1
|
Zheng X, Pan Y, Wang Z, Zhang S. Effect of Ultrasound on Thrombus debris during Sonothrombolysis in a Microfluidic device. J Thromb Thrombolysis 2024; 57:1056-1066. [PMID: 38824486 DOI: 10.1007/s11239-024-03005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
Microbubble-mediated sonothrombolysis has been proven to be a non-invasive and efficient method for thrombolysis. Nevertheless, there is a potential risk that the thrombus debris generated during the dissolution of the original thrombus are too large and can lead to hazardous emboli. Using a sonothrombolysis microfluidic platform, we investigated the effects of ultrasound power, thrombolytic agent and microbubble concentration on the size of thrombus debris with the example of microbubble-mediated sonothrombolysis of arterial thrombus. Additionally, we studied the effects of ultrasound power on the size and shape of thrombus debris produced by acute and chronic arterial sonothrombolysis. In acute arterial sonothrombolysis, ultrasound power has significant effect on the size of thrombus debris and steadily increases with the increase of ultrasound power. Conversely, in chronic arterial sonothrombolysis, the size of thrombus debris is minimally affected by ultrasound power. Using the sonothrombolysis microfluidic platform, the relationship between ultrasound power and the safety of sonothrombolysis has been illustrated, and the sonothrombolysis microfluidic platform is demonstrated to be a promising tool for further studies on the process of sonothrombolysis.
Collapse
Affiliation(s)
- Xiaobing Zheng
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China.
| | - Yunfan Pan
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhaojian Wang
- Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Shuguang Zhang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Li Y, Li Y, Chen H. The effect of ultrasound-assisted thrombolysis studied in blood-on-a-chip. Artif Organs 2024; 48:734-742. [PMID: 38380722 DOI: 10.1111/aor.14731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Thromboembolism, which leads to pulmonary embolism and ischemic stroke, remains one of the main causes of death. Ultrasound-assisted thrombolysis (UAT) is an effective thrombolytic method. However, further studies are required to elucidate the mechanism of ultrasound on arterial and venous thrombi. METHODS We employed the blood-on-a-chip technology to simulate thrombus formation in coronary stenosis and deep vein valves. Subsequently, UAT was conducted on the chip to assess the impact of ultrasound on thrombolysis under varying flow conditions. Real-time fluorescence was used to assess thrombolysis and drug penetration. Finally, scanning electron microscopy and immunofluorescence were used to determine the effect of ultrasound on fibrinolysis. RESULTS The study revealed that UAT enhanced the thrombolytic rate by 40% in the coronary stenosis chip and by 10% in the deep venous valves chip. This enhancement is attributed to the disruption of crosslinked fibrin fibers by ultrasound, leading to increased urokinase diffusion within the thrombus and accumulation of plasminogen on the fibrinogen α chain. Moreover, the acceleration of the dissolution rate of thrombi in the venous valve chip by ultrasound was not as significant as that in the coronary stenosis chip. CONCLUSION These findings highlight the differential impact of ultrasound on thrombolysis under various flow conditions and emphasize the valuable role of the blood-on-a-chip technology in exploring thrombolysis mechanisms.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, China
| | - Yongjian Li
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, China
| | - Haosheng Chen
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Liao M, Du J, Chen L, Huang J, Yang R, Bao W, Zeng K, Wang W, Aphan BC, Wu Z, Ma L, Lu Q. Sono-activated materials for enhancing focused ultrasound ablation: Design and application in biomedicine. Acta Biomater 2024; 173:36-50. [PMID: 37939816 DOI: 10.1016/j.actbio.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
The ablation effect of focused ultrasound (FUS) has played an increasingly important role in the biomedical field over the past decades, and its non-invasive features have great advantages, especially for clinical diseases where surgical treatment is not available or appropriate. Recently, rapid advances in the adjustable morphology, enzyme-mimetic activity, and biostability of sono-activated materials have significantly promoted the medical application of FUS ablation. However, a systematic review of sono-activated materials based on FUS ablation is not yet available. This progress review focuses on the recent design, fundamental principles, and applications of sono-activated materials in the FUS ablation biomedical field. First, the different ablation mechanisms and the key factors affecting ablation are carefully determined. Then, the design of sono-activated materials with high FUS ablation efficiencies is comprehensively discussed. Subsequently, the representative biological applications are summarized in detail. Finally, the primary challenges and future perspectives are also outlined. We believe this timely review will provide key information and insights for further exploration of focused ultrasound ablation and new inspiration for designing future sono-activated materials. STATEMENT OF SIGNIFICANCE: The ablation effect of focused ultrasound (FUS) has played an increasingly important role in the biomedical field over the past decades. However, there are also some challenges of FUS ablation, such as skin burns, tumour recurrence after thermal ablation, and difficulty in controlling cavitation ablation. The rapid advance in adjustable morphology, enzyme-mimetic activity, and biostability of sono-activated materials has significantly promoted the medical application of FUS ablation. However, the systematic review of sono-activated materials based on FUS ablation is not yet available. This progress review focuses on the recent design, fundamental principles, and applications in the FUS ablation biomedical field of sono-activated materials. We believe this timely review will provide key information and insights for further exploration of FUS ablation.
Collapse
Affiliation(s)
- Min Liao
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinpeng Du
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Lin Chen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jiayan Huang
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Yang
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wuyongga Bao
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Keyu Zeng
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenhui Wang
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Benjamín Castañeda Aphan
- Department of Engineering, Medical Imaging Laboratory, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Zhe Wu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Lang Ma
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiang Lu
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Liu Y, Yin Q, Luo Y, Huang Z, Cheng Q, Zhang W, Zhou B, Zhou Y, Ma Z. Manipulation with sound and vibration: A review on the micromanipulation system based on sub-MHz acoustic waves. ULTRASONICS SONOCHEMISTRY 2023; 96:106441. [PMID: 37216791 PMCID: PMC10213378 DOI: 10.1016/j.ultsonch.2023.106441] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023]
Abstract
Manipulation of micro-objects have been playing an essential role in biochemical analysis or clinical diagnostics. Among the diverse technologies for micromanipulation, acoustic methods show the advantages of good biocompatibility, wide tunability, a label-free and contactless manner. Thus, acoustic micromanipulations have been widely exploited in micro-analysis systems. In this article, we reviewed the acoustic micromanipulation systems that were actuated by sub-MHz acoustic waves. In contrast to the high-frequency range, the acoustic microsystems operating at sub-MHz acoustic frequency are more accessible, whose acoustic sources are at low cost and even available from daily acoustic devices (e.g. buzzers, speakers, piezoelectric plates). The broad availability, with the addition of the advantages of acoustic micromanipulation, make sub-MHz microsystems promising for a variety of biomedical applications. Here, we review recent progresses in sub-MHz acoustic micromanipulation technologies, focusing on their applications in biomedical fields. These technologies are based on the basic acoustic phenomenon, such as cavitation, acoustic radiation force, and acoustic streaming. And categorized by their applications, we introduce these systems for mixing, pumping and droplet generation, separation and enrichment, patterning, rotation, propulsion and actuation. The diverse applications of these systems hold great promise for a wide range of enhancements in biomedicines and attract increasing interest for further investigation.
Collapse
Affiliation(s)
- Yu Liu
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China; Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Qiu Yin
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yucheng Luo
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China
| | - Ziyu Huang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Quansheng Cheng
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Wenming Zhang
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China.
| | - Zhichao Ma
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
5
|
Zheng J, Hu X, Gao X, Liu Y, Zhao S, Chen L, He G, Zhang J, Wei L, Yang Y. Convenient tumor 3D spheroid arrays manufacturing via acoustic excited bubbles for in situ drug screening. LAB ON A CHIP 2023; 23:1593-1602. [PMID: 36752157 DOI: 10.1039/d2lc00973k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The quick and convenient fabrication of in vitro tumor spheroids models has been pursued for clinical drug discovery and personalized therapy. Here, uniform three-dimensional (3D) tumor spheroids are quickly constructed by acoustically excited bubble arrays in a microfluidic chip and performed drug response testing in situ. In detail, bubble oscillation excited by acoustic waves induces second radiation force, resulting in the cells rotating and aggregating into tumor spheroids, which obtain controllable sizes ranging from 30 to 300 μm. These spherical tumor models are located in microfluidic networks, where drug solutions with gradient concentrations are generated from 0 to 18 mg mL-1, so that the cell spheroids response to drugs can be monitored conveniently and efficiently. This one-step tumor spheroids manufacturing method significantly reduces the model construction time to less than 15 s and increases efficiency by eliminating additional transfer processes. These significant advantages of convenience and high-throughput manufacturing make the tumor models promising for use in tumor treatment and point-of-care diagnosis.
Collapse
Affiliation(s)
- Jingjing Zheng
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Xuejia Hu
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaoqi Gao
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Yantong Liu
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Shukun Zhao
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Longfei Chen
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Guoqing He
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Jingwei Zhang
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Lei Wei
- School of Basic Medical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yi Yang
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| |
Collapse
|
6
|
Ma Y, Liu C, Cao S, Chen T, Chen G. Microfluidics for diagnosis and treatment of cardiovascular disease. J Mater Chem B 2023; 11:546-559. [PMID: 36542463 DOI: 10.1039/d2tb02287g] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD), a type of circulatory system disease related to the lesions of the cardiovascular system, has become one of the main diseases that endanger human health. Currently, the clinical diagnosis of most CVDs relies on a combination of imaging technology and blood biochemical test. However, the existing technologies for diagnosis of CVDs still have limitations in terms of specificity, detection range, and cost. In order to break through the current bottleneck, microfluidic with the advantages of low cost, simple instruments and easy integration, has been developed to play an important role in the early prevention, diagnosis and treatment of CVDs. Here, we have reviewed the recent various applications of microfluidic in the clinical diagnosis and treatment of CVDs, including microfluidic devices for detecting CVD markers, the cardiovascular models based on microfluidic, and the microfluidic used for CVDs drug screening and delivery. In addition, we have briefly looked forward to the prospects and challenges of microfluidics in diagnosis and treatment of CVDs.
Collapse
Affiliation(s)
- Yonggeng Ma
- School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Chenbin Liu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P. R. China
| | - Siyu Cao
- School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Tianshu Chen
- Department of Clinical Laboratory Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China.
| | - Guifang Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| |
Collapse
|
7
|
Jiang N, Wang Z, Deng Q, Zhou Y, Cao S, Zhou Q, Chen J, Guo R, Hu B. Low-intensity focused ultrasound guided dodecafluoropentane-loaded acoustic phase-change nanoparticles for treatment of porcine coronary microthromboembolism. Int J Cardiol 2023; 371:1-9. [PMID: 36208680 DOI: 10.1016/j.ijcard.2022.09.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/30/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Coronary microthromboembolism after acute myocardial infarction (AMI) requires urgent and effective treatment. Early and effective recovery of coronary microcirculation perfusion for the management of AMI would be crucial for better prognosis. Ultrasound assisted thrombolysis in the in-vitro experiments have great potential for the elimination of acute coronary microthromboembolism, especially with stable cavitation using low-intensity focused ultrasound (LIFU) and dodecafluoropentane-loaded acoustic phase-change nanoparticles (DDFP@NPs). Therefore, our study sought to perform animal experiments using this novel treatment method in a porcine model with acute coronary microthromboembolism for further investigation of potential therapeutic values. METHODS Porcine model with acute coronary thromboembolism was established using percutaneous coronary intervention and autologous thrombus injection. For ultrasound assisted thrombolysis, DDFP@NPs were prepared by rotary evaporation and sonication process, and LIFU was optimized. Echocardiography and TTC staining were performed for the evaluation of porcine model establishment and treatment effect. RESULTS The treatment using LIFU guided DDFP@NPs had almost completely recanalized culprit coronary branch after treatment procedure, and smaller infarcted size (5.4 ± 1.0%), better LVEF (52.5 ± 1.8%) and better coronary microcirculation after 28 days of treatment, which outperformed treatments using LIFU+SonoVue microbubbles (infarcted size: 26.4 ± 3.5% and LVEF: 37.2 ± 3.1%) and LIFU only (infarcted size: 32.2 ± 3.1% and LVEF: 32.2 ± 0.4%) (all P < 0.05), while the treatment effect were similar to treatment using intravenous tissue-plasminogen activator (infarcted size: 4.9 ± 0.9% and LVEF: 53.1 ± 1.1%) (all P > 0.05). CONCLUSIONS Our study has innovatively established a treatment method using DDFP@NPs combined with LIFU irradiation for coronary thrombolysis and verified its treatment effect with high-efficient thrombolysis in the in-vivo experiments, which can be considered as powerful experimental evident of the novel method for potential clinical use of acute coronary thrombolysis. Multidimensional experimental investigations and cautious verification may need before the method could be used as treatment before preliminary clinical trials.
Collapse
Affiliation(s)
- Nan Jiang
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhiwen Wang
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qing Deng
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yanxiang Zhou
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Sheng Cao
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qing Zhou
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jinling Chen
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ruiqiang Guo
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Bo Hu
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|