1
|
Jaafari N, Kojabad AA, Shabestari RM, Safa M. Design and fabrication of novel microfluidic-based droplets for drug screening on a chronic myeloid leukemia cell line. PLoS One 2025; 20:e0315803. [PMID: 39813235 PMCID: PMC11734902 DOI: 10.1371/journal.pone.0315803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/02/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND The challenges associated with traditional drug screening, such as high costs and long screening times, have led to an increase in the use of single-cell isolation technologies. Small sample volumes are required for high-throughput, cell-based assays to reduce assay costs and enable rapid sample processing. Using microfluidic chips, single-cell analysis can be conducted more effectively, requiring fewer reagents and maintaining biocompatibility. Due to the chip's ability to manipulate small volumes of fluid, high-throughput screening assays can be developed that are both miniaturized and automated. In the present study, we employ microfluidic chips for drug screening in chronic myeloid leukemia. This study aimed to establish a robust methodology integrating diverse assays, providing a holistic understanding of drug response. MATERIAL AND METHODS Herein, we have used a chronic myeloid leukemia derived cell line (K562) for drug screening with an innovative microfluidic-based drug screening approach to investigate the efficacy of imatinib in K562 cells. Cell viability was assessed using MTT assay. Apoptosis was measured using Annexin/PI staining by flow cytometry. RESULTS Significant increased apoptosis was seen in K562 cells treated with imatinib in the microfluidic device compared to cells treated with imatinib in 24- and 96-well plates. Moreover, in the microfluidic chip, drug screening time was reduced from 48 hours to 24 hours. CONCLUSION Compared to traditional approaches, microfluidic-based drug screening efficiently evaluates the efficacy of imatinib in K562 cells. This approach is promising for drug discovery and treatment optimization, as it increases sensitivity and streamlines the screening process.
Collapse
MESH Headings
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- K562 Cells
- Imatinib Mesylate/pharmacology
- Drug Screening Assays, Antitumor/methods
- Drug Screening Assays, Antitumor/instrumentation
- Antineoplastic Agents/pharmacology
- Microfluidic Analytical Techniques/instrumentation
- Microfluidic Analytical Techniques/methods
- Drug Evaluation, Preclinical/methods
- Drug Evaluation, Preclinical/instrumentation
- Microfluidics/methods
- High-Throughput Screening Assays/methods
- Apoptosis/drug effects
Collapse
Affiliation(s)
- Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Amir Asri Kojabad
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Rima Manafi Shabestari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Science, Tehran, Iran
| |
Collapse
|
2
|
Gao H, Wan X, Xiao W, Yang Y, Lu J, Wu S, Xu L, Wang S. Heterogeneous Organohydrogel Toward Automated and Interference-Free Gradient Feeding of Drugs in Cell Screening. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401720. [PMID: 39167495 PMCID: PMC11516076 DOI: 10.1002/advs.202401720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/26/2024] [Indexed: 08/23/2024]
Abstract
Cell-based microarrays are widely used in the fields of drug discovery and toxicology. Precise gradient generation and automated drug feeding are essential for high-throughput screening of live cells in tiny droplets. However, most existing technologies either require sophisticated robotic equipment or cause mechanical/physiological interference with cells. Here, a heterogeneous organohydrogel is presented for automated gradient drug feeding, while ensuring minimal interference with cells. The heterogeneous organohydrogel comprises three crucial components. The bottom surface can automatically generate gradients functioning as a gradient generator, the organohydrogel bulk allows unidirectional transport of drugs without backflow, and the top surface with hydrophilic arrays can firmly anchor the cell-based droplet array to evaluate the concentration-dependent bioeffects of drugs accurately. Such a unique structure enables universal screening of different cell types and drugs dissolved in different solvents, requiring neither additional accessories nor arduous drug functionalization. The heterogeneous organohydrogel with unprecedented automation and non-interference possesses the enormous potential to be a next-generation platform for drug screening.
Collapse
Affiliation(s)
- Hongxiao Gao
- Beijing Key Laboratory for Bioengineering and Sensing TechnologySchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Xizi Wan
- CAS Key Laboratory of Bio‐inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Wu‐Yi Xiao
- CAS Key Laboratory of Bio‐inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yuemeng Yang
- Beijing Key Laboratory for Bioengineering and Sensing TechnologySchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Jingwei Lu
- Beijing Key Laboratory for Bioengineering and Sensing TechnologySchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Shihao Wu
- Beijing Key Laboratory for Bioengineering and Sensing TechnologySchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Li‐Ping Xu
- Beijing Key Laboratory for Bioengineering and Sensing TechnologySchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio‐inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
- Suzhou Institute for Advanced ResearchUniversity of Science and Technology of ChinaSuzhou215123P. R. China
| |
Collapse
|
3
|
Yang D, Hu Q, Zhao S, Hu X, Gao X, Dai F, Zheng Y, Yang Y, Cheng Y. An optofluidic system for the concentration gradient screening of oocyte protection drugs. Talanta 2024; 278:126472. [PMID: 38924991 DOI: 10.1016/j.talanta.2024.126472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Oocytes protective drug screening is essential for the treatment of reproductive diseases. However, few studies construct the oocyte in vitro drug screening microfluidic systems because of their enormous size, scarcity, and sensitivity to the culture environment. Here, we present an optofluidic system for oocyte drug screening and state analysis. The system consists of two parts: an open-top drug screening microfluidic chip and an optical Fourier filter analysis part. The open-top microfluidic chip anchors single oocyte with hydrogel and allows nutrient and gas environment updating which is essential for oocyte culturing. The optical filter analysis part is used to accurately analyse the status of oocytes. Based on this system, we found that fluorene-9-bisphenol (BHPF) damaged the oocyte spindle in a dose-dependent manner, a high dose of melatonin (10-3 M) effectively reduces the percentage of abnormally arranged chromosomes of oocytes exposed to 40 μM BHPF. This optofluidic system shows great promise for the culture of oocytes and demonstrates the robust ability for convenient multi-concentration oocytes drug screening. This technology may benefit further biomedicine and reproductive toxicology applications in the lab on a chip community.
Collapse
Affiliation(s)
- Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qinghao Hu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Wuhan, 430072, China; Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan, 430072, China; Shenzhen Research Institute, Wuhan University, Shenzhen, 518000, China
| | - Shukun Zhao
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Wuhan, 430072, China; Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan, 430072, China; Shenzhen Research Institute, Wuhan University, Shenzhen, 518000, China
| | - Xuejia Hu
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaoqi Gao
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Wuhan, 430072, China; Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan, 430072, China; Shenzhen Research Institute, Wuhan University, Shenzhen, 518000, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yajing Zheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Yang
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Wuhan, 430072, China; Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan, 430072, China; Shenzhen Research Institute, Wuhan University, Shenzhen, 518000, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
4
|
Gao X, Li D, Zhao S, Yang D, Wu Q, Li SS, Zhang L, Chen LJ, Yang Y, Hu X. Acoustic Controllable Spatiotemporal Cell Micro-oscillation for Noninvasive Intracellular Drug Delivery. Anal Chem 2024; 96:14998-15007. [PMID: 39241035 DOI: 10.1021/acs.analchem.4c03187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Intracellular cargo delivery is crucial for drug evaluation, nanomedicine development, and gene therapy, in which high efficiency while maintaining cell viability is needed for downstream analysis. Here, an acoustic-mediated precise drug delivering mechanism is proposed by directly modulating cell micro-oscillation mode and membrane permeability. Through phase shifting keying-based spatiotemporal acoustic tweezers, controllable oscillating cell arrays can be achieved in shaking potentials. At the same time, continually oscillating radiation force and fluid shear stress exerted on cells effectively disturbs cellular membrane mobility and enhances permeability, thereby facilitating nanodrug entrance. In experiments, cell oscillation is tunable in frequency (10-2 to 102 Hz), shaking direction, amplitude (0 to quarter acoustic wavelength), and speed. Doxorubicin is actively delivered across cellular membranes and accumulates in inner cells, with a concentration more than 8 times that of the control group. Moreover, there is no obvious compromise in cell activity during oscillation, exhibiting excellent biocompatibility. This "dancing acoustic waves" scheme introduces a new dimension of cell manipulation in both space and time domains and an effective drug delivering strategy, offering advantages of flexibility, gentleness, and high throughput. It may advance related fields like nanobiological research, drug and nanomedicine development, and medical treatment.
Collapse
Affiliation(s)
- Xiaoqi Gao
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361012, P. R. China
- School of Physics & Technology, Department of Clinical Laboratory, Institute of Medicine and Physics, Zhongnan Hospital, Renmin Hospital, Wuhan University, Wuhan 430072, P. R. China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, P. R. China
| | - Dayang Li
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361012, P. R. China
| | - Shukun Zhao
- School of Physics & Technology, Department of Clinical Laboratory, Institute of Medicine and Physics, Zhongnan Hospital, Renmin Hospital, Wuhan University, Wuhan 430072, P. R. China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, P. R. China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Qian Wu
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361012, P. R. China
| | - Sen-Sen Li
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361012, P. R. China
| | - Liyuan Zhang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Lu-Jian Chen
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361012, P. R. China
| | - Yi Yang
- School of Physics & Technology, Department of Clinical Laboratory, Institute of Medicine and Physics, Zhongnan Hospital, Renmin Hospital, Wuhan University, Wuhan 430072, P. R. China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, P. R. China
| | - Xuejia Hu
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361012, P. R. China
| |
Collapse
|
5
|
Chen M, Fan H, Li W, Ruan J, Yang Y, Mao C, Li R, Liu GL, Hu W. Nanoplasmonic Affinity Analysis System for Molecular Screening Based on Bright‐Field Imaging. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202314481] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 01/06/2025]
Abstract
AbstractConsidering the improved detection of biological analytes for affinity analysis is highly desirable, a metasurface plasmon resonance (Meta‐SPR)‐based imaging system, incorporating a localized SPR sensing platform with different microfluidic systems and employing simple bright‐field imaging, is established in this study. This system enables low‐level analyte concentration analysis, ranging from 100 pm to 100 nm, with the real‐time removal of nonspecific binding signals within the same device field of view. Combined with microfluidic systems and microdroplet spotting, it is possible to automatically measure the kinetic curves of a sample at ten concentration gradients or detect the specific responses of multiple samples in a single experiment simultaneously. This system can inexpensively and conveniently achieve complex detection functions, demonstrating an innovative breakthrough in sensor detection.
Collapse
Affiliation(s)
- Mingqian Chen
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Hongli Fan
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Wen Li
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Jingyan Ruan
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Yihui Yang
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Cuixuan Mao
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Rui Li
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Gang L. Liu
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| | - Wenjun Hu
- College of Life Science and Technology State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases Huazhong University of Science and Technology 1037 Luo Yu Road Wuhan 430070 P. R. China
| |
Collapse
|
6
|
Lin L, Zhu R, Li W, Dong G, You H. The Shape Effect of Acoustic Micropillar Array Chips in Flexible Label-Free Separation of Cancer Cells. MICROMACHINES 2024; 15:421. [PMID: 38675233 PMCID: PMC11052022 DOI: 10.3390/mi15040421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024]
Abstract
The precise isolation of circulating tumor cells (CTCs) from blood samples is a potent tool for cancer diagnosis and clinical prognosis. However, CTCs are present in extremely low quantities in the bloodstream, posing a significant challenge to their isolation. In this study, we propose a non-contact acoustic micropillar array (AMPA) chip based on acoustic streaming for the flexible, label-free capture of cancer cells. Three shapes of micropillar array chips (circular, rhombus, and square) were fabricated. The acoustic streaming characteristics generated by the vibration of microstructures of different shapes are studied in depth by combining simulation and experiment. The critical parameters (voltage and flow rate) of the device were systematically investigated using microparticle experiments to optimize capture performance. Subsequently, the capture efficiencies of the three micropillar structures were experimentally evaluated using mouse whole blood samples containing cancer cells. The experimental results revealed that the rhombus microstructure was selected as the optimal shape, demonstrating high capture efficiency (93%) and cell activity (96%). Moreover, the reversibility of the acoustic streaming was harnessed for the flexible release and capture of cancer cells, facilitating optical detection and analysis. This work holds promise for applications in monitoring cancer metastasis, bio-detection, and beyond.
Collapse
Affiliation(s)
- Lin Lin
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China; (R.Z.); (W.L.); (G.D.)
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Lab of Manufacturing System and Advanced Manufacturing Technology, Nanning 530003, China
| | - Rongxing Zhu
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China; (R.Z.); (W.L.); (G.D.)
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Lab of Manufacturing System and Advanced Manufacturing Technology, Nanning 530003, China
| | - Wang Li
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China; (R.Z.); (W.L.); (G.D.)
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Lab of Manufacturing System and Advanced Manufacturing Technology, Nanning 530003, China
| | - Guoqiang Dong
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China; (R.Z.); (W.L.); (G.D.)
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Lab of Manufacturing System and Advanced Manufacturing Technology, Nanning 530003, China
| | - Hui You
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China; (R.Z.); (W.L.); (G.D.)
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Lab of Manufacturing System and Advanced Manufacturing Technology, Nanning 530003, China
| |
Collapse
|
7
|
Hang X, Huang Z, He S, Wang Z, Dong Z, Chang L. A Nano-Electroporation-DNA Tensioner Platform Enhances Intracellular Delivery and Mechanical Analysis Toward Rapid Drug Assessment. SMALL METHODS 2024; 8:e2300915. [PMID: 37994267 DOI: 10.1002/smtd.202300915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/12/2023] [Indexed: 11/24/2023]
Abstract
In vitro, drug assessment holds tremendous potential to success in novel drug development and precision medicine. Traditional techniques for drug assessment, however, face remarkable challenges to achieve high speed, as limited by incubation-based drug delivery (>several hours) and cell viability measurements (>1 d), which significantly compromise the efficacy in clinical trials. In this work, a nano-electroporation-DNA tensioner platform is reported that shortens the time of drug delivery to less than 3 s, and that of cellular mechanical force analysis to 30 min. The platform adopts a nanochannel structure to localize a safe electric field for cell perforation, while enhancing delivery speed by 103 times for intracellular delivery, as compared to molecular diffusion in coculture methods. The platform is further equipped with a DNA tensioner to detect cellular mechanical force for quantifying cell viability after drug treatment. Systematic head-to-head comparison, by analyzing FDA (food and drug administration)-approved drugs (paclitaxel, doxorubicin), demonstrated the platform with high speed, efficiency, and safety, showing a simple yet powerful tool for clinical drug screening and development.
Collapse
Affiliation(s)
- Xinxin Hang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zhaocun Huang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Shiqi He
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zhiying Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Zaizai Dong
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
8
|
Huang G, Lin L, Liu Q, Wu S, Chen J, Zhu R, You H, Sun C. Three-dimensional array of microbubbles sonoporation of cells in microfluidics. Front Bioeng Biotechnol 2024; 12:1353333. [PMID: 38419723 PMCID: PMC10899490 DOI: 10.3389/fbioe.2024.1353333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Sonoporation is a popular membrane disruption technique widely applicable in various fields, including cell therapy, drug delivery, and biomanufacturing. In recent years, there has been significant progress in achieving controlled, high-viability, and high-efficiency cell sonoporation in microfluidics. If the microchannels are too small, especially when scaled down to the cellular level, it still remains a challenge to overcome microchannel clogging, and low throughput. Here, we presented a microfluidic device capable of modulating membrane permeability through oscillating three-dimensional array of microbubbles. Simulations were performed to analyze the effective range of action of the oscillating microbubbles to obtain the optimal microchannel size. Utilizing a high-precision light curing 3D printer to fabricate uniformly sized microstructures in a one-step on both the side walls and the top surface for the generation of microbubbles. These microbubbles oscillated with nearly identical amplitudes and frequencies, ensuring efficient and stable sonoporation within the system. Cells were captured and trapped on the bubble surface by the acoustic streaming and secondary acoustic radiation forces induced by the oscillating microbubbles. At a driving voltage of 30 Vpp, the sonoporation efficiency of cells reached 93.9% ± 2.4%.
Collapse
Affiliation(s)
- Guangyong Huang
- School of Mechanical Engineering, Guangxi University, Nanning, China
- School of Mechanical and Automotive Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Lin Lin
- School of Mechanical Engineering, Guangxi University, Nanning, China
| | - Quanhui Liu
- Animal Science and Technology College, Guangxi University, Nanning, China
| | - Shixiong Wu
- School of Mechanical Engineering, Guangxi University, Nanning, China
| | - Jiapeng Chen
- School of Mechanical Engineering, Guangxi University, Nanning, China
| | - Rongxing Zhu
- School of Mechanical Engineering, Guangxi University, Nanning, China
| | - Hui You
- School of Mechanical Engineering, Guangxi University, Nanning, China
| | - Cuimin Sun
- School of Computer, Electronics and Information, Guangxi University, Nanning, China
| |
Collapse
|
9
|
Yoon S, Kilicarslan You D, Jeong U, Lee M, Kim E, Jeon TJ, Kim SM. Microfluidics in High-Throughput Drug Screening: Organ-on-a-Chip and C. elegans-Based Innovations. BIOSENSORS 2024; 14:55. [PMID: 38275308 PMCID: PMC10813408 DOI: 10.3390/bios14010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
The development of therapeutic interventions for diseases necessitates a crucial step known as drug screening, wherein potential substances with medicinal properties are rigorously evaluated. This process has undergone a transformative evolution, driven by the imperative need for more efficient, rapid, and high-throughput screening platforms. Among these, microfluidic systems have emerged as the epitome of efficiency, enabling the screening of drug candidates with unprecedented speed and minimal sample consumption. This review paper explores the cutting-edge landscape of microfluidic-based drug screening platforms, with a specific emphasis on two pioneering approaches: organ-on-a-chip and C. elegans-based chips. Organ-on-a-chip technology harnesses human-derived cells to recreate the physiological functions of human organs, offering an invaluable tool for assessing drug efficacy and toxicity. In parallel, C. elegans-based chips, boasting up to 60% genetic homology with humans and a remarkable affinity for microfluidic systems, have proven to be robust models for drug screening. Our comprehensive review endeavors to provide readers with a profound understanding of the fundamental principles, advantages, and challenges associated with these innovative drug screening platforms. We delve into the latest breakthroughs and practical applications in this burgeoning field, illuminating the pivotal role these platforms play in expediting drug discovery and development. Furthermore, we engage in a forward-looking discussion to delineate the future directions and untapped potential inherent in these transformative technologies. Through this review, we aim to contribute to the collective knowledge base in the realm of drug screening, providing valuable insights to researchers, clinicians, and stakeholders alike. We invite readers to embark on a journey into the realm of microfluidic-based drug screening platforms, fostering a deeper appreciation for their significance and promising avenues yet to be explored.
Collapse
Affiliation(s)
- Sunhee Yoon
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea; (S.Y.); (D.K.Y.); (M.L.); (E.K.)
| | - Dilara Kilicarslan You
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea; (S.Y.); (D.K.Y.); (M.L.); (E.K.)
| | - Uiechan Jeong
- Department of Mechanical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Mina Lee
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea; (S.Y.); (D.K.Y.); (M.L.); (E.K.)
| | - Eunhye Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea; (S.Y.); (D.K.Y.); (M.L.); (E.K.)
| | - Tae-Joon Jeon
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea; (S.Y.); (D.K.Y.); (M.L.); (E.K.)
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
- Biohybrid Systems Research Center (BSRC), Inha University, Incheon 22212, Republic of Korea
| | - Sun Min Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea; (S.Y.); (D.K.Y.); (M.L.); (E.K.)
- Department of Mechanical Engineering, Inha University, Incheon 22212, Republic of Korea
- Biohybrid Systems Research Center (BSRC), Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
10
|
Mu G, Qiao Y, Sui M, Grattan KTV, Dong H, Zhao J. Acoustic-propelled micro/nanomotors and nanoparticles for biomedical research, diagnosis, and therapeutic applications. Front Bioeng Biotechnol 2023; 11:1276485. [PMID: 37929199 PMCID: PMC10621749 DOI: 10.3389/fbioe.2023.1276485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Acoustic manipulation techniques have gained significant attention across various fields, particularly in medical diagnosis and biochemical research, due to their biocompatibility and non-contact operation. In this article, we review the broad range of biomedical applications of micro/nano-motors that use acoustic manipulation methods, with a specific focus on cell manipulation, targeted drug release for cancer treatment and genetic disease diagnosis. These applications are facilitated by acoustic-propelled micro/nano-motors and nanoparticles which are manipulated by acoustic tweezers. Acoustic systems enable high precision positioning and can be effectively combined with magnetic manipulation techniques. Furthermore, acoustic propulsion facilitates faster transportation speeds, making it suitable for tasks in blood flow, allowing for precise positioning and in-body manipulation of cells, microprobes, and drugs. By summarizing and understanding these acoustic manipulation methods, this review aims to provide a summary and discussion of the acoustic manipulation methods for biomedical research, diagnostic, and therapeutic applications.
Collapse
Affiliation(s)
- Guanyu Mu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Yu Qiao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Mingyang Sui
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Kenneth T. V. Grattan
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
- School of Science and Technology, University of London, London, United Kingdom
| | - Huijuan Dong
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Jie Zhao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
11
|
Gao X, Hu X, Yang D, Hu Q, Zheng J, Zhao S, Zhu C, Xiao X, Yang Y. Acoustic quasi-periodic bioassembly based diverse stem cell arrangements for differentiation guidance. LAB ON A CHIP 2023; 23:4413-4421. [PMID: 37772435 DOI: 10.1039/d3lc00448a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Arrangement patterns and geometric cues have been demonstrated to influence cell function and fate, which calls for efficient and versatile cell patterning techniques. Despite constant achievements that mainly focus on individual cells and uniform cell patterns, simultaneously constructing cellular arrangements with diverse patterns and positional relationships in a flexible and contact-free manner remains a challenge. Here, stem cell arrangements possessing multiple geometries and structures are proposed based on powerful and diverse pattern-building capabilities of quasi-periodic acoustic fields, with advantages of rich patterns and structures and flexibility in structure modulation. Eight-fold waves' interference produces regular potentials that result in higher rotational symmetry and more complex arrangement of geometric units. Moreover, through flexible modulation of the phase relations among these wave vectors, a wide variety of cellular pattern units are arranged in this potential, such as circular-, triangular- and square-shape, simultaneously. It is proved that these diverse cellular patterns conveniently build human mesenchymal stem cell (hMSC) models, for research on the effect of cellular arrangement on stem cell differentiation. This work fills the gap of acoustic cell patterning in quasi-periodic patterns and shows promising potential in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Xiaoqi Gao
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| | - Xuejia Hu
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Qinghao Hu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| | - Jingjing Zheng
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| | - Shukun Zhao
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Xuan Xiao
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Yi Yang
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| |
Collapse
|
12
|
Yu L, Chen L, Liu Y, Zhu J, Wang F, Ma L, Yi K, Xiao H, Zhou F, Wang F, Bai L, Zhu Y, Xiao X, Yang Y. Magnetically Actuated Hydrogel Stamping-Assisted Cellular Mechanical Analyzer for Stored Blood Quality Detection. ACS Sens 2023; 8:1183-1191. [PMID: 36867892 DOI: 10.1021/acssensors.2c02507] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Cellular mechanical property analysis reflecting the physiological and pathological states of cells plays a crucial role in assessing the quality of stored blood. However, its complex equipment needs, operation difficulty, and clogging issues hinder automated and rapid biomechanical testing. Here, we propose a promising biosensor assisted by magnetically actuated hydrogel stamping to fulfill it. The flexible magnetic actuator triggers the collective deformation of multiple cells in the light-cured hydrogel, and it allows for on-demand bioforce stimulation with the advantages of portability, cost-effectiveness, and simplicity of operation. The magnetically manipulated cell deformation processes are captured by the integrated miniaturized optical imaging system, and the cellular mechanical property parameters are extracted from the captured images for real-time analysis and intelligent sensing. In this work, 30 clinical blood samples with different storage durations (<14 days and >14 days) were tested. A deviation of 3.3% in the differentiation of blood storage durations by this system compared to physician annotation demonstrated its feasibility. This system should broaden the application of cellular mechanical assays in diverse clinical settings.
Collapse
Affiliation(s)
- Le Yu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Longfei Chen
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Yantong Liu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Jiaomeng Zhu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
| | - Fang Wang
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
| | - Linlu Ma
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Kezhen Yi
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Hui Xiao
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Long Bai
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yimin Zhu
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xuan Xiao
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
| | - Yi Yang
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| |
Collapse
|
13
|
Lab-on-a-chip systems for cancer biomarker diagnosis. J Pharm Biomed Anal 2023; 226:115266. [PMID: 36706542 DOI: 10.1016/j.jpba.2023.115266] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Lab-on-a-chip (LOC) or micro total analysis system is one of the microfluidic technologies defined as the adaptation, miniaturization, integration, and automation of analytical laboratory procedures into a single instrument or "chip". In this article, we review developments over the past five years in the application of LOC biosensors for the detection of different types of cancer. Microfluidics encompasses chemistry and biotechnology skills and has revolutionized healthcare diagnosis. Superior to traditional cell culture or animal models, microfluidic technology has made it possible to reconstruct functional units of organs on chips to study human diseases such as cancer. LOCs have found numerous biomedical applications over the past five years, including integrated bioassays, cell analysis, metabolomics, drug discovery and delivery systems, tissue and organ physiology and disease modeling, and personalized medicine. This review provides an overview of the latest developments in microfluidic-based cancer research, with pros, cons, and prospects.
Collapse
|
14
|
Zheng J, Hu X, Gao X, Liu Y, Zhao S, Chen L, He G, Zhang J, Wei L, Yang Y. Convenient tumor 3D spheroid arrays manufacturing via acoustic excited bubbles for in situ drug screening. LAB ON A CHIP 2023; 23:1593-1602. [PMID: 36752157 DOI: 10.1039/d2lc00973k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The quick and convenient fabrication of in vitro tumor spheroids models has been pursued for clinical drug discovery and personalized therapy. Here, uniform three-dimensional (3D) tumor spheroids are quickly constructed by acoustically excited bubble arrays in a microfluidic chip and performed drug response testing in situ. In detail, bubble oscillation excited by acoustic waves induces second radiation force, resulting in the cells rotating and aggregating into tumor spheroids, which obtain controllable sizes ranging from 30 to 300 μm. These spherical tumor models are located in microfluidic networks, where drug solutions with gradient concentrations are generated from 0 to 18 mg mL-1, so that the cell spheroids response to drugs can be monitored conveniently and efficiently. This one-step tumor spheroids manufacturing method significantly reduces the model construction time to less than 15 s and increases efficiency by eliminating additional transfer processes. These significant advantages of convenience and high-throughput manufacturing make the tumor models promising for use in tumor treatment and point-of-care diagnosis.
Collapse
Affiliation(s)
- Jingjing Zheng
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Xuejia Hu
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaoqi Gao
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Yantong Liu
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Shukun Zhao
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Longfei Chen
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Guoqing He
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Jingwei Zhang
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Lei Wei
- School of Basic Medical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yi Yang
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| |
Collapse
|
15
|
Pal A, Kaswan K, Barman SR, Lin YZ, Chung JH, Sharma MK, Liu KL, Chen BH, Wu CC, Lee S, Choi D, Lin ZH. Microfluidic nanodevices for drug sensing and screening applications. Biosens Bioelectron 2023; 219:114783. [PMID: 36257116 PMCID: PMC9533638 DOI: 10.1016/j.bios.2022.114783] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/18/2022] [Accepted: 10/01/2022] [Indexed: 11/03/2022]
Abstract
The outbreak of pandemics (e.g., severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 in 2019), influenza A viruses (H1N1 in 2009), etc.), and worldwide spike in the aging population have created unprecedented urgency for developing new drugs to improve disease treatment. As a result, extensive efforts have been made to design novel techniques for efficient drug monitoring and screening, which form the backbone of drug development. Compared to traditional techniques, microfluidics-based platforms have emerged as promising alternatives for high-throughput drug screening due to their inherent miniaturization characteristics, low sample consumption, integration, and compatibility with diverse analytical strategies. Moreover, the microfluidic-based models utilizing human cells to produce in-vitro biomimetics of the human body pave new ways to predict more accurate drug effects in humans. This review provides a comprehensive summary of different microfluidics-based drug sensing and screening strategies and briefly discusses their advantages. Most importantly, an in-depth outlook of the commonly used detection techniques integrated with microfluidic chips for highly sensitive drug screening is provided. Then, the influence of critical parameters such as sensing materials and microfluidic platform geometries on screening performance is summarized. This review also outlines the recent applications of microfluidic approaches for screening therapeutic and illicit drugs. Moreover, the current challenges and the future perspective of this research field is elaborately highlighted, which we believe will contribute immensely towards significant achievements in all aspects of drug development.
Collapse
Affiliation(s)
- Arnab Pal
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kuldeep Kaswan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Snigdha Roy Barman
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yu-Zih Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jun-Hsuan Chung
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Manish Kumar Sharma
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kuei-Lin Liu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Bo-Huan Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, 333, Taiwan
| | - Chih-Cheng Wu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; Center of Quality Management, National Taiwan University Hospital, Hsinchu Branch, Hsinchu, 30059, Taiwan; College of Medicine, National Taiwan University, Taipei, 10051, Taiwan; Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, 35053, Taiwan
| | - Sangmin Lee
- School of Mechanical Engineering, Chung-Ang University, Seoul, 06974, South Korea.
| | - Dongwhi Choi
- Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Gyeonggi, 17104, South Korea.
| | - Zong-Hong Lin
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; International Intercollegiate PhD Program, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan; Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan; Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, Gyeonggi, 17104, South Korea.
| |
Collapse
|
16
|
Recent advances in microfluidic single-cell analysis and its applications in drug development. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Liu X, Su Q, Zhang X, Yang W, Ning J, Jia K, Xin J, Li H, Yu L, Liao Y, Zhang D. Recent Advances of Organ-on-a-Chip in Cancer Modeling Research. BIOSENSORS 2022; 12:bios12111045. [PMID: 36421163 PMCID: PMC9688857 DOI: 10.3390/bios12111045] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 05/27/2023]
Abstract
Although many studies have focused on oncology and therapeutics in cancer, cancer remains one of the leading causes of death worldwide. Due to the unclear molecular mechanism and complex in vivo microenvironment of tumors, it is challenging to reveal the nature of cancer and develop effective therapeutics. Therefore, the development of new methods to explore the role of heterogeneous TME in individual patients' cancer drug response is urgently needed and critical for the effective therapeutic management of cancer. The organ-on-chip (OoC) platform, which integrates the technology of 3D cell culture, tissue engineering, and microfluidics, is emerging as a new method to simulate the critical structures of the in vivo tumor microenvironment and functional characteristics. It overcomes the failure of traditional 2D/3D cell culture models and preclinical animal models to completely replicate the complex TME of human tumors. As a brand-new technology, OoC is of great significance for the realization of personalized treatment and the development of new drugs. This review discusses the recent advances of OoC in cancer biology studies. It focuses on the design principles of OoC devices and associated applications in cancer modeling. The challenges for the future development of this field are also summarized in this review. This review displays the broad applications of OoC technique and has reference value for oncology development.
Collapse
Affiliation(s)
- Xingxing Liu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Qiuping Su
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Xiaoyu Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| | - Wenjian Yang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| | - Junhua Ning
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Kangle Jia
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Jinlan Xin
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Huanling Li
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Longfei Yu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Yuheng Liao
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| | - Diming Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| |
Collapse
|
18
|
Iakovlev AP, Erofeev AS, Gorelkin PV. Novel Pumping Methods for Microfluidic Devices: A Comprehensive Review. BIOSENSORS 2022; 12:956. [PMID: 36354465 PMCID: PMC9688261 DOI: 10.3390/bios12110956] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/02/2023]
Abstract
This review is an account of methods that use various strategies to control microfluidic flow control with high accuracy. The reviewed systems are divided into two large groups based on the way they create flow: passive systems (non-mechanical systems) and active (mechanical) systems. Each group is presented by a number of device fabrications. We try to explain the main principles of operation, and we list advantages and disadvantages of the presented systems. Mechanical systems are considered in more detail, as they are currently an area of increased interest due to their unique precision flow control and "multitasking". These systems are often applied as mini-laboratories, working autonomously without any additional operations, provided by humans, which is very important under complicated conditions. We also reviewed the integration of autonomous microfluidic systems with a smartphone or single-board computer when all data are retrieved and processed without using a personal computer. In addition, we discuss future trends and possible solutions for further development of this area of technology.
Collapse
Affiliation(s)
| | | | - Petr V. Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology «MISiS», 119049 Moscow, Russia
| |
Collapse
|
19
|
Zhang X, Zhao YN, Wei X, Men X, Wu CX, Bai JJ, Yang T, Chen ML, Wang JH. Intolerance of profligacy: an aptamer concentration gradient-tailored unicellular array for high-throughput biologics-mediated phenotyping. LAB ON A CHIP 2022; 22:4238-4245. [PMID: 36194170 DOI: 10.1039/d2lc00729k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In aptamer-based assay schemes, aptamer probes not labeled with biomarkers have to be eliminated before testing, which may lead to a tremendous waste of precious probes. We herein propose a microfluidics system integrating an aptamer concentration gradient generator (Apt-CGG) and a dual single-cell culturing array (D-SCA), termed Mi-Apt-SCA. This facilitates the precise construction of a nanoscale-gradient microenvironment and the high-throughput profiling of single-cell growth/phenotypes in situ with the minimal consumption of Apt-probe. Unlike previous snakelike mixers, the choreographed winding-ravined aptamer dual-spiral micromixer (Apt-WD-mixer) in Apt-CGG could allow thorough blending to generate linear concentration gradients of aptamer (quasi-non-Newtonian fluid) under the action of continuous fluidic wiggles and bidirectional Dean flow. In contrast to other trap-like systems, the mild vortex allows single-cell growth in an ultra-tender fluidic microenvironment using triple-jarless single-cell culture capsules (TriJ-SCCs) in D-SCA (shear stress: 3.43 × 10-5 dynes per cm2). The minimum dosage of aptamer probe required for exploring PDL1 protein expression in two hepatoma cell lines is only one-900th of that required by conventional protocols. In addition, this approach facilitated the profiling of ITF-β/cisplatin-mediated single-cell/cell-cluster phenotypes.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Ya-Nan Zhao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Xing Wei
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Xue Men
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Cheng-Xin Wu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Jun-Jie Bai
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Ting Yang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Ming-Li Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Jian-Hua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
20
|
Gao X, Hu X, Zheng J, Hu Q, Zhao S, Chen L, Yang Y. On-demand liquid microlens arrays by non-contact relocation of inhomogeneous fluids in acoustic fields. LAB ON A CHIP 2022; 22:3942-3951. [PMID: 36102930 DOI: 10.1039/d2lc00603k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microlens arrays (MLAs) are key micro-optical components that possess a high degree of parallelism and ease of integration. However, rapid and low-cost fabrication of MLAs with flexible focusing remains a challenge. Herein, liquid MLAs with dynamic tunability are presented using non-contact acoustic relocation of inhomogeneous fluids. By designing ring-shaped acoustic pressure node (PN) arrays, the denser fluid of miscible liquids is relocated to PNs, and liquid MLAs with ideal morphology are obtained. The experimental results demonstrate that the liquid MLAs possess a powerful reconfigurability with long-term stability and sharp imaging that can conveniently switch between the on and off state and can dynamically magnify by simply adjusting the acoustic amplitude. Moreover, the high biocompatibility inherited from liquids accompanied by the acoustic treatment allows cells to be within working distance of the MLAs without immersion, as would be required for a solid lens. This innovative liquid MLA is inexpensive to manufacture and possesses continuous focus, fast response, and satisfactory bioaffinity, and thus offers promising potential for microfluidic adaptive imaging and biomedical sensing, especially for live cell imaging.
Collapse
Affiliation(s)
- Xiaoqi Gao
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Xuejia Hu
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Jingjing Zheng
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Qinghao Hu
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Shukun Zhao
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Longfei Chen
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Yi Yang
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| |
Collapse
|
21
|
Wang B, He BS, Ruan XL, Zhu J, Hu R, Wang J, Li Y, Yang YH, Liu ML. An integrated microfluidics platform with high-throughput single-cell cloning array and concentration gradient generator for efficient cancer drug effect screening. Mil Med Res 2022; 9:51. [PMID: 36131323 PMCID: PMC9494811 DOI: 10.1186/s40779-022-00409-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 08/05/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Tumor cell heterogeneity mediated drug resistance has been recognized as the stumbling block of cancer treatment. Elucidating the cytotoxicity of anticancer drugs at single-cell level in a high-throughput way is thus of great value for developing precision therapy. However, current techniques suffer from limitations in dynamically characterizing the responses of thousands of single cells or cell clones presented to multiple drug conditions. METHODS We developed a new microfluidics-based "SMART" platform that is Simple to operate, able to generate a Massive single-cell array and Multiplex drug concentrations, capable of keeping cells Alive, Retainable and Trackable in the microchambers. These features are achieved by integrating a Microfluidic chamber Array (4320 units) and a six-Concentration gradient generator (MAC), which enables highly efficient analysis of leukemia drug effects on single cells and cell clones in a high-throughput way. RESULTS A simple procedure produces 6 on-chip drug gradients to treat more than 3000 single cells or single-cell derived clones and thus allows an efficient and precise analysis of cell heterogeneity. The statistic results reveal that Imatinib (Ima) and Resveratrol (Res) combination treatment on single cells or clones is much more efficient than Ima or Res single drug treatment, indicated by the markedly reduced half maximal inhibitory concentration (IC50). Additionally, single-cell derived clones demonstrate a higher IC50 in each drug treatment compared to single cells. Moreover, primary cells isolated from two leukemia patients are also found with apparent heterogeneity upon drug treatment on MAC. CONCLUSION This microfluidics-based "SMART" platform allows high-throughput single-cell capture and culture, dynamic drug-gradient treatment and cell response monitoring, which represents a new approach to efficiently investigate anticancer drug effects and should benefit drug discovery for leukemia and other cancers.
Collapse
Affiliation(s)
- Biao Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Bang-Shun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Xiao-Lan Ruan
- Department of Hematology, Renmin Hospital, Wuhan University, Wuhan, 430060, China
| | - Jiang Zhu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Rui Hu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Jie Wang
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Ying Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China. .,University of Chinese Academy of Sciences, Beijing, 10049, China.
| | - Yun-Huang Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Mai-Li Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology-Wuhan National Laboratory for Optoelectronics, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 10049, China
| |
Collapse
|
22
|
Lin L, Dang H, Zhu R, Liu Y, You H. Effects of Side Profile on Acoustic Streaming by Oscillating Microstructures in Channel. MICROMACHINES 2022; 13:mi13091439. [PMID: 36144062 PMCID: PMC9504731 DOI: 10.3390/mi13091439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 06/01/2023]
Abstract
In microchannels, microstructure-induced acoustic streaming can be achieved at low frequencies, providing simple platforms for biomedicine and microfluidic manipulation. Nowadays, microstructures are generally fabricated by photolithography or soft photolithography. Existing studies mainly focused on the projection plane, while ignoring the side profile including microstructure's sidewall and channel's upper wall. Based on the perturbation theory, the article focuses on the effect of microstructure's sidewall errors caused by machining and the viscous dissipation of upper wall on the streaming. We discovered that the side profile parameters, particularly the gap (gap g between the top of the structure and the upper wall of the channel), have a significant impact on the maximum velocity, mode, and effective area of the streaming.To broaden the applicability, we investigated boundary layer thickness parameters including frequency and viscosity. Under different thickness parameters, the effects of side profile parameters on the streaming are similar. But the maximum streaming velocity is proportional to the frequency squared and inversely proportional to the viscosity. Besides, the ratio factor θ of the maximum streaming velocity to the vibration velocity is affected by the side profile parameter gap g and sidewall profile angle α.
Collapse
Affiliation(s)
- Lin Lin
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Lab of Manufacturing System and Advanced Manufacturing Technology, Nanning 530003, China
| | - Haojie Dang
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Lab of Manufacturing System and Advanced Manufacturing Technology, Nanning 530003, China
| | - Rongxin Zhu
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Lab of Manufacturing System and Advanced Manufacturing Technology, Nanning 530003, China
| | - Ying Liu
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University, Nanning 530004, China
| | - Hui You
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China
- School of Mechanical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Lab of Manufacturing System and Advanced Manufacturing Technology, Nanning 530003, China
| |
Collapse
|
23
|
Chen L, Zheng Y, Liu Y, Tian P, Yu L, Bai L, Zhou F, Yang Y, Cheng Y, Wang F, Zheng L, Jiang F, Zhu Y. Microfluidic-based in vitro thrombosis model for studying microplastics toxicity. LAB ON A CHIP 2022; 22:1344-1353. [PMID: 35179168 DOI: 10.1039/d1lc00989c] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The potential impact of microplastics (MPs) on health has caused great concern, and a toxicology platform that realistically reproduces the system behaviour is urgently needed to further explore and validate MP-related health issues. Herein, we introduce an optically assisted thrombus platform to reveal the interaction of MPs with the vascular system. The risk of accumulation has also been evaluated using a mouse model, and the effect of MPs on the properties of the thrombus are validated via in vitro experiments. The microfluidic system is endothelialized, and the regional tissue injury-induced thrombosis is then realized through optical irradiation. Whole blood is perfused with MPs, and the invasion process visualized and recorded. The mouse model shows a cumulative risk in the blood with continuous exposure to MPs (P-value < 0.0001). The on-chip results show that MP invasion leads to decreased binding of fibrin to platelets (P-value < 0.0001), which is consistent with the results of the in vitro experiments, and shows a high risk of thrombus shedding in real blood flow compared with normal thrombus. This work provides a new method to further reveal MP-related health risks.
Collapse
Affiliation(s)
- Longfei Chen
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Yajing Zheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Yantong Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Pengfu Tian
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China.
| | - Le Yu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China.
| | - Long Bai
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Yi Yang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Li Zheng
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266061, China
| | - Fenghua Jiang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266061, China
| | - Yimin Zhu
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China
| |
Collapse
|