1
|
Djehiche C, Benzidane N, Djeghim H, Tebboub M, Mebrek S, Abdelouhab K, Baghiani A, Charef N, Messaoudi M, Bensouici C, Lebsir R, Emran TB, Alsalme A, Cornu D, Bechelany M, Arrar L, Barhoum A. Ammodaucus Leucotrichus Seed Extract as a Potential Therapy in Animal Models of Rheumatoid Arthritis Induced by Complete Freund Adjuvant and Chicken Cartilage Collagen. Appl Biochem Biotechnol 2024; 196:8214-8238. [PMID: 38700618 DOI: 10.1007/s12010-024-04952-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/23/2024]
Abstract
This study assessed the efficacy of an Ammodaucus leucotrichus seed extract to treat rheumatoid arthritis in rat models of this disease. Rheumatoid arthritis was induced in rats using two methods: immunization with 100 µL of Complete Freund Adjuvant (CFA) and immunization with 100 µL of a 3 mg/ml solution of type II collagen (CII) from chicken cartilage. The therapeutic potential of the extract was assessed at different doses (150, 300, and 600 mg/kg/day for 21 days in the CII-induced arthritis model and for 14 days in the CFA-induced arthritis model) and compared with methotrexate (MTX; 0.2 mg/kg for the same periods), a commonly used drug for rheumatoid arthritis treatment in humans. In both models (CII-induced arthritis and CFA-induced arthritis), walking distance, step length, intra-step distance and footprint area were improved following treatment with the A. leucotrichus seed extract (all concentrations) and MTX compared with untreated animals. Both treatments increased the serum concentration of glutathione and reduced that of complement C3, malondialdehyde and myeloperoxidase. Radiographic data and histological analysis indicated that cartilage destruction was reduced already with the lowest dose of the extract (100 mg/kg/dose) in both models. These results show the substantial antiarthritic potential of the A. leucotrichus seed extract, even at the lowest dose, suggesting that it may be a promising alternative therapy for rheumatoid arthritis and joint inflammation. They also emphasize its efficacy at various doses, providing impetus for more research on this extract as a potential therapeutic agent for arthritis.
Collapse
Affiliation(s)
- Cheima Djehiche
- Laboratory of Applied Biochemistry, Department of Biochemistry, Faculty of Nature and Life Sciences, Ferhat Abbas University of Setif 1, Setif, 19000, Algeria
| | - Nadia Benzidane
- Laboratory of Applied Biochemistry, Department of Biochemistry, Faculty of Nature and Life Sciences, Ferhat Abbas University of Setif 1, Setif, 19000, Algeria
| | - Hanene Djeghim
- Biochemistry Laboratory, Division of Biotechnology and Health, Biotechnology Research Center (CRBt), Constantine, 25000, Algeria
| | - Mehdi Tebboub
- Department of Mechanical Engineering, Faculty of Science of Technology, University Mentouri, Brothers Constantine 1, Constantine, Algeria
| | - Saad Mebrek
- Biochemistry Laboratory, Division of Biotechnology and Health, Biotechnology Research Center (CRBt), Constantine, 25000, Algeria
| | - Katia Abdelouhab
- Laboratory of Applied Biochemistry, Faculty of Nature and Life Sciences, University Abderrahmane Mira, Bejaia, 06000, Algeria
| | - Abderrahmane Baghiani
- Laboratory of Applied Biochemistry, Department of Biochemistry, Faculty of Nature and Life Sciences, Ferhat Abbas University of Setif 1, Setif, 19000, Algeria
| | - Noureddine Charef
- Laboratory of Applied Biochemistry, Department of Biochemistry, Faculty of Nature and Life Sciences, Ferhat Abbas University of Setif 1, Setif, 19000, Algeria
| | - Mohammed Messaoudi
- Nuclear Research Centre of Birine, P.O. Box 180, Ain Oussera, Djelfa, 17200, Algeria
| | - Chawki Bensouici
- Biochemistry Laboratory, Division of Biotechnology and Health, Biotechnology Research Center (CRBt), Constantine, 25000, Algeria
| | - Rabah Lebsir
- Department of Informatique, Faculté de Mathématiques et d'Informatique, Université de Guelma, Guelma, Algeria
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, Riyadh, Riyadh, 11451, Saudi Arabia
| | - David Cornu
- Institut Européen des Membranes (IEM), UMR 5635, Univ. Montpellier, ENSCM, CNRS, Place Eugène Bataillon, Montpellier, 34095, France
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, Univ. Montpellier, ENSCM, CNRS, Place Eugène Bataillon, Montpellier, 34095, France
- Gulf University for Science and Technology, GUST, Mubarak Al-Abdullah, P.O. Box 7207, Hawally, 32093, Kuwait
| | - Lekhmici Arrar
- Laboratory of Applied Biochemistry, Department of Biochemistry, Faculty of Nature and Life Sciences, Ferhat Abbas University of Setif 1, Setif, 19000, Algeria
| | - Ahmed Barhoum
- Chemistry Department, Faculty of Science, NanoStruc Research Group, Helwan University, Cairo, 11795, Egypt.
| |
Collapse
|
2
|
Hu K, Wen H, Song T, Che Z, Song Y, Song M. Deciphering the Role of LncRNAs in Osteoarthritis: Inflammatory Pathways Unveiled. J Inflamm Res 2024; 17:6563-6581. [PMID: 39318993 PMCID: PMC11421445 DOI: 10.2147/jir.s489682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024] Open
Abstract
Long non-coding RNA (LncRNA), with transcripts over 200 nucleotides in length, play critical roles in numerous biological functions and have emerged as significant players in the pathogenesis of osteoarthritis (OA), an inflammatory condition traditionally viewed as a degenerative joint disease. This review comprehensively examines the influence of LncRNA on the inflammatory processes driving OA progression, focusing on their role in regulating gene expression, cellular activities, and inflammatory pathways. Notably, LncRNAs such as MALAT1, H19, and HOTAIR are upregulated in OA and exacerbate the inflammatory milieu by modulating key signaling pathways like NF-κB, TGF-β/SMAD, and Wnt/β-catenin. Conversely, LncRNA like MEG3 and GAS5, which are downregulated in OA, show potential in dampening inflammatory responses and protecting against cartilage degradation by influencing miRNA interactions and cytokine production. By enhancing our understanding of LncRNA' roles in OA inflammation, we can better leverage them as potential biomarkers for the disease and develop innovative therapeutic strategies for OA management. This paper aims to delineate the mechanisms by which LncRNA influence inflammatory responses in OA and propose them as novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Kangyi Hu
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Haonan Wen
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Ting Song
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Zhixin Che
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Yongjia Song
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Min Song
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| |
Collapse
|
3
|
(Stroe) Dudu A, Georgescu SE. Exploring the Multifaceted Potential of Endangered Sturgeon: Caviar, Meat and By-Product Benefits. Animals (Basel) 2024; 14:2425. [PMID: 39199958 PMCID: PMC11350799 DOI: 10.3390/ani14162425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/01/2024] Open
Abstract
Sturgeons are facing critical endangerment due to overfishing, habitat destruction, pollution and climate change. Their roe, highly prized as caviar, has driven the overexploitation, severely depleting wild populations. In recent years sturgeon aquaculture has experienced significant growth, primarily aimed at providing high-quality caviar and secondarily meat. This sector generates significant quantities of by-products, which are mainly treated as waste, being mostly discarded, impacting the environment, even though they are a source of bioactive molecules and potential applications in various sectors. This article presents a review of the proximate composition and nutritional value of sturgeon caviar and meat, also exploring the potential of the by-products, with an emphasis on the processing of these components, the chemical composition and the functional and bioactive properties. Although sturgeon caviar, meat, and by-products are highly valuable both nutritionally and economically, adopting sustainable practices and innovative approaches is crucial to ensuring the industry's future growth and maintaining ecological balance. Despite some limitations, like the deficient standardization of the methods for extracting and processing, sturgeon by-products have a tremendous potential to increase the overall value of sturgeon aquaculture and to promote a zero-waste approach, contributing to achieving the Sustainable Development Goals adopted by all United Nations Member States in 2015.
Collapse
Affiliation(s)
| | - Sergiu Emil Georgescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania;
| |
Collapse
|
4
|
Zamani A, Khajavi M, Nazarpak MH, Solouk A, Atef M. Preliminary evaluation of fish cartilage as a promising biomaterial in cartilage tissue engineering. Ann Anat 2024; 253:152232. [PMID: 38402996 DOI: 10.1016/j.aanat.2024.152232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/02/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Fish cartilage is known as a valuable source of natural biomaterials due to its unique composition and properties. It contains a variety of bioactive components that contribute to its potential applications in different domains such as tissue engineering. The present work aimed to consider the properties of backbone cartilage from fish with a cartilaginous skeleton, including elasmobranch (reticulate whipray: Himantura uarnak and milk shark: Rhizoprionodon acutus) and sturgeon (beluga: Huso huso). The histomorphometric findings showed that the number of chondrocytes was significantly higher in reticulate whipray and milk shark compared to beluga (p < 0.05). The highest GAGs content was recorded in reticulate whipray cartilage compared to the other two species (p < 0.05). The cartilage from reticulate whipray and beluga showed higher collagen content than milk shark cartilage (p < 0.05), and the immunohistochemical assay for type II collagen (Col II) showed higher amounts of this component in reticulate whipray compared to the other two species. Young's modulus of the cartilage from reticulate whipray was significantly higher than that of milk shark and beluga (p < 0.05), while no significant difference was recorded between Young's modulus of the cartilage from milk shark and beluga. The gene expression of ACAN, Col II, and Sox9 showed that the cartilage-ECM from three species was able to induce chondrocyte differentiation from human adipose tissue-derived stem cells (hASCs). From these results, it can be concluded that the cartilage from three species, especially reticulate whipray, enjoys the appropriate biological properties and provides a basis for promoting its applications in the field of cartilage tissue engineering.
Collapse
Affiliation(s)
- Abbas Zamani
- Department of Fisheries, Faculty of Natural Resources and Environment, Malayer University, Malayer, Iran; New Technologies Research Center, Amirkabir University of Technology, Tehran, Iran.
| | - Maryam Khajavi
- Department of Fisheries, Faculty of Natural Resources and Environment, Malayer University, Malayer, Iran
| | | | - Atefeh Solouk
- Department of Biomaterial and Tissue Engineering, Faculty of Medical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Maryam Atef
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
5
|
Pan Z, Ge B, Wei M, Elango J, Wu W. Isolation and Biochemical Properties of Type II Collagen from Blue Shark ( Prionace glauca) Cartilage. Mar Drugs 2023; 21:md21050260. [PMID: 37233454 DOI: 10.3390/md21050260] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Numerous studies have shown that type II collagen (CII) has a potential role in the treatment of rheumatoid arthritis. However, most of the current studies have used terrestrial animal cartilage as a source of CII extraction, with fewer studies involving marine organisms. Based on this background, collagen (BSCII) was isolated from blue shark (Prionace glauca) cartilage by pepsin hydrolysis and its biochemical properties including protein pattern, total sugar content, microstructure, amino acid composition, spectral characteristics and thermal stability were further investigated in the present study. The SDS-PAGE results confirmed the typical characteristic of CII, comprising three identical α1 chains and its dimeric β chain. BSCII had the fibrous microstructure typical of collagen and an amino acid composition represented by high glycine content. BSCII had the typical UV and FTIR spectral characteristics of collagen. Further analysis revealed that BSCII had a high purity, while its secondary structure comprised 26.98% of β-sheet, 35.60% of β-turn, 37.41% of the random coil and no α-helix. CD spectra showed the triple helical structure of BSCII. The total sugar content, denaturation temperature and melting temperature of BSCII were (4.20 ± 0.03)%, 42 °C and 49 °C, respectively. SEM and AFM images confirmed a fibrillar and porous structure of collagen and denser fibrous bundles formed at higher concentrations. Overall, CII was successfully extracted from blue shark cartilage in the present study, and its molecular structure was intact. Therefore, blue shark cartilage could serve as a potential source for CII extraction with applications in biomedicine.
Collapse
Affiliation(s)
- Zhilin Pan
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Baolin Ge
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mingjun Wei
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jeevithan Elango
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM-Universidad Católica San Antonio de Murcia, Guadalupe, 30107 Murcia, Spain
- Center of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Wenhui Wu
- Department of Marine Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-Gang Special Area, Shanghai 201306, China
- Putuo Branch of International Combined Research Center for Marine Biological Sciences, Zhoushan 316104, China
| |
Collapse
|
6
|
Wang Y, Zhang L, Mao L, Yuan F, Liu J, Gao Y. Insight into the composite assembly process, nanofibril structure and stability of undenatured type II collagen in the presence of different types of nanocelluloses. Int J Biol Macromol 2023; 240:124521. [PMID: 37085069 DOI: 10.1016/j.ijbiomac.2023.124521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/23/2023]
Abstract
Four types of nanocelluloses (CNs), including cellulose nanocrystals (CNC), cellulose nanofibrils (CNF), cationic etherified nanocellulose (CCNF) and TEMPO-oxidized nanocellulose (TOCNF), were incorporated into the assembly process of undenatured type II collagen (UC-II). In the presence of CNs, the kinetics of UC-II composite assembly slightly fluctuated and the magnitude of UC-II assembly increased (from 59.93 to 66.83-85.06 %). CNC and CNF disrupted the triple helix structure of UC-II while CCNF and TOCNF had weak impact on it. Hydrogen bonding and hydrophobic interactions were dominant driving forces of UC-II/CNs, and electrostatic interactions were also involved in the fabrication of UC-II/CCNF and UC-II/TOCNF. UC-II/CNs exhibited distinct nanostructures due to the differences in shape, level, and surface group of CNs. CCNF and TOCNF contributed to the enhanced physical stability due to the increased surface charge. In addition, the thermal stability and rheological properties of UC-II/CNs were also improved. The composite assembly process, nanofibril structure and stability of UC-II in the presence of different types and levels of CNs, which was useful to develop the novel composite nanofibrils for the application in functional foods.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Liang Zhang
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Like Mao
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Fang Yuan
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jinfang Liu
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yanxiang Gao
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|