1
|
Griffin LP, Bauer AK, Crumpton AE, Ellwanger MA, Heilmann A, Wiesner A, Neidig ML, Aldridge S. Synthesis, and Structural and Spectroscopic Analysis of Trielyl-Derived Complexes of Iron. Chemistry 2025; 31:e202404451. [PMID: 39960353 PMCID: PMC11937870 DOI: 10.1002/chem.202404451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/17/2025] [Indexed: 03/06/2025]
Abstract
The reactivity of group 13 anions of the form [(NON)E]- (NON=4,5-bis(2,6-diisopropylanilido)-2,7-di-tert-butyl-9,9-dimethyl-xanthene, E=Al, Ga, In) towards Fe(CO)5 has been investigated. In the case of the aluminyl system, both reaction outcome and product structure are highly sensitive to the availability of the potassium counterion; sequestration by 18-crown-6 is necessary to yield a species featuring a direct, unsupported Al-Fe bond. 2.2.2-Cryptand, by contrast, yields a species featuring bridging carbonyl ligands, while the use of no sequestering agent at all leads to isocarbonyl bridging to aluminium. Owing to their lower oxophilicity, the heavier congeners gallium and indium more straightforwardly deliver Fe-E bonded adducts (E=Ga, In). The series of trielyl iron complexes has been interrogated by structural and computational analyses, as well as by IR and Mössbauer spectroscopies, revealing a consistent shift in bond polarity and electron richness at iron as group 13 is descended. This in turn is consistent with the diminishing donor strength of the trielyl ligand with increasing atomic number.
Collapse
Affiliation(s)
- Liam P. Griffin
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Alexis K. Bauer
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Agamemnon E. Crumpton
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Mathias A. Ellwanger
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Andreas Heilmann
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Anja Wiesner
- Institute of Inorganic ChemistryFreie Universität BerlinFabeckstr. 34/3614195BerlinGermany
| | - Michael L. Neidig
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| | - Simon Aldridge
- Inorganic Chemistry LaboratoryDepartment of ChemistryUniversity of OxfordSouth Parks RoadOxfordOX1 3QRUK
| |
Collapse
|
2
|
Merschel A, Heda S, Vishnevskiy YV, Neumann B, Stammler HG, Ghadwal RS. Annulated carbocyclic gallylene and bis-gallylene with two-coordinated Ga(i) atoms. Chem Sci 2025; 16:2222-2230. [PMID: 39781217 PMCID: PMC11706234 DOI: 10.1039/d4sc06782g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/09/2024] [Indexed: 01/12/2025] Open
Abstract
The first carbocyclic gallylene [(ADC)2Ga(GaI2)] and bis-gallylene [(ADC)Ga]2 (ADC = PhC{N(Dipp)C}2; Dipp = 2,6-iPr2C6H3) featuring a central C4Ga2 ring annulated between two 1,3-imidazole rings are prepared by KC8 reductions of [(ADC)GaI2]2. Treatment of [(ADC)Ga]2 with Fe2(CO)9 affords complex [(ADC)GaFe(CO)4]2 in which each Ga(i) atom serves as a two-electron donor. [(ADC)Ga]2 activates white phosphorus (P4) and the Csp2 -F bond of aryl fluorides (ArF) to yield compounds [(ADC)Ga(P4)]2 and cis-/trans-[(ADC)GaF(Ar)]2, respectively. [(ADC)Ga]2 undergoes oxidation with (Me2S)AuCl to give [(ADC)GaCl2]2, while with PhN[double bond, length as m-dash]NPh it forms [1 + 4]-cycloaddition product [(ADC)GaN(Ph)N[double bond, length as m-dash]C6H5]2 by the dearomatization of one of the phenyl rings.
Collapse
Affiliation(s)
- Arne Merschel
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 D-33615 Bielefeld Germany http://www.ghadwalgroup.de
| | - Shkelqim Heda
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 D-33615 Bielefeld Germany http://www.ghadwalgroup.de
| | - Yury V Vishnevskiy
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 D-33615 Bielefeld Germany http://www.ghadwalgroup.de
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 D-33615 Bielefeld Germany http://www.ghadwalgroup.de
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 D-33615 Bielefeld Germany http://www.ghadwalgroup.de
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 D-33615 Bielefeld Germany http://www.ghadwalgroup.de
| |
Collapse
|
3
|
Saddington A, Dong S, Yao S, Zhu J, Driess M. Bis-Silylene-Supported Aluminium Atoms with Aluminylene and Alane Character. Angew Chem Int Ed Engl 2024; 63:e202410790. [PMID: 39024421 DOI: 10.1002/anie.202410790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
The suitability of electron-rich bis-silylenes, specifically the neutral chelating [SiII(Xant)SiII] ligand (SiII=PhC(NtBu)2Si, Xant=9,9-dimethylxanthene) and the anionic [SiII(NAcrid)SiII)]- pincer ligand (NAcrid=2,7,9,9-tetramethylacridane), has been successfully probed to stabilize monovalent bis-silylene-supported aluminium complexes (aluminylenes). At first, the unprecedented aluminium(III) iodide precursors [SiII(Xant)SiII]AlI2 + I- 1 and [SiII(NAcrid)SiII)]AlI2 2 were synthesized using AlI3 and [SiII(Xant)SiII] or [SiII(NAcrid)SiII)]Li(OEt2)], respectively, and structurally characterized. While reduction of 1 with KC8 led merely to unidentified products, the dehalogenation of 2 afforded the dimer of the desired {[SiII(NAcrid)SiII)]Al:} aluminylene with a four-membered SiIV 2AlIII 2 ring. Remarkably, the proposed aluminylene intermediates [SiII(Xant)SiII]AlII and {[SiII(NAcrid)SiII)]Al:} could be produced through reaction of 1 and 2 with Collman's reagent, K2Fe(CO)4, and trapped as AlI:→Fe(CO)4 complexes 5 and 6, respectively. While 6 is stable in solution, 5 loses one CO ligand in solution to afford the silylene- and aluminylene-coordinated iron(0) complex 7 from an intramolecular substitution reaction. The electronic structures of the novel compounds were investigated by Density Functional Theory calculations.
Collapse
Affiliation(s)
- Artemis Saddington
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Shicheng Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Shenglai Yao
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| | - Jun Zhu
- School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, No. 2001 Longxiang Blvd., Longgang Dist., Shenzhen, Guangdong, 518172, China
| | - Matthias Driess
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Strasse des 17. Juni 115, Sekr. C2, 10623, Berlin, Germany
| |
Collapse
|
4
|
Sato K, Komuro T, Imashuku S, Li H, Ichitsubo T, Hashimoto H. Transition Metal Parent Alumylene Complexes: Synthesis, Structures, and XPS Characterization of Aluminum Oxidation State. Inorg Chem 2024; 63:16940-16948. [PMID: 39189500 DOI: 10.1021/acs.inorgchem.4c03356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The first isolation and characterization of transition metal complexes with the parent Al(I)-H unit were achieved in base-stabilized forms. W and Fe complexes, Cp*(CO)n(H)M←:AlH(NHC)2 (NHC = N-heterocyclic carbene, n = 1 or 2), were synthesized in 43-63% yields by the one-step reaction of Cp*M(CO)n(py)Me with H3Al·NHC. The characterization included 1H and 27Al nuclear magnetic resonance (NMR), and infrared (IR) spectroscopic analysis, as well as DFT calculations, which revealed the extremely strong σ-donating ability of the :AlH(NHC)2 ligand, and the highly polarized M(δ-)←:Al(δ+) coordination bonds. The monovalent oxidation state of the Al center of these complexes was confirmed by X-ray photoelectron spectroscopy (XPS). The hydroalumination of carbodiimide and the reduction of CO2 to CO were also demonstrated.
Collapse
Affiliation(s)
- Keita Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Takashi Komuro
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Susumu Imashuku
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Hongyi Li
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Tetsu Ichitsubo
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Hisako Hashimoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
5
|
Subasinghe SMS, Mankad NP. Lessons from recent theoretical treatments of Al-M bonds (M = Fe, Cu, Ag, Au) that capture CO 2. Dalton Trans 2024; 53:13709-13715. [PMID: 39106074 DOI: 10.1039/d4dt02018a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Complexes with Al-M bonds (M = transition metal) have emerged as platforms for discovering new reaction chemistry either through cooperative bond activation behaviour of the heterobinuclear unit or by modifying the properties of the M site through its interaction with the Al centre. Therefore, elucidating the nature of Al-M bonding is critical to advancing this research area and typically involves careful theoretical modelling. This Frontier article reviews selected recent case studies that included theoretical treatments of Al-M bonds, specifically highlighting complexes capable of cooperative CO2 activation and focusing on extracting lessons particular to the Al-M sub-field that will inform future studies with theoretical/computational components.
Collapse
Affiliation(s)
| | - Neal P Mankad
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
6
|
He M, Hu C, Wei R, Wang XF, Liu LL. Recent advances in the chemistry of isolable carbene analogues with group 13-15 elements. Chem Soc Rev 2024; 53:3896-3951. [PMID: 38436383 DOI: 10.1039/d3cs00784g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Carbenes (R2C:), compounds with a divalent carbon atom containing only six valence shell electrons, have evolved into a broader class with the replacement of the carbene carbon or the RC moiety with main group elements, leading to the creation of main group carbene analogues. These analogues, mirroring the electronic structure of carbenes (a lone pair of electrons and an empty orbital), demonstrate unique reactivity. Over the last three decades, this area has seen substantial advancements, paralleling the innovations in carbene chemistry. Recent studies have revealed a spectrum of unique carbene analogues, such as monocoordinate aluminylenes, nitrenes, and bismuthinidenes, notable for their extraordinary properties and diverse reactivity, offering promising applications in small molecule activation. This review delves into the isolable main group carbene analogues that are in the forefront from 2010 and beyond, spanning elements from group 13 (B, Al, Ga, In, and Tl), group 14 (Si, Ge, Sn, and Pb) and group 15 (N, P, As, Sb, and Bi). Specifically, this review focuses on the potential amphiphilic species that possess both lone pairs of electrons and vacant orbitals. We detail their comprehensive synthesis and stabilization strategies, outlining the reactivity arising from their distinct structural characteristics.
Collapse
Affiliation(s)
- Mian He
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Chaopeng Hu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Rui Wei
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xin-Feng Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Liu Leo Liu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
7
|
Fernández S, Fernando S, Planas O. Cooperation towards nobility: equipping first-row transition metals with an aluminium sword. Dalton Trans 2023; 52:14259-14286. [PMID: 37740303 DOI: 10.1039/d3dt02722h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The exploration for noble metals substitutes in catalysis has become a highly active area of research, driven by the pursuit of sustainable chemical processes. Although the utilization of base metals holds great potential as an alternative, their successful implementation in predictable catalytic processes necessitates the development of appropriate ligands. Such ligands must be capable of controlling their intricate redox chemistry and promote two-electron events, thus mimicking well-established organometallic processes in noble metal catalysis. While numerous approaches for infusing nobility to base metals have been explored, metal-ligand cooperation has garnered significant attention in recent years. Within this context, aluminium-based ligands offer interesting features to fine-tune the activity of metal centres, but their application in base metal catalysis remains largely unexplored. This perspective seeks to highlight the most recent breakthroughs in the reactivity of heterobimetallic aluminium-base-metal complexes, while also showcasing their potential to develop novel and predictable catalytic transformations. By turning the spotlight on such heterobimetallic species, we aim to inspire chemists to explore aluminium-base-metal species and expand the range of their applications as catalysts.
Collapse
Affiliation(s)
- Sergio Fernández
- Queen Mary University of London, School of Physical and Chemical Sciences, Department of Chemistry, Mile End Road, London E1 4NS, UK.
| | - Selwin Fernando
- Queen Mary University of London, School of Physical and Chemical Sciences, Department of Chemistry, Mile End Road, London E1 4NS, UK.
| | - Oriol Planas
- Queen Mary University of London, School of Physical and Chemical Sciences, Department of Chemistry, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
8
|
Boronski JT, Thomas-Hargreaves LR, Ellwanger MA, Crumpton AE, Hicks J, Bekiş DF, Aldridge S, Buchner MR. Inducing Nucleophilic Reactivity at Beryllium with an Aluminyl Ligand. J Am Chem Soc 2023; 145:4408-4413. [PMID: 36786728 PMCID: PMC9983009 DOI: 10.1021/jacs.3c00480] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The reactions of anionic aluminium or gallium nucleophiles {K[E(NON)]}2 (E = Al, 1; Ga, 2; NON = 4,5-bis(2,6-diisopropylanilido)-2,7-ditert-butyl-9,9-dimethylxanthene) with beryllocene (BeCp2) led to the displacement of one cyclopentadienyl ligand at beryllium and the formation of compounds containing Be-Al or Be-Ga bonds (NON)EBeCp (E = Al, 3; Ga, 4). The Be-Al bond in the beryllium-aluminyl complex [2.310(4) Å] is much shorter than that found in the small number of previous examples [2.368(2) to 2.432(6) Å], and quantum chemical calculations suggest the existence of a non-nuclear attractor (NNA) for the Be-Al interaction. This represents the first example of a NNA for a heteroatomic interaction in an isolated molecular complex. As a result of this unusual electronic structure and the similarity in the Pauling electronegativities of beryllium and aluminium, the charge at the beryllium center (+1.39) in 3 is calculated to be less positive than that of the aluminium center (+1.88). This calculated charge distribution suggests the possibility for nucleophilic behavior at beryllium and correlates with the observed reactivity of the beryllium-aluminyl complex with N,N'-diisopropylcarbodiimide─the electrophilic carbon center of the carbodiimide undergoes nucleophilic attack by beryllium, thereby yielding a beryllium-diaminocarbene complex.
Collapse
Affiliation(s)
- Josef T. Boronski
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, United Kingdom;,
| | | | - Mathias A. Ellwanger
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, United Kingdom;
| | - Agamemnon E. Crumpton
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, United Kingdom;
| | - Jamie Hicks
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, United Kingdom;
| | - Deniz F. Bekiş
- Fachbereich
Chemie, Philipps-Universität Marburg, Marburg 35037, Germany
| | - Simon Aldridge
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, United Kingdom;,
| | - Magnus R. Buchner
- Fachbereich
Chemie, Philipps-Universität Marburg, Marburg 35037, Germany,
| |
Collapse
|
9
|
Thanigachalam S, Pathak M, Sathiyanarayanan KI. Photodegradation of rhodamine-B and methyl orange employing nano-alumina developed from new aluminium(III) complex(es) associated with phenanthridine-salicylaldehyde derived ligands. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2120814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Sathish Thanigachalam
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Madhvesh Pathak
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | |
Collapse
|
10
|
Dodonov VA, Sokolov VG, Baranov EV, Skatova AA, Xu W, Zhao Y, Yang XJ, Fedushkin IL. Reactivity of Transition Metal Gallylene Complexes Toward Substrates with Multiple Carbon–Element Bonds. Inorg Chem 2022; 61:14962-14972. [DOI: 10.1021/acs.inorgchem.2c01296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vladimir A. Dodonov
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences (IOMC RAS), Tropinina 49, Nizhny Novgorod 603950, Russian Federation
| | - Vladimir G. Sokolov
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences (IOMC RAS), Tropinina 49, Nizhny Novgorod 603950, Russian Federation
| | - Evgeny V. Baranov
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences (IOMC RAS), Tropinina 49, Nizhny Novgorod 603950, Russian Federation
| | - Alexandra A. Skatova
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences (IOMC RAS), Tropinina 49, Nizhny Novgorod 603950, Russian Federation
| | - Wenhua Xu
- College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Yanxia Zhao
- College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Xiao-Juan Yang
- College of Chemistry and Materials Science, Northwest University, Xi’an 710069, China
| | - Igor L. Fedushkin
- G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences (IOMC RAS), Tropinina 49, Nizhny Novgorod 603950, Russian Federation
- Kozma Minin Nizhny Novgorod State Pedagogical University, Ulyanova 1, Nizhny Novgorod 603005, Russian Federation
| |
Collapse
|
11
|
Sinhababu S, Mankad NP. Diverse Thermal and Photochemical Reactivity of an Al–Fe Bonded Heterobimetallic Complex. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Soumen Sinhababu
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
| | - Neal P. Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
12
|
Gorgas N, White AJP, Crimmin MR. Cooperative C-H Bond Activation by a Low-Spin d 6 Iron-Aluminum Complex. J Am Chem Soc 2022; 144:8770-8777. [PMID: 35512338 PMCID: PMC9121387 DOI: 10.1021/jacs.2c02662] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 12/29/2022]
Abstract
The reactions of transition metal complexes underpin numerous synthetic processes and catalytic transformations. Typically, this reactivity involves the participation of empty and filled molecular orbitals centered on the transition metal. Kinetically stabilized species, such as octahedral low-spin d6 transition metal complexes, are not expected to participate directly in these reactions. However, novel approaches that exploit metal-ligand cooperativity offer an opportunity to challenge these preconceptions. Here, we show that inclusion of an aluminum-based ligand into the coordination sphere of neutral low-spin d6 iron complex leads to unexpected reactivity. Complexes featuring an unsupported Fe-Al bond are capable of the intermolecular C-H bond activation of pyridines. Mechanistic analysis suggests that C-H activation proceeds through a reductive deprotonation in which the two metal centers (Fe and Al) act like a frustrated Lewis pair. The key to this behavior is a ground state destabilization of the d6 iron complex, brought about by the inclusion of the electropositive aluminum-based ligand. These findings have immediate implications for the design of reagents and catalysts based on first-row transition metals.
Collapse
Affiliation(s)
- Nikolaus Gorgas
- Department of Chemistry, Imperial
College London, White City, London W12 0BZ, United
Kingdom
| | - Andrew J. P. White
- Department of Chemistry, Imperial
College London, White City, London W12 0BZ, United
Kingdom
| | - Mark R. Crimmin
- Department of Chemistry, Imperial
College London, White City, London W12 0BZ, United
Kingdom
| |
Collapse
|
13
|
Sinhababu S, Radzhabov MR, Telser J, Mankad NP. Cooperative Activation of CO 2 and Epoxide by a Heterobinuclear Al-Fe Complex via Radical Pair Mechanisms. J Am Chem Soc 2022; 144:3210-3221. [PMID: 35157448 PMCID: PMC9308047 DOI: 10.1021/jacs.1c13108] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Activation of inert molecules like CO2 is often mediated by cooperative chemistry between two reactive sites within a catalytic assembly, the most common form of which is Lewis acid/base bifunctionality observed in both natural metalloenzymes and synthetic systems. Here, we disclose a heterobinuclear complex with an Al-Fe bond that instead activates CO2 and other substrates through cooperative behavior of two radical intermediates. The complex Ldipp(Me)AlFp (2, Ldipp = HC{(CMe)(2,6-iPr2C6H3N)}2, Fp = FeCp(CO)2, Cp = η5-C5H5) was found to insert CO2 and cyclohexene oxide, producing LdippAl(Me)(μ:κ2-O2C)Fp (3) and LdippAl(Me)(μ-OC6H10)Fp (4), respectively. Detailed mechanistic studies indicate unusual pathways in which (i) the Al-Fe bond dissociates homolytically to generate formally AlII and FeI metalloradicals, then (ii) the metalloradicals add to substrate in a pairwise fashion initiated by O-coordination to Al. The accessibility of this unusual mechanism is aided, in part, by the redox noninnocent nature of Ldipp that stabilizes the formally AlII intermediates, instead giving them predominantly AlIII-like physical character. The redox noninnocent nature of the radical intermediates was elucidated through direct observation of LdippAl(Me)(OCPh2) (22), a metalloradical species generated by addition of benzophenone to 2. Complex 22 was characterized by X-band EPR, Q-band EPR, and ENDOR spectroscopies as well as computational modeling. The "radical pair" pathway represents an unprecedented mechanism for CO2 activation.
Collapse
Affiliation(s)
- Soumen Sinhababu
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, United States
| | - Maxim R. Radzhabov
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, United States
| | - Joshua Telser
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| | - Neal P. Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor St., Chicago, Illinois 60607, United States
| |
Collapse
|
14
|
Shi R, Yu D, Zhou F, Yu J, Mu T. An emerging deep eutectic solvent based on halogen-bond. Chem Commun (Camb) 2022; 58:4607-4610. [DOI: 10.1039/d2cc00528j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new deep eutectic solvents (DES) driven by halogen-bond was exploited. A family of eutectic mixtures in liquid state were obtained by combination of quaternary ammonium salts and dihalogens. The...
Collapse
|
15
|
Zhang X, Liu LL. A Free Aluminylene with Diverse σ‐Donating and Doubly σ/π‐Accepting Ligand Features for Transition Metals**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xin Zhang
- Department of Chemistry and Shenzhen Grubbs Institute Southern University of Science and Technology Shenzhen 518055 China
| | - Liu Leo Liu
- Department of Chemistry and Shenzhen Grubbs Institute Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
16
|
Zhang X, Liu LL. A Free Aluminylene with Diverse σ-Donating and Doubly σ/π-Accepting Ligand Features for Transition Metals*. Angew Chem Int Ed Engl 2021; 60:27062-27069. [PMID: 34614275 DOI: 10.1002/anie.202111975] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/26/2021] [Indexed: 12/15/2022]
Abstract
We report herein the synthesis, characterization, and coordination chemistry of a free N-aluminylene, namely a carbazolylaluminylene 2 b. This species is prepared via a reduction reaction of the corresponding carbazolyl aluminium diiodide. The coordination behavior of 2 b towards transition metal centers (W, Cr) is shown to afford a series of novel aluminylene complexes 3-6 with diverse coordination modes. We demonstrate that the tri-active ambiphilic Al center in 2 b can behave as: 1. a σ-donating and doubly π-accepting ligand; 2. a σ-donating, σ-accepting and π-accepting ligand; and 3. a σ-donating and doubly σ-accepting ligand. Additionally, we show ligand exchange at the aluminylene center providing access to the modulation of electronic properties of transition metals without changing the coordinated atoms. Investigations of 2 b with IDippCuCl (IDipp=1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) show an unprecedented aluminylene-alumanyl transformation leading to a rare terminal Cu-alumanyl complex 8. The electronic structures of such complexes and the mechanism of the aluminylene-alumanyl transformation are investigated through density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liu Leo Liu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|