1
|
Zehra M, Shafiq J, Asghar S, Vankwani S, Hasan SM, Khan RMA, Mirza MR, Ahmed A. Proteomic profiling and pre-clinical efficacy of antimicrobial lithium complex and colistin combination against multi-drug resistant Acinetobacter baumannii. Microb Pathog 2025; 200:107335. [PMID: 39864760 DOI: 10.1016/j.micpath.2025.107335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/04/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
Multi-drug resistant (MDR) Acinetobacter baumannii accounts for high mortality rates in hospital-acquired infections. Colistin is the last resort treatment despite nephrotoxic effects and the emergence of colistin resistant A. baumannii is an emerging issue. To tackle this dilemma, metal complexes can be used to potentiate colistin as combination therapy. However, mechanistic and in vivo studies are lacking to present them as compelling therapeutic options. In this study, a lithium complex ([Li(phen)2sal]) based on salicylic acid and 1,10-phenanthroline was used in synergy with colistin to test its antimicrobial and anti-biofilm potential against MDR A. baumannii. Furthermore, proteomics via mass spectrometry, flow cytometry and scanning electron microscopy was performed to study the cellular targets of the treatment. Combination therapy was also tested against pneumonia model in mice to observe pre-clinical efficacy. The lithium complex showed synergistic and additive interaction with colistin and inhibited >85 % of bacterial cells and biofilm formation in A. baumannii strains. Proteomic analysis revealed that combination therapy downregulated significantly more membrane proteins as compared to the individual doses. Flow cytometry indicated that combination therapy caused hyperpolarization in bacteria which led to the cellular damage as observed in scanning electron microscopy. Combination therapy was non-toxic in mice and reduced the clinical score to 0 with bacterial load lessened to 5.56 ± 0.90 log10 CFU in 48 h. Therefore, parenchymal sections had lesser inflammatory regions with intact alveoli. Consequently, combination therapy can be an alternative therapeutic approach with antimicrobial, anti-biofilm, and pre-clinical efficacy against MDR A. baumannii infection.
Collapse
Affiliation(s)
- Moatter Zehra
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Jazib Shafiq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sidrah Asghar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Soma Vankwani
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Syed Mehmood Hasan
- Department of Pathology, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Rao Muhammad Abid Khan
- Department of Microbiology, Sindh Institute of Urology and Transplantation, Karachi, Pakistan
| | - Munazza Raza Mirza
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Ayaz Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
2
|
Martins A, Judák F, Farkas Z, Szili P, Grézal G, Csörgő B, Czikkely MS, Maharramov E, Daruka L, Spohn R, Balogh D, Daraba A, Juhász S, Vágvölgyi M, Hunyadi A, Cao Y, Sun Z, Li X, Papp B, Pál C. Antibiotic candidates for Gram-positive bacterial infections induce multidrug resistance. Sci Transl Med 2025; 17:eadl2103. [PMID: 39772773 DOI: 10.1126/scitranslmed.adl2103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 06/17/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Several antibiotic candidates are in development against Gram-positive bacterial pathogens, but their long-term utility is unclear. To investigate this issue, we studied the laboratory evolution of resistance to antibiotics that have not yet reached the market. We found that, with the exception of compound SCH79797, antibiotic resistance generally readily evolves in Staphylococcus aureus. Cross-resistance was detected between such candidates and antibiotics currently in clinical use, including vancomycin, daptomycin, and the promising antibiotic candidate teixobactin. These patterns were driven by overlapping molecular mechanisms through mutations in regulatory systems. In particular, teixobactin-resistant bacteria displayed clinically relevant multidrug resistance and retained their virulence in an invertebrate infection model, raising concerns. More generally, we demonstrate that putative resistance mutations against candidate antibiotics are already present in natural bacterial populations. Therefore, antibiotic resistance in nature may evolve readily from the selection of preexisting genetic variants. Our work highlights the importance of predicting future evolution of resistance to antibiotic candidates at an early stage of drug development.
Collapse
Affiliation(s)
- Ana Martins
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged HU-6720, Hungary
| | - Fanni Judák
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- Doctoral School of Pharmaceutical Sciences, University of Szeged, Szeged HU-6720, Hungary
| | - Zoltán Farkas
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Petra Szili
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Gábor Grézal
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged HU-6726, Hungary
| | - Bálint Csörgő
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Márton Simon Czikkely
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged HU-6722, Hungary
- Department of Forensic Medicine, Albert-Szent-Györgyi Medical School, University of Szeged, Szeged HU-6722, Hungary
| | - Elvin Maharramov
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- Doctoral School of Biology, University of Szeged, Szeged HU-6726, Hungary
| | - Lejla Daruka
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Réka Spohn
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Dávid Balogh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Andreea Daraba
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| | - Szilvia Juhász
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- Cancer Microbiome Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged HU-6728, Hungary
| | - Máté Vágvölgyi
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged HU-6720, Hungary
| | - Attila Hunyadi
- Institute of Pharmacognosy, Faculty of Pharmacy, University of Szeged, Szeged HU-6720, Hungary
- HUN-REN-SZTE Biologically Active Natural Products Research Group, Szeged HU-6720, Hungary
| | - Yihui Cao
- Department of Chemistry, State Key Lab of Synthetic Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zhenquan Sun
- Department of Chemistry, State Key Lab of Synthetic Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xuechen Li
- Department of Chemistry, State Key Lab of Synthetic Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Balázs Papp
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
- HCEMM-BRC Metabolic Systems Biology Lab, Szeged HU-6726, Hungary
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre Szeged, Szeged HU-6726, Hungary
| |
Collapse
|
3
|
Bhaumik KN, Spohn R, Dunai A, Daruka L, Olajos G, Zákány F, Hetényi A, Pál C, Martinek TA. Chemically diverse antimicrobial peptides induce hyperpolarization of the E. coli membrane. Commun Biol 2024; 7:1264. [PMID: 39367191 PMCID: PMC11452689 DOI: 10.1038/s42003-024-06946-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
The negative membrane potential within bacterial cells is crucial in various essential cellular processes. Sustaining a hyperpolarised membrane could offer a novel strategy to combat antimicrobial resistance. However, it remains uncertain which molecules are responsible for inducing hyperpolarization and what the underlying molecular mechanisms are. Here, we demonstrate that chemically diverse antimicrobial peptides (AMPs) trigger hyperpolarization of the bacterial cytosolic membrane when applied at subinhibitory concentrations. Specifically, these AMPs adopt a membrane-induced amphipathic structure and, thereby, generate hyperpolarization in Escherichia coli without damaging the cell membrane. These AMPs act as selective ionophores for K+ (over Na+) or Cl- (over H2PO4- and NO3-) ions, generating diffusion potential across the membrane. At lower dosages of AMPs, a quasi-steady-state membrane polarisation value is achieved. Our findings highlight the potential of AMPs as a valuable tool for chemically hyperpolarising bacteria, with implications for antimicrobial research and bacterial electrophysiology.
Collapse
Affiliation(s)
- Kaushik Nath Bhaumik
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, Szeged, Hungary
| | - Réka Spohn
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Hungarian Research Network (HUN-REN), Szeged, Hungary
| | - Anett Dunai
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Hungarian Research Network (HUN-REN), Szeged, Hungary
| | - Lejla Daruka
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Hungarian Research Network (HUN-REN), Szeged, Hungary
| | - Gábor Olajos
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, Szeged, Hungary
| | - Florina Zákány
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Anasztázia Hetényi
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, Szeged, Hungary.
| | - Csaba Pál
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, National Laboratory of Biotechnology, Hungarian Research Network (HUN-REN), Szeged, Hungary
| | - Tamás A Martinek
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, Szeged, Hungary.
- HUN-REN-SZTE Biomimetic Systems Research Group, Dóm tér 8, Szeged, Hungary.
| |
Collapse
|
4
|
Recent Approaches for Downplaying Antibiotic Resistance: Molecular Mechanisms. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5250040. [PMID: 36726844 PMCID: PMC9886476 DOI: 10.1155/2023/5250040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 01/25/2023]
Abstract
Antimicrobial resistance (AMR) is a ubiquitous public health menace. AMR emergence causes complications in treating infections contributing to an upsurge in the mortality rate. The epidemic of AMR in sync with a high utilization rate of antimicrobial drugs signifies an alarming situation for the fleet recovery of both animals and humans. The emergence of resistant species calls for new treatments and therapeutics. Current records propose that health drug dependency, veterinary medicine, agricultural application, and vaccination reluctance are the primary etymology of AMR gene emergence and spread. Recently, several encouraging avenues have been presented to contest resistance, such as antivirulent therapy, passive immunization, antimicrobial peptides, vaccines, phage therapy, and botanical and liposomal nanoparticles. Most of these therapies are used as cutting-edge methodologies to downplay antibacterial drugs to subdue the resistance pressure, which is a featured motive of discussion in this review article. AMR can fade away through the potential use of current cutting-edge therapeutics, advancement in antimicrobial susceptibility testing, new diagnostic testing, prompt clinical response, and probing of new pharmacodynamic properties of antimicrobials. It also needs to promote future research on contemporary methods to maintain host homeostasis after infections caused by AMR. Referable to the microbial ability to break resistance, there is a great ultimatum for using not only appropriate and advanced antimicrobial drugs but also other neoteric diverse cutting-edge therapeutics.
Collapse
|
5
|
Németh LJ, Martinek TA, Jójárt B. Tilted State Population of Antimicrobial Peptide PGLa Is Coupled to the Transmembrane Potential. J Chem Inf Model 2022; 62:4963-4969. [PMID: 36190907 DOI: 10.1021/acs.jcim.2c00667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cationic antimicrobial peptide PGLa gets into close contact with the anionic bacterial cell membrane, facilitating cross-membrane transport phenomena and membrane disruption depending on the concentration. The mechanisms of action are closely associated with the tilted insertion geometry of PGLa. Therefore, we aimed to understand the interaction between the transmembrane potential (TMP) and the orientation of the membrane-bound PGLa helix. Molecular dynamics simulations were performed with TMP, and we found that the PGLa tilt angle relative to the membrane is coupled with the TMP. Elevated TMP increases the population of the tilted state. We observed positive feedback between the tilt angle and the TMP, which occurs due to the electrostatic interaction between the peptidic helix and the Na+ cations at the membrane-water interface. These TMP coupled phenomena can contribute to understanding the direct antimicrobial and adjuvant effects of PGLa in combination with regular antibiotics.
Collapse
Affiliation(s)
- Lukács J Németh
- Institute of Food Engineering, University of Szeged, Mars tér 7, Szeged HU-6724, Hungary
| | - Tamás A Martinek
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, Szeged HU-6720, Hungary.,ELKH-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network, Szeged H6720, Hungary
| | - Balázs Jójárt
- Institute of Food Engineering, University of Szeged, Mars tér 7, Szeged HU-6724, Hungary
| |
Collapse
|
6
|
Cao Z, Chen X, Chen J, Xia A, Bacacao B, Tran J, Sharma D, Bekale LA, Santa Maria PL. Gold nanocluster adjuvant enables the eradication of persister cells by antibiotics and abolishes the emergence of resistance. NANOSCALE 2022; 14:10016-10032. [PMID: 35796201 PMCID: PMC9578678 DOI: 10.1039/d2nr01003h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Persister cells are responsible for relapses of infections common in cystic fibrosis and chronic suppurative otitis media (CSOM). Yet, there are no Food and Drug Administration (FDA) approved antibiotics to eradicate persister cells. Frustratingly, the global preclinical bacterial pipeline does not contain antibacterial agents targeting persister cells. Therefore, we report a nontraditional antimicrobial chemotherapy strategy based on gold nanoclusters adjuvant to eradicate persister cells by existing antibiotics belonging to that different class. Compared to killing with antibiotics alone, combining antibiotics and AuNC@CPP sterilizes persister cells and biofilms. Enhanced killing of up to 4 orders of magnitude in a validated mouse model of CSOM with Pseudomonas aeruginosa infection was observed when combining antibiotics and AuNC@CPP, informing a potential approach to improve the treatment of CSOM. We established that the mechanism of action of AuNC@CPP is due to disruption of the proton gradient and membrane hyperpolarization. The method presented here could compensate for the lack of new antibiotics to combat persister cells. This method could also benefit the current effort to slow resistance development because AuNC@CPP abolished the emergence of drug-resistant strains induced by antibiotics.
Collapse
Affiliation(s)
- Zhixin Cao
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739, USA.
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - Xiaohua Chen
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739, USA.
- Department of Otolaryngology-Head and Neck Surgery, the First Affiliated Hospital, Zhengzhou University, Zhengzhou 450000, China
| | - Jing Chen
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739, USA.
| | - Anping Xia
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739, USA.
| | - Brian Bacacao
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739, USA.
| | - Jessica Tran
- The Protein and Nucleic Acid Biotechnology Facility, Beckman Center Stanford University, 279 Campus Drive, West Stanford, CA 94305, USA
| | - Devesh Sharma
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739, USA.
| | - Laurent A Bekale
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739, USA.
| | - Peter L Santa Maria
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739, USA.
| |
Collapse
|
7
|
Helical Foldamers and Stapled Peptides as New Modalities in Drug Discovery: Modulators of Protein-Protein Interactions. Processes (Basel) 2022. [DOI: 10.3390/pr10050924] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A “foldamer” is an artificial oligomeric molecule with a regular secondary or tertiary structure consisting of various building blocks. A “stapled peptide” is a peptide with stabilized secondary structures, in particular, helical structures by intramolecular covalent side-chain cross-linking. Helical foldamers and stapled peptides are potential drug candidates that can target protein-protein interactions because they enable multipoint molecular recognition, which is difficult to achieve with low-molecular-weight compounds. This mini-review describes a variety of peptide-based foldamers and stapled peptides with a view to their applications in drug discovery, including our recent progress.
Collapse
|