity (1.5 times), stability (≈8 times), and reusability (96% after 10 reuses) relative to the free RuBisCO. The microreactors are further scaled out from one to six in parallel and achieve the production at 15.8 nmol min-1 with an energy conversion efficiency of 3.3 times of rice, showing better performance of this artificial synthesis than NPS in terms of energy conversion efficiency. The exploration of the potential of mass production would benefit both food supply and carbon neutralization.
Collapse
Affiliation(s)
- Yujiao Zhu
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
- Department of ChemistryHong Kong Baptist UniversityKowloonHong Kong999077China
- Research Centre for Resources Engineering towards Carbon Neutrality (RCRE)The Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Fengjia Xie
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
- Research Centre for Resources Engineering towards Carbon Neutrality (RCRE)The Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Tommy Ching Kit Wun
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Kecheng Li
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Huan Lin
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Chemical EngineeringBeijing University of TechnologyBeijing100124China
| | - Chi Chung Tsoi
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
- Photonics Research InstituteThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Huaping Jia
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
- Photonics Research InstituteThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Yao Chai
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
- Photonics Research InstituteThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Qian Zhao
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Benedict Tsz‐woon Lo
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Shao‐Yuan Leu
- Department of Civil and Environmental EngineeringThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| | - Yanwei Jia
- State‐Key Laboratory of Analog and Mixed‐Signal VLSI, Institute of MicroelectronicsFaculty of Science and Technology – ECEFaculty of Health Sciencesand MoE Frontiers Science Center for Precision OncologyUniversity of MacauMacau999078China
| | - Kangning Ren
- Department of ChemistryHong Kong Baptist UniversityKowloonHong Kong999077China
| | - Xuming Zhang
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
- Research Centre for Resources Engineering towards Carbon Neutrality (RCRE)The Hong Kong Polytechnic UniversityKowloonHong Kong999077China
- Photonics Research InstituteThe Hong Kong Polytechnic UniversityKowloonHong Kong999077China
| |
Collapse
|
3
|
Huang Z, Wang L, Yang C, Chen J, Zhao G, Huang X. A versatile optofluidic microreactor for artificial photosynthesis induced coenzyme regeneration and L-glutamate synthesis. LAB ON A CHIP 2022; 22:2878-2885. [PMID: 35838372 DOI: 10.1039/d2lc00398h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the rapid development of modern society, the energy crisis has become a global concern. Solar energy is a good replacement because it is green, unlimited and environment-friendly. Inspired by natural photosynthesis, artificial photosynthesis was developed to convert solar energy to chemical energy by a photocatalyst system. For better utilizing solar energy and improving the conversion efficiency, the design of photoreactors is crucial for the improvement of photocatalysis efficiency. However, most of the reported microreactors hardly satisfy the demands for low cost, easy fabrication, high transparency, being evaporation-proof, ease of scaling up, high surface-to-volume ratio, and photocatalyst immobilization. In this paper, we developed a facile method to build a fully immobilized microreactor (FIM) and a controllable partially immobilized microreactor (PIM), both of which satisfy all the demands mentioned above. In the FIM, the regeneration rate of a coenzyme (nicotinamide adenine dinucleotide, NADH) reached 82.20% in 40 min. Considering the NADH regeneration rate per unit/coating angle of photocatalysts in circular microreactors, the PIM performed much better than the FIM, proving that our partial coating method is a significant and useful improvement. Also, the bioactivity of NADH toward enzyme catalysis was demonstrated by glutamate dehydrogenase-catalyzed synthesis of L-glutamate, and the conversion of α-ketoglutarate reached 99.92%. To test the practicality of the microreactor in a real environment, we performed a test under solar light, achieving a good result of 74.92% in 60 min. Thus, this efficient and versatile microfluidic platform may have good potential for photocatalytic synthesis of versatile valuable products in the future.
Collapse
Affiliation(s)
- Ziyu Huang
- Department of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China.
| | - Lei Wang
- Department of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China.
| | - Chonghui Yang
- Department of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China.
| | - Jiaci Chen
- Department of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China.
| | - Gaozhen Zhao
- Department of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China.
| | - Xiaowen Huang
- Department of Bioengineering, State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China.
| |
Collapse
|