1
|
Galindo-Padrón AG, Lorenzo-Anota HY, Rueda-Munguía M, García-Carrasco A, Gaitán López M, Vázquez-Garza E, Campos-González E, Lozano O, Cholula-Díaz JL. Study on the Regulated Cell Death of Hypertrophic H9c2 Cells Induced by Au:Ag Nanoparticles. Int J Nanomedicine 2025; 20:1491-1507. [PMID: 39925684 PMCID: PMC11804235 DOI: 10.2147/ijn.s491288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/01/2025] [Indexed: 02/11/2025] Open
Abstract
Background and Aim Over the past years, noble metal-based nanoparticles have been extensively investigated for their applications in nanomedicine. However, there are still concerns about the potential adversities that these nanoparticles may present in an organism. In particular, whether they could cause an exacerbated cytotoxic response in susceptible tissues due to damage or disease, such as the heart, liver, spleen, or kidneys. In this regard, this study aims to evaluate the cytotoxicity of mono- and bimetallic nanoparticles of gold and silver (Au:Ag NPs) on healthy and hypertrophic cardiac H9c2 cells, and on healthy and metabolically activated macrophages derived from U937 cells. The main objective of this work is to explore the susceptibility of cells due to exposure to Au:Ag NPs in conditions representing cardiometabolic diseases. Methods Au:Ag NPs were synthesized in different molar ratios (Au:Ag, 100:0, 75:25, 50:50, 25:75, 0:100) using starch as a capping and reducing agent. Their physicochemical properties were characterized through UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), ζ-potential measurements, and transmission electron microscopy (TEM). Moreover, the effect of the metal-based nanoparticle exposure on healthy and hypertrophic H9c2 cells was measured by analyzing the cellular vitality, the loss of mitochondrial membrane potential (∆Ψm), and the production of mitochondrial reactive oxygen species (mROS). Results The Au:Ag NPs did not affect the cell vitality of healthy or metabolically activated macrophages. On the contrary, healthy H9c2 cells showed decreased mitochondrial metabolism when exposed to NPs with higher Ag concentrations. Furthermore, hypertrophic H9c2 cells were more susceptible to the same NPs compared to their non-hypertrophic counterparts, and presented a pronounced loss of ∆Ψm. In addition, these NPs increased the production of mROS and regulated cell death in both cardiac cells. Conclusion In conclusion, low doses of high-Ag load in Au:Ag NPs produced cytotoxicity on H9c2 cardiac cells, with hypertrophic cells being more susceptible. These results suggest that cardiac hypertrophic conditions are more prone to a cytotoxic response in the presence of bimetallic Au:Ag NPs compared to healthy cells. In addition, this work opens the door to explore the nanotoxicity of noble metal-based NPs in biological disease conditions.
Collapse
Affiliation(s)
| | - Helen Yarimet Lorenzo-Anota
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
| | - Mayte Rueda-Munguía
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
| | | | - Mabel Gaitán López
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
| | - Eduardo Vázquez-Garza
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
| | | | - Omar Lozano
- Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
- Cátedra de Cardiología y Medicina Vascular, Tecnologico de Monterrey, Monterrey, Nuevo León, México
| | - Jorge L Cholula-Díaz
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
| |
Collapse
|
2
|
Karnwal A, Sharma V, Kumar G, Jassim AY, Dohroo A, Sivanesan I. Transforming Medicine with Nanobiotechnology: Nanocarriers and Their Biomedical Applications. Pharmaceutics 2024; 16:1114. [PMID: 39339152 PMCID: PMC11435024 DOI: 10.3390/pharmaceutics16091114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/11/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Nanobiotechnology, at the intersection of nanotechnology and biology, represents a burgeoning field poised to revolutionize medicine through the use of advanced nanocarriers. These nanocarriers, endowed with distinctive physiobiological attributes, are instrumental in diverse therapeutic domains including drug delivery for microbial infections, cancer treatment, tissue engineering, immunotherapy, and gene therapy. Despite the transformative potential, several challenges hinder their efficacy, such as limited drug capacity, suboptimal targeting, and poor solubility. This review delves into the latest advancements in nanocarrier technologies, examining their properties, associated limitations, and the innovative solutions developed to address these issues. It highlights promising nanocarrier systems like nanocomposites, micelles, hydrogels, microneedles, and artificial cells that employ advanced conjugation techniques, sustained and stimulus-responsive release mechanisms, and enhanced solubility. By exploring these novel structures and their contributions to overcoming existing barriers, the article emphasizes the vital role of interdisciplinary research in advancing nanobiotechnology. This field offers unparalleled opportunities for precise and effective therapeutic delivery, underscoring its potential to reshape healthcare through personalized, targeted treatments and improved drug performance.
Collapse
Affiliation(s)
- Arun Karnwal
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India; (A.K.); (G.K.)
| | - Vikas Sharma
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India;
| | - Gaurav Kumar
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, India; (A.K.); (G.K.)
| | - Amar Yasser Jassim
- Department of Marine Vertebrate, Marine Science Center, University of Basrah, Basrah 61004, Iraq;
| | - Aradhana Dohroo
- School of Agricultural Sciences, Baddi University of Emerging Sciences and Technologies, Baddi 173405, India;
| | - Iyyakkannu Sivanesan
- Department of Environmental Health Science, Institute of Natural Science and Agriculture, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
3
|
Blinova A, Blinov A, Kravtsov A, Nagdalian A, Rekhman Z, Gvozdenko A, Kolodkin M, Filippov D, Askerova A, Golik A, Serov A, Shariati MA, Alharbi NS, Kadaikunnan S, Thiruvengadam M. Synthesis, Characterization and Potential Antimicrobial Activity of Selenium Nanoparticles Stabilized with Cetyltrimethylammonium Chloride. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3128. [PMID: 38133025 PMCID: PMC10746028 DOI: 10.3390/nano13243128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/02/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Selenium nanoparticles (Se NPs) have a number of unique properties that determine the use of the resulting nanomaterials in various fields. The focus of this paper is the stabilization of Se NPs with cetyltrimethylammonium chloride (CTAC). Se NPs were obtained by chemical reduction in an aqueous medium. The influence of the concentration of precursors and synthesis conditions on the size of Se NPs and the process of micelle formation was established. Transmission electron microscopy was used to study the morphology of Se NPs. The influence of the pH of the medium and the concentration of ions in the sol on the stability of Se micelles was studied. According to the results of this study, the concentration of positively charged ions has a greater effect on the particle size in the positive Se NPs sol than in the negative Se NPs sol. The potential antibacterial and fungicidal properties of the samples were studied on Escherichia coli, Micrococcus luteus and Mucor. Concentrations of Se NPs stabilized with CTAC with potential bactericidal and fungicidal effects were discovered. Considering the revealed potential antimicrobial activity, the synthesized Se NPs-CTAC molecular complex can be further studied and applied in the development of veterinary drugs, pharmaceuticals, and cosmetics.
Collapse
Affiliation(s)
- Anastasiya Blinova
- Physical and Technical Faculty, North-Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.B.); (A.K.); (Z.R.); (A.G.); (M.K.); (D.F.); (A.G.)
| | - Andrey Blinov
- Physical and Technical Faculty, North-Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.B.); (A.K.); (Z.R.); (A.G.); (M.K.); (D.F.); (A.G.)
| | - Alexander Kravtsov
- Physical and Technical Faculty, North-Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.B.); (A.K.); (Z.R.); (A.G.); (M.K.); (D.F.); (A.G.)
| | - Andrey Nagdalian
- Laboratory of Food and Industrial Biotechnology, North-Caucasus Federal University, 355017 Stavropol, Russia;
| | - Zafar Rekhman
- Physical and Technical Faculty, North-Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.B.); (A.K.); (Z.R.); (A.G.); (M.K.); (D.F.); (A.G.)
| | - Alexey Gvozdenko
- Physical and Technical Faculty, North-Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.B.); (A.K.); (Z.R.); (A.G.); (M.K.); (D.F.); (A.G.)
| | - Maksim Kolodkin
- Physical and Technical Faculty, North-Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.B.); (A.K.); (Z.R.); (A.G.); (M.K.); (D.F.); (A.G.)
| | - Dionis Filippov
- Physical and Technical Faculty, North-Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.B.); (A.K.); (Z.R.); (A.G.); (M.K.); (D.F.); (A.G.)
| | - Alina Askerova
- Laboratory of Food and Industrial Biotechnology, North-Caucasus Federal University, 355017 Stavropol, Russia;
| | - Alexey Golik
- Physical and Technical Faculty, North-Caucasus Federal University, 355017 Stavropol, Russia; (A.B.); (A.B.); (A.K.); (Z.R.); (A.G.); (M.K.); (D.F.); (A.G.)
| | - Alexander Serov
- Chemical and Pharmaceutical Faculty, North-Caucasus Federal University, 355017 Stavropol, Russia;
| | - Mohammad Ali Shariati
- Scientific Department, Semey Branch of the Kazakh Research Institute of Processing and Food Industry, Gagarin Avenue 238G, Almaty 050060, Kazakhstan;
| | - Naiyf S. Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia; (N.S.A.); (S.K.)
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia; (N.S.A.); (S.K.)
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
4
|
Nieto-Argüello A, Medina-Cruz D, Pérez-Ramírez YS, Pérez-García SA, Velasco-Soto MA, Jafari Z, De Leon I, González MU, Huttel Y, Martínez L, Mayoral Á, Webster TJ, García-Martín JM, Cholula-Díaz JL. Composition-Dependent Cytotoxic and Antibacterial Activity of Biopolymer-Capped Ag/Au Bimetallic Nanoparticles against Melanoma and Multidrug-Resistant Pathogens. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:779. [PMID: 35269267 PMCID: PMC8912067 DOI: 10.3390/nano12050779] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023]
Abstract
Nanostructured silver (Ag) and gold (Au) are widely known to be potent biocidal and cytotoxic agents as well as biocompatible nanomaterials. It has been recently reported that combining both metals in a specific chemical composition causes a significant enhancement in their antibacterial activity against antibiotic-resistant bacterial strains, as well as in their anticancer effects, while preserving cytocompatibility properties. In this work, Ag/Au bimetallic nanoparticles over a complete atomic chemical composition range were prepared at 10 at% through a green, highly reproducible, and simple approach using starch as a unique reducing and capping agent. The noble metal nanosystems were thoroughly characterized by different analytical techniques, including UV-visible and FT-IR spectroscopies, XRD, TEM/EDS, XPS and ICP-MS. Moreover, absorption spectra simulations for representative colloidal Ag/Au-NP samples were conducted using FDTD modelling. The antibacterial properties of the bimetallic nanoparticles were determined against multidrug-resistant Escherichia coli and methicillin-resistant Staphylococcus aureus, showing a clear dose-dependent inhibition even at the lowest concentration tested (5 µg/mL). Cytocompatibility assays showed a medium range of toxicity at low and intermediate concentrations (5 and 10 µg/mL), while triggering an anticancer behavior, even at the lowest concentration tested, in a process involving reactive oxygen species production per the nanoparticle Au:Ag ratio. In this manner, this study provides promising evidence that the presently fabricated Ag/Au-NPs should be further studied for a wide range of antibacterial and anticancer applications.
Collapse
Affiliation(s)
- Alfonso Nieto-Argüello
- School of Engineering and Sciences, Tecnologico de Monterrey, Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico; (A.N.-A.); (Y.S.P.-R.); (M.A.V.-S.); (Z.J.); (I.D.L.)
| | - David Medina-Cruz
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; (D.M.-C.); (T.J.W.)
| | - Yeremi S. Pérez-Ramírez
- School of Engineering and Sciences, Tecnologico de Monterrey, Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico; (A.N.-A.); (Y.S.P.-R.); (M.A.V.-S.); (Z.J.); (I.D.L.)
| | - Sergio A. Pérez-García
- Centro de Investigación en Materiales Avanzados, S. C. (CIMAV), Unidad Monterrey, Alianza Norte 202, Apodaca 66628, NL, Mexico;
| | - Miguel A. Velasco-Soto
- School of Engineering and Sciences, Tecnologico de Monterrey, Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico; (A.N.-A.); (Y.S.P.-R.); (M.A.V.-S.); (Z.J.); (I.D.L.)
| | - Zeinab Jafari
- School of Engineering and Sciences, Tecnologico de Monterrey, Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico; (A.N.-A.); (Y.S.P.-R.); (M.A.V.-S.); (Z.J.); (I.D.L.)
| | - Israel De Leon
- School of Engineering and Sciences, Tecnologico de Monterrey, Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico; (A.N.-A.); (Y.S.P.-R.); (M.A.V.-S.); (Z.J.); (I.D.L.)
| | - María Ujué González
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, 28760 Tres Cantos, Spain; (M.U.G.); (J.M.G.-M.)
| | - Yves Huttel
- Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain; (Y.H.); (L.M.)
| | - Lidia Martínez
- Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain; (Y.H.); (L.M.)
| | - Álvaro Mayoral
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Pedro Cerbuna, 50009 Zaragoza, Spain;
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Center for High-Resolution Electron Microscopy (CħEM), School of Physical Science and Technology (SPST), ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA; (D.M.-C.); (T.J.W.)
| | - José M. García-Martín
- Instituto de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, 28760 Tres Cantos, Spain; (M.U.G.); (J.M.G.-M.)
| | - Jorge L. Cholula-Díaz
- School of Engineering and Sciences, Tecnologico de Monterrey, Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico; (A.N.-A.); (Y.S.P.-R.); (M.A.V.-S.); (Z.J.); (I.D.L.)
| |
Collapse
|
5
|
Scala A, Neri G, Micale N, Cordaro M, Piperno A. State of the Art on Green Route Synthesis of Gold/Silver Bimetallic Nanoparticles. Molecules 2022; 27:1134. [PMID: 35164399 PMCID: PMC8839662 DOI: 10.3390/molecules27031134] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 01/03/2023] Open
Abstract
Recently, bimetallic nanoparticles (BMNPs) blending the properties of two metals in one nanostructured system have generated enormous interest due to their potential applications in various fields including biosensing, imaging, nanomedicine, and catalysis. BMNPs have been developed later with respect to the monometallic nanoparticles (MNPs) and their physicochemical and biological properties have not yet been comprehensively explored. The manuscript aims at collecting the main design criteria used to synthetize BMNPs focusing on green route synthesis. The influence of experimental parameters such as temperature, time, reagent concentrations, capping agents on the particle growth and colloidal stability are examined. Finally, an overview of their nanotechnological applications and biological profile are presented.
Collapse
Affiliation(s)
- Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (G.N.); (N.M.); (M.C.)
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (G.N.); (N.M.); (M.C.)
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (G.N.); (N.M.); (M.C.)
| | - Massimiliano Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (G.N.); (N.M.); (M.C.)
- CNR-ITAE, Via S. Lucia sopra Contesse, 5, 98126 Messina, Italy
| | - Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (A.S.); (G.N.); (N.M.); (M.C.)
| |
Collapse
|
6
|
Berta L, Coman NA, Rusu A, Tanase C. A Review on Plant-Mediated Synthesis of Bimetallic Nanoparticles, Characterisation and Their Biological Applications. MATERIALS 2021; 14:ma14247677. [PMID: 34947271 PMCID: PMC8705710 DOI: 10.3390/ma14247677] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
The study of bimetallic nanoparticles (BNPs) has constantly been expanding, especially in the last decade. The biosynthesis of BNPs mediated by natural extracts is simple, low-cost, and safe for the environment. Plant extracts contain phenolic compounds that act as reducing agents (flavonoids, terpenoids, tannins, and alkaloids) and stabilising ligands moieties (carbonyl, carboxyl, and amine groups), useful in the green synthesis of nanoparticles (NPs), and are free of toxic by-products. Noble bimetallic NPs (containing silver, gold, platinum, and palladium) have potential for biomedical applications due to their safety, stability in the biological environment, and low toxicity. They substantially impact human health (applications in medicine and pharmacy) due to the proven biological effects (catalytic, antioxidant, antibacterial, antidiabetic, antitumor, hepatoprotective, and regenerative activity). To the best of our knowledge, there are no review papers in the literature on the synthesis and characterisation of plant-mediated BNPs and their pharmacological potential. Thus, an effort has been made to provide a clear perspective on the synthesis of BNPs and the antioxidant, antibacterial, anticancer, antidiabetic, and size/shape-dependent applications of BNPs. Furthermore, we discussed the factors that influence BNPs biosyntheses such as pH, temperature, time, metal ion concentration, and plant extract.
Collapse
Affiliation(s)
- Lavinia Berta
- Department of General and Inorganic Chemistry, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 38 Gheorghe Marinescu Street, 540139 Târgu Mureș, Romania;
| | - Năstaca-Alina Coman
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania;
| | - Aura Rusu
- Pharmaceutical and Therapeutical Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mureș, Romania
- Correspondence:
| | - Corneliu Tanase
- Pharmaceutical Botany Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania;
| |
Collapse
|