1
|
Grasso A, Altomare V, Fiorini G, Zompanti A, Pennazza G, Santonico M. Innovative Methodologies for the Early Detection of Breast Cancer: A Review Categorized by Target Biological Samples. BIOSENSORS 2025; 15:257. [PMID: 40277570 DOI: 10.3390/bios15040257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/12/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025]
Abstract
Innovative biosensor technologies are revolutionizing cancer detection by offering non-invasive, sensitive, and rapid diagnostic tools, addressing the limitations of conventional screening. Non-invasive samples like breath, saliva, urine, and sweat, analyzed using advanced technologies like electronic nose systems and AI, show promise for early detection and frequent monitoring, though validation is needed. AI integration enhances data analysis and personalization. While blood-based methods remain the gold standard, combining them with less invasive sample types like saliva or sweat, and using sensitive techniques, is a promising direction. Conventional methods (mammography, MRI, etc.) offer proven efficacy, but are costly and invasive. Innovative methods using biosensors offer reduced infrastructure needs, lower costs, and patient-friendly sampling. However, challenges remain in validation, standardization, and low biomarker concentrations. Integrating both methodologies could create a comprehensive framework, combining reliability with accessibility. Future research should focus on robust biosensor development, standardization, expanding application to other cancers, exploring less-studied samples like sweat, and improving affordability for wider adoption, especially in resource-limited settings. The future lies in integrating diverse approaches for more sensitive, specific, and patient-friendly screening, improving early detection and outcomes.
Collapse
Affiliation(s)
- Antonella Grasso
- Breast Unit, Policlinico Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Vittorio Altomare
- Breast Unit, Policlinico Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Giulia Fiorini
- Unit of Electronics for Sensor Systems, Department of Science and Technology for Sustainable Development and One-Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Alessandro Zompanti
- Unit of Electronics for Sensor Systems, Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Giorgio Pennazza
- Unit of Electronics for Sensor Systems, Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Marco Santonico
- Unit of Electronics for Sensor Systems, Department of Science and Technology for Sustainable Development and One-Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| |
Collapse
|
2
|
Varzaru VB, Popescu R, Vlad DC, Vlad CS, Moatar AE, Rempen A, Cobec IM. Predictors of Recurrence and Overall Survival in Breast Cancer Patients Undergoing Neoadjuvant Chemotherapy and Surgery: A Comprehensive Statistical Analysis. Cancers (Basel) 2025; 17:924. [PMID: 40149262 PMCID: PMC11940786 DOI: 10.3390/cancers17060924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: This study evaluates the impact of clinical, pathological, and treatment-related factors on breast cancer recurrence and overall survival following neoadjuvant chemotherapy and surgery. Patients and Method: A total of 298 patients treated at Diakoneo Diak Klinikum, Schwäbisch Hall, Germany (2010-2021) were analyzed. Key variables included hormone receptor status, molecular subtypes, tumor grade, treatment protocols, and metastatic disease at diagnosis. Results: Recurrence was strongly associated with metastatic disease (p < 0.001) but not with hormone receptor status or molecular subtypes. Platinum/taxane-based chemotherapy was linked to a lower recurrence risk (p = 0.05) compared to anthracycline-based regimens. Patients with recurrence had significantly lower overall survival (27.91% vs. 8.24%, p < 0.001). Logistic regression suggested a trend toward increased recurrence in ER-positive and PR-negative patients, though not statistically significant. These findings emphasize the importance of personalized treatment strategies and highlight the need for future studies incorporating genomic data and residual disease analysis to refine recurrence risk prediction and therapy selection.
Collapse
Affiliation(s)
- Vlad Bogdan Varzaru
- Doctoral School, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- ANAPATMOL Research Center, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Clinic of Obstetrics and Gynecology, Diakoneo Diak Klinikum, 74523 Schwäbisch Hall, Germany
| | - Roxana Popescu
- ANAPATMOL Research Center, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Department of Cell and Molecular Biology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Daliborca Cristina Vlad
- Department of Pharmacology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Cristian Sebastian Vlad
- Department of Pharmacology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
| | - Aurica Elisabeta Moatar
- ANAPATMOL Research Center, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Clinic of Internal Medicine-Cardiology, Klinikum Freudenstadt, 72250 Freudenstadt, Germany
| | - Andreas Rempen
- Clinic of Obstetrics and Gynecology, Diakoneo Diak Klinikum, 74523 Schwäbisch Hall, Germany
| | - Ionut Marcel Cobec
- ANAPATMOL Research Center, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Clinic of Obstetrics and Gynecology, Klinikum Freudenstadt, 72250 Freudenstadt, Germany
| |
Collapse
|
3
|
Kundacina I, Schobesberger S, Kittler S, Thumfart H, Spadiut O, Ertl P, Knežević NŽ, Radonic V. A versatile gold leaf immunosensor with a novel surface functionalization strategy based on protein L and trastuzumab for HER2 detection. Sci Rep 2025; 15:34. [PMID: 39748051 PMCID: PMC11697096 DOI: 10.1038/s41598-024-83961-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
Although various sensors specifically developed for target analytes are available, affordable biosensing solutions with broad applicability are limited. In this study, a cost-effective biosensor for detecting human epidermal growth factor receptor 2 (HER2) was developed using custom-made gold leaf electrodes (GLEs). A novel strategy for antibody immobilization on a gold surface, for the first time mediated by protein L and HER2-specific antibody trastuzumab, was examined using commercial screen-printed gold electrodes and GLEs. A self-assembled monolayer of 11-mercaptoundecanoic acid (MUA) was formed on the gold surface, which was used to covalently immobilize protein L. Further binding of trastuzumab to the protein L was employed and HER2 detection was achieved through electrochemical impedance spectroscopy (EIS). The HER2 detection was examined in phosphate-buffered saline (PBS) and supplemented cell culture medium. The modified GLEs showed good specificity and high sensitivity of HER2 detection without any enrichment steps, achieving a limit of detection (LOD) of 1 ng mL- 1 in PBS and 2.7 ng mL- 1 in cell culture medium, making the proposed immunosensor a cost-effective and sensitive solution for detection in complex biological matrices.
Collapse
Affiliation(s)
- Ivana Kundacina
- University of Novi Sad, BioSense Institute, Dr Zorana Djindjica 1, Novi Sad, 21000, Serbia.
| | | | - Stefan Kittler
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Strasse 1a, Vienna, 1060, Austria
| | - Helena Thumfart
- Faculty of Technical Chemistry, TU Wien, Getreidemarkt 9, Vienna, 1060, Austria
| | - Oliver Spadiut
- Research Division Integrated Bioprocess Development, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorfer Strasse 1a, Vienna, 1060, Austria
| | - Peter Ertl
- Faculty of Technical Chemistry, TU Wien, Getreidemarkt 9, Vienna, 1060, Austria
| | - Nikola Ž Knežević
- University of Novi Sad, BioSense Institute, Dr Zorana Djindjica 1, Novi Sad, 21000, Serbia
| | - Vasa Radonic
- University of Novi Sad, BioSense Institute, Dr Zorana Djindjica 1, Novi Sad, 21000, Serbia.
| |
Collapse
|
4
|
Gonçalves J, Nogueira F, Stock F, Martins F, Fernandes I, Gameiro-Dos-Santos R, Gramaça J, Trabulo C, Ângelo I, Pina I. The Clinical Utility of a Hand-Held Piezoelectric Scanner in the Detection of Early Tumor and Changes in Breast Texture. Cureus 2024; 16:e70586. [PMID: 39483543 PMCID: PMC11525233 DOI: 10.7759/cureus.70586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Background Breast cancer (BC) is one of the leading causes of cancer death in females worldwide. Screening with mammography (MMG) is limited in low- and middle-income countries (LMICs). The implementation of an affordable and effective screening method is crucial. The intelligent breast examination (iBE) has emerged as a portable device with a glove shape using piezoelectricity. This experimental study evaluates the effectiveness of the device by comparing it with mammography (MMG), breast magnetic resonance imaging (MRI), and clinical breast examination (CBE). Methods This study included patients admitted to the senology unit who were under surveillance in a medical oncology unit. iBE was performed after each CBE and compared with Breast Image Reporting and Data System (BI-RADS) classifications. MMG/MRI was classified as negative (BI-RADS ≤2) or positive (BI-RADS ≥3). Measures of accuracy and agreement between tests were calculated. Results A total of 103 females were included between September 2022 and September 2023, who underwent iBE, CBE, and MMG/MRI. CBE and MMG showed moderate agreement in categorization (ρ=0.99). With a specificity for predicting a negative MMG of 90.8% and a negative predictive value of 79.7%. Benign findings, cysts, fibroadenoma, and benign microcalcifications were presented in 80 patients (seromas and non-suspicious hypoechogenic images). The performance of iBE was evaluated by comparing the breast with alterations to the control breast within each BI-RADS categorization. Conclusion As of now, iBE does not identify breast changes. The improvement proposals emphasized the incorporation of accelerometer sensors, signal conditioning to allow for the collection of compression and decompression data from the sensors, and consideration of pressure stress. These improvements are crucial to optimize the iBE's ability to detect changes in breast texture, enhancing the iBE's effectiveness in the early detection of BC.
Collapse
Affiliation(s)
- Joana Gonçalves
- Medical Oncology, Unidade Local de Saúde do Arco Ribeirinho, Barreiro, PRT
| | | | | | | | - Isabel Fernandes
- Medical Oncology, Unidade Local de Saúde do Arco Ribeirinho, Barreiro, PRT
| | | | - João Gramaça
- Medical Oncology, Unidade Local de Saúde do Arco Ribeirinho, Barreiro, PRT
| | - Carolina Trabulo
- Medical Oncology, Unidade Local de Saúde do Arco Ribeirinho, Barreiro, PRT
| | - Inês Ângelo
- Medical Oncology, Unidade Local de Saúde do Arco Ribeirinho, Barreiro, PRT
| | - Idília Pina
- Medical Oncology, Unidade Local de Saúde do Arco Ribeirinho, Barreiro, PRT
| |
Collapse
|
5
|
Binmujlli MA. Exploring Radioiodinated Anastrozole and Epirubicin as AKT1-Targeted Radiopharmaceuticals in Breast Cancer: In Silico Analysis and Potential Therapeutic Effect with Functional Nuclear Imagining Implications. Molecules 2024; 29:4203. [PMID: 39275052 PMCID: PMC11397058 DOI: 10.3390/molecules29174203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
This study evaluates radio-iodinated anastrozole ([125I]anastrozole) and epirubicin ([125I]epirubicin) for AKT1-targeted breast cancer therapy, utilizing radiopharmaceutical therapy (RPT) for personalized treatment. Through molecular docking and dynamics simulations (200 ns), it investigates these compounds' binding affinities and mechanisms to the AKT1 enzyme, compared to the co-crystallized ligand, a known AKT1 inhibitor. Molecular docking results show that [125I]epirubicin has the highest ΔGbind (-11.84 kcal/mol), indicating a superior binding affinity compared to [125I] anastrozole (-10.68 kcal/mol) and the co-crystallized ligand (-9.53 kcal/mol). Molecular dynamics (MD) simulations confirmed a stable interaction with the AKT1 enzyme, with [125I]anastrozole and [125I]epirubicin reaching stability after approximately 68 ns with an average RMSD of around 2.2 Å, while the co-crystallized ligand stabilized at approximately 2.69 Å after 87 ns. RMSF analysis showed no significant shifts in residues or segments, with consistent patterns and differences of less than 2 Å, maintaining enzyme stability. The [125I]epirubicin complex maintained an average of four H-bonds, indicating strong and stable interactions, while [125I]anastrozole consistently formed three H-bonds. The average Rg values for both complexes were ~16.8 ± 0.1 Å, indicating no significant changes in the enzyme's compactness, thus preserving structural integrity. These analyses reveal stable binding and minimal structural perturbations, suggesting the high potential for AKT1 inhibition. MM-PBSA calculations confirm the potential of these radio-iodinated compounds as AKT1 inhibitors, with [125I]epirubicin exhibiting the most favorable binding energy (-23.57 ± 0.14 kcal/mol) compared to [125I]anastrozole (-20.03 ± 0.15 kcal/mol) and the co-crystallized ligand (-16.38 ± 0.14 kcal/mol), highlighting the significant role of electrostatic interactions in stabilizing the complex. The computational analysis shows [125I]anastrozole and [125I]epirubicin may play promising roles as AKT1 inhibitors, especially [125I]epirubicin for its high binding affinity and dynamic receptor interactions. These findings, supported by molecular docking scores and MM-PBSA binding energies, advocate for their potential superior inhibitory capability against the AKT1 enzyme. Nevertheless, it is crucial to validate these computational predictions through in vitro and in vivo studies to thoroughly evaluate the therapeutic potential and viability of these compounds for AKT1-targeted breast cancer treatment.
Collapse
Affiliation(s)
- Mazen Abdulrahman Binmujlli
- Department of Internal Medicine, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia
| |
Collapse
|
6
|
Turk Z, Armani A, Jafari-Gharabaghlou D, Madakbas S, Bonabi E, Zarghami N. A new insight into the early detection of HER2 protein in breast cancer patients with a focus on electrochemical biosensors approaches: A review. Int J Biol Macromol 2024; 272:132710. [PMID: 38825266 DOI: 10.1016/j.ijbiomac.2024.132710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Breast cancer is one of the leading causes of death in women and is a prevalent kind of cancerous growth, representing a substantial risk to women's health. Early detection of breast cancer is essential for effective treatment and improved survival rates. Biomarkers, active substances that signal the existence and advancement of a tumor, play a significant role in the early detection of breast cancer. Hence, accurate identification of biomarkers for tumors is crucial for diagnosing and treating breast cancer. However, the primary diagnostic methods used for the detection of breast cancer require specific equipment, skilled professionals, and specialized analysis, leading to elevated detection expenses. Regarding this obstacle, recent studies emphasize electrochemical biosensors as more advanced and sensitive detection tools compared to traditional methods. Electrochemical biosensors are employed to identify biomarkers that act as unique indicators for the onset, recurrence, and monitoring of therapeutic interventions for breast cancer. This study aims to provide a summary of the electrochemical biosensors that have been employed for the detection of breast cancer at an early stage over the past decade. Initially, the text provides concise information about breast cancer and tumor biomarkers. Subsequently, an in-depth analysis is conducted to systematically review the progress of electrochemical biosensors developed for the stable, specific, and sensitive identification of biomarkers associated with breast cancer. Particular emphasis was given to crucial clinical biomarkers, specifically the human epidermal growth factor receptor-2 (HER2). The analysis then explores the limitations and challenges inherent in the design of effective biosensors for diagnosing and treating breast cancer. Ultimately, we provided an overview of future research directions and concluded by outlining the advantages of electrochemical biosensor approaches.
Collapse
Affiliation(s)
- Zeynep Turk
- Department of Chemistry, Faculty of Science, Marmara University, Istanbul, Türkiye; Department of Analytical Chemistry, Faculty of Pharmacy, Istanbul Aydin University, Istanbul, Türkiye
| | - Arta Armani
- Department of Medical Biology and Genetics, Faculty of Medicine, Istanbul Aydin University, Istanbul, Türkiye
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyfullah Madakbas
- Department of Chemistry, Faculty of Science, Marmara University, Istanbul, Türkiye
| | - Esat Bonabi
- Department of Medical Microbiology, Faculty of Medicine, Istanbul Aydin University, Istanbul, Türkiye
| | - Nosratollah Zarghami
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Türkiye.
| |
Collapse
|
7
|
Ranjan P, Abubakar Sadique M, Yadav S, Khan R, Kumar Srivastava A. Electrochemical Nanobiosensor of Ionic Liquid Functionalized MoO 3-rGO for Sensitive Detection of Carcinoembryonic Antigen. Chempluschem 2024; 89:e202300625. [PMID: 38321835 DOI: 10.1002/cplu.202300625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
Early diagnosis of cancer can be achieved by detecting associated biomarkers before the appearance of symptoms. Herein, we have developed an electrochemical immunosensor of ionic liquid tailored to molybdenum trioxide-reduced graphene oxide (MoO3-rGO-IL) nanocomposite to detect carcinoembryonic antigen (CEA), a cancer biomarker. The MoO3-rGO-IL nanocomposite has been synthesized in situ via the hydrothermal method. The functionalization of 1-butyl-3-methylimidazolium tetrafluoroborate IL with MoO3-rGO synergistically improves the electrochemical and surface properties of the nanocomposite. The characterization studies revealed that the MoO3-rGO-IL nanocomposite is a highly appropriate material for the construction of immunosensors. The material exhibits exceptional electrical conductivity, surface properties, stability, and a large electrochemical effective surface area (13.77×10-2 cm2) making it ideal for fabricating immunosensors. The quantitative outcome showed that the developed immunosensor (BSA/anti-CEA/MoO3-rGO-IL/GCE) possesses excellent sensitivity, broad linearity from 25 fg mL-1 to 100 ng mL-1, and a low detection limit of 1.19 fg mL-1. Moreover, the remarkable selectivity, repeatability, and efficiency of detecting CEA in serum specimens demonstrated the feasibility of the immunosensor. Thus, the projected electrochemical immunosensor can potentially be utilized for the quantification of CEA in clinical specimens.
Collapse
Affiliation(s)
- Pushpesh Ranjan
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Mohd Abubakar Sadique
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Shalu Yadav
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Raju Khan
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| | - Avanish Kumar Srivastava
- CSIR -, Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, 462026, Bhopal, India
- Academy of Scientific and Innovative Research (AcSIR), 201002, Ghaziabad, India
| |
Collapse
|
8
|
Munan S, Chang YT, Samanta A. Chronological development of functional fluorophores for bio-imaging. Chem Commun (Camb) 2024; 60:501-521. [PMID: 38095135 DOI: 10.1039/d3cc04895k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Functional fluorophores represent an emerging research field, distinguished by their diverse applications, especially in sensing and cellular imaging. After the discovery of quinine sulfate and subsequent elucidation of the fluorescence mechanism by Sir George Stokes, research in the field of fluorescence gained momentum. Over the past few decades, advancements in sophisticated instruments, including super-resolution microscopy, have further promoted cellular imaging using traditional fluorophores. These advancements include deciphering sensing mechanisms via photochemical reactions and scrutinizing the applications of fluorescent probes that specifically target organelles. This approach elucidates molecular interactions with biomolecules. Despite the abundance of literature illustrating different classes of probe development, a concise summary of newly developed fluorophores remains inadequate. In this review, we systematically summarize the chronological discovery of traditional fluorophores along with new fluorophores. We briefly discuss traditional fluorophores ranging from visible to near-infrared (NIR) in the context of cellular imaging and in vivo imaging. Furthermore, we explore ten new core fluorophores developed between 2007 and 2022, which exhibit advanced optical properties, providing new insights into bioimaging. We illustrate the utilization of new fluorophores in cellular imaging of biomolecules, such as reactive oxygen species (ROS), reactive nitrogen species (RNS), and proteins and microenvironments, especially pH and viscosity. Few of the fluorescent probes provided new insights into disease progression. Furthermore, we speculate on the potential prospects and significant challenges of existing fluorophores and their potential biomedical research applications. By addressing these aspects, we intend to illuminate the compelling advancements in fluorescent probe development and their potential influence across various fields.
Collapse
Affiliation(s)
- Subrata Munan
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi NCR, NH 91, Tehsil Dadri 201314, Uttar Pradesh, India.
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Animesh Samanta
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Delhi NCR, NH 91, Tehsil Dadri 201314, Uttar Pradesh, India.
| |
Collapse
|
9
|
Kumela AG, Gemta AB, Hordofa AK, Birhanu R, Mekonnen HD, Sherefedin U, Weldegiorgis K. A review on hybridization of plasmonic and photonic crystal biosensors for effective cancer cell diagnosis. NANOSCALE ADVANCES 2023; 5:6382-6399. [PMID: 38024311 PMCID: PMC10662028 DOI: 10.1039/d3na00541k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023]
Abstract
Cancer causes one in six deaths worldwide, and 1.6 million cancer patients face annual out-of-pocket medical expenditures. In response to these, portable, label-free, highly sensitive, specific, and responsive optical biosensors are under development. Therefore, in this review, the recent advances, advantages, performance analysis, and current challenges associated with the fabrication of plasmonic biosensors, photonic crystals, and the hybridization of both for cancer diagnosis are assessed. The primary focus is on the development of biosensors that combine different shapes, sizes, and optical properties of metallic and dielectric nanoparticles with various coupling techniques. The latter part discusses the challenges and prospects of developing effective biosensors for early cancer diagnosis using dielectric and metallic nanoparticles. These data will help the audience advance research and development of next-generation plasmonic biosensors for effective cancer diagnosis.
Collapse
Affiliation(s)
- Alemayehu Getahun Kumela
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University Adama Ethiopia
| | - Abebe Belay Gemta
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University Adama Ethiopia
| | - Alemu Kebede Hordofa
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University Adama Ethiopia
| | - Ruth Birhanu
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University Adama Ethiopia
| | - Habtamu Dagnaw Mekonnen
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University Adama Ethiopia
| | - Umer Sherefedin
- Department of Applied Physics, School of Applied Natural Sciences, Adama Science and Technology University Adama Ethiopia
| | - Kinfe Weldegiorgis
- Department of Applied Physics, School of Natural and Computational Sciences, Bule Hora University Bule Hora Ethiopia
| |
Collapse
|
10
|
Meivita MP, Go SX, Mozar FS, Li L, Tan YS, Bajalovic N, Loke DK. Shape complementarity processes for ultrashort-burst sensitive M13-PEG-WS 2-powered MCF-7 cancer cell sensors. NANOSCALE 2023; 15:16658-16668. [PMID: 37800342 DOI: 10.1039/d3nr03573e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Biomarkers have the potential to be utilized in disease diagnosis, prediction and monitoring. The cancer cell type is a leading candidate for next-generation biomarkers. Although traditional digital biomolecular sensor (DBS) technology has shown to be effective in assessing cell-based interactions, low cell-population detection of cancer cell types is extremely challenging. Here, we controlled the electrical signature of a two-dimensional (2D) nanomaterial, tungsten disulfide (WS2), by utilizing a combination of the Phage-integrated Polymer and the Nanosheet (PPN), viz., the integration of the M13-conjugated polyethylene glycol (PEG) and the WS2, through shape-complementarity phenomena, and developed a sensor system, i.e., the Phage-based DBS (P-DBS), for the specific, rapid, sensitive detection of clinically-relevant MCF-7 cells. The P-DBS attains a detection limit of 12 cells per μL, as well as a contrast of 1.25 between the MCF-10A sample signal and the MCF-7 sample signal. A reading length of 200 μs was further achieved, along with a relative cell viability of ∼100% for both MCF-7 and MCF-10A cells and with the PNN. Atomistic simulations reveal the structural origin of the shape complementarity-facilitated decrease in the output impedance of the P-DBS. The combination of previously unreported exotic sensing materials and digital sensor design represents an approach to unlocking the ultra-sensitive detection of cancer cell types and provides a promising avenue for early cancer diagnosis, staging and monitoring.
Collapse
Affiliation(s)
- Maria P Meivita
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Shao-Xiang Go
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Fitya S Mozar
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Lunna Li
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Natasa Bajalovic
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| | - Desmond K Loke
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore.
| |
Collapse
|
11
|
Hussain S, Ahmed S, Akram W, Sardar R, Abbas M, Yasin NA. Selenium-Priming mediated growth and yield improvement of turnip under saline conditions. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:710-726. [PMID: 37753953 DOI: 10.1080/15226514.2023.2261548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Salt toxicity is one of the foremost environmental stresses that declines nutrient uptake, photosynthetic activity and growth of plants resulting in a decrease in crop yield and quality. Seed priming has become an emergent strategy to alleviate abiotic stress and improve plant growth. During the current study, turnip seed priming with sodium selenite (Na2SeO3) was investigated for its ability to mitigate salt stress. Turnip (Brassica rapa L. var. Purple Top White Globe) seeds primed with 75, 100, and 125 μML-1 of Se were subjected to 200 mM salt stress under field conditions. Findings of the current field research demonstrated that salt toxicity declined seed germination, chlorophyll content, and gas exchange characteristics of B. rapa seedling. Whereas, Se-primed seeds showed higher germination rate and plant growth which may be attributed to the decreased level of hydrogen peroxide (H2O2) and malondialdehyde (MDA) decreased synthesis of proline (36%) and besides increased total chlorophyll (46%) in applied turnip plants. Higher expression levels of genes encoding antioxidative activities (CAT, POD, SO,D and APX) mitigated oxidative stress induced by the salt toxicity. Additionally, Se treatment decreased Na+ content and enhanced K+ content resulting in elevated K+/Na+ ratio in the treated plants. The in-silico assessment revealed the interactive superiority of Se with antioxidant enzymes including CAT, POD, SOD, and APX as compared to sodium chloride (NaCl). Computational study of enzymes-Se and enzymes-NaCl molecules also revealed the stress ameliorative potential of Se through the presence of more Ramachandran-favored regions (94%) and higher docking affinities of Se (-6.3). The in-silico studies through molecular docking of Na2SeO3, NaCl, and ROS synthesizing enzymes (receptors) including cytochrome P450 (CYP), lipoxygenase (LOX), and xanthine oxidase (XO), also confirmed the salt stress ameliorative potential of Se in B. rapa. The increased Ca, P, Mg, and Zn nutrients uptake nutrients uptake in 100 μML-1 Se primed seedlings helped to adjust the stomatal conductivity (35%) intercellular CO2 concentration (32%), and photosynthetic activity (41%) resulting in enhancement of the yield attributes. More number of seeds per plant (6%), increased turnip weight (115 gm) root length (17.24 cm), root diameter (12 cm) as well as turnip yield increased by (9%tons ha-1) were recorded for 100 μML-1 Se treatment under salinity stress. Findings of the current research judiciously advocate the potential of Se seed priming for salt stress alleviation and growth improvement in B. rapa.
Collapse
Affiliation(s)
- Saber Hussain
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Waheed Akram
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Rehana Sardar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | | | | |
Collapse
|
12
|
Firatligil-Yildirir B, Yalcin-Ozuysal O, Nonappa. Recent advances in lab-on-a-chip systems for breast cancer metastasis research. NANOSCALE ADVANCES 2023; 5:2375-2393. [PMID: 37143816 PMCID: PMC10153489 DOI: 10.1039/d2na00823h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/26/2023] [Indexed: 05/06/2023]
Abstract
Breast cancer is the leading cause of cancer-related deaths in women. Multiple molecular subtypes, heterogeneity, and their ability to metastasize from the primary site to distant organs make breast cancer challenging to diagnose, treat, and obtain the desired therapeutic outcome. As the clinical importance of metastasis is dramatically increasing, there is a need to develop sustainable in vitro preclinical platforms to investigate complex cellular processes. Traditional in vitro and in vivo models cannot mimic the highly complex and multistep process of metastasis. Rapid progress in micro- and nanofabrication has contributed to soft lithography or three-dimensional printing-based lab-on-a-chip (LOC) systems. LOC platforms, which mimic in vivo conditions, offer a more profound understanding of cellular events and allow novel preclinical models for personalized treatments. Their low cost, scalability, and efficiency have resulted in on-demand design platforms for cell, tissue, and organ-on-a-chip platforms. Such models can overcome the limitations of two- and three-dimensional cell culture models and the ethical challenges involved in animal models. This review provides an overview of breast cancer subtypes, various steps and factors involved in metastases, existing preclinical models, and representative examples of LOC systems used to study and understand breast cancer metastasis and diagnosis and as a platform to evaluate advanced nanomedicine for breast cancer metastasis.
Collapse
Affiliation(s)
| | - Ozden Yalcin-Ozuysal
- Department of Molecular Biology and Genetics, Izmir Institute of Technology Urla 35430 Izmir Turkey
| | - Nonappa
- Faculty of Engineering and Natural Sciences, Tampere University FI-33720 Tampere Finland
| |
Collapse
|
13
|
Sanati A, Esmaeili Y, Khavani M, Bidram E, Rahimi A, Dabiri A, Rafienia M, Arbab Jolfaie N, Mofrad MRK, Haghjooy Javanmard S, Shariati L, Zarrabi A. Smartphone-assisted lab-in-a-tube device using gold nanocluster-based aptasensor for detection of MUC1-overexpressed tumor cells. Anal Chim Acta 2023; 1252:341017. [PMID: 36935143 DOI: 10.1016/j.aca.2023.341017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
Developing smartphone technology for point-of-care diagnosis is one of the current favorable trends in the field of biosensors. In fact, using smartphones can provide better accessibility and facility for rapid diagnosis of diseases. On the other hand, the detection of circulating tumor cells (CTCs) is one of the recent methods for the early diagnosis of cancer. Here, a new smartphone-assisted lab-in-a-tube device is introduced for the detection of Mucin 1 (MUC1) overexpressed tumor-derived cell lines using gold nanoclusters (GNCs)-based aptasensor. Accordingly, commercial polyurethane (PU) foam was first coated with graphene oxide (GO) to increase its surface area (8.45-fold), and improve its wettability. The surface of the resulting three-dimensional PU-GO (3DPU-GO) platform was then modified by MUC1 aptamer-GNCs to provide the required sensitivity and specificity through a turn "on/off" detection system. The proposed biosensor was first optimized with a spectrophotometer method. Afterward, findings were evaluated based on the red color intensity of the lab-in-a-tube system; and indicated the high ability of the biosensor for detection of MUC1-overexpressed tumor cell lines in the range of 250-20,000 cells mL-1 with a limit of detection of 221 cells mL-1. In addition, the developed biosensor showed a decent selectivity against positive-control cell lines (MCF-7, and HT-29) in comparison to negative-control cell lines (HEK293, and L929). Notably, the results represented good accordance with reference methods including spectroscopy devices. Ultimately, the results of this work bring a new perspective to the field of point-of-care detection and can be considered in future biosensors.
Collapse
Affiliation(s)
- Alireza Sanati
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Khavani
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Elham Bidram
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Biomaterials, Nanotechnology, And Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azadeh Rahimi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezou Dabiri
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rafienia
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafise Arbab Jolfaie
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Shariati
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Biomaterials, Nanotechnology, And Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey.
| |
Collapse
|
14
|
Pourasl MH, Vahedi A, Tajalli H, Khalilzadeh B, Bayat F. Liquid crystal-assisted optical biosensor for early-stage diagnosis of mammary glands using HER-2. Sci Rep 2023; 13:6847. [PMID: 37100835 PMCID: PMC10133346 DOI: 10.1038/s41598-023-31668-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/15/2023] [Indexed: 04/28/2023] Open
Abstract
Breast cancer (BC) is one of the most commonly diagnosed cancers and the second leading cause of cancer mortality among women around the world. The purpose of this study is to present a non-labeled liquid crystal (LC) biosensor, based on the inherent feature of nematic LCs, for the evaluation of BC using the human epidermal growth factor receptor-2 (HER-2) biomarker. The mechanism of this sensing is supported by surface modification with dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammonium chloride (DMOAP) encouraging the long alkyl chains that induce a homeotropic orientation of the LC molecules at the interface. To enhance the binding efficacy of more HER-2 antibody (Ab) on LC aligning agents, a simple ultraviolet radiation-assisted method was also used to increase functional groups on the DMOAP coated slides, thereby improving binding affinity and efficiency onto HER-2 Abs. The designed biosensor makes use of the specific binding of HER-2 protein to HER-2 Ab and disruption of the orientation of LCs. This orientation change leads to a transition of the optical appearance from dark to birefringent, enabling the detection of HER-2. This novel biosensor exhibits a linear optical response to HER-2 concentration in the wide dynamic range of 10-6-102 ng/mL, with an ultra-low detection limit of 1 fg/mL. As a proof of concept, the designed LC biosensor was successfully investigated for the quantification of HER-2 protein in patients suffering from BC. Owing to the sensitivity, selectivity, and label-free detection, this biosensor may amplify the application of LC-based biosensors for the detection of most types of cancers.
Collapse
Affiliation(s)
- Mehri H Pourasl
- Department of Physics, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Biophotonic Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Ali Vahedi
- Department of Physics, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Habib Tajalli
- Department of Physics, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Biophotonic Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center (SCRC), Tabriz University of Medical Sciences, Tabriz, 51664-14766, Iran.
| | - Farzaneh Bayat
- Department of Physics, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
15
|
Fernandes NB, Nayak Y, Garg S, Nayak UY. Multifunctional engineered mesoporous silica/inorganic material hybrid nanoparticles: Theranostic perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Li L, Zhang W, Chen H, Zhao Z, Wang M, Chen J. Visual and electrochemical determination of breast cancer marker CA15-3 based on etching of Au@Ag core/shell nanoparticles. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
17
|
Alia Moosavian S, Hashemi M, Etemad L, Daneshmand S, Salmasi Z. Melanoma-derived exosomes: Versatile extracellular vesicles for diagnosis, metastasis, immune modulation, and treatment of melanoma. Int Immunopharmacol 2022; 113:109320. [DOI: 10.1016/j.intimp.2022.109320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
|
18
|
Zhu T, Loyez M, Chah K, Caucheteur C. Partially gold-coated tilted FBGs for enhanced surface biosensing. OPTICS EXPRESS 2022; 30:16518-16529. [PMID: 36221493 DOI: 10.1364/oe.458548] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/14/2022] [Indexed: 06/16/2023]
Abstract
To date, there is clear experimental evidence that gold-coated tilted fiber Bragg gratings (TFBGs) are highly sensitive plasmonic biosensors that provide temperature-compensated detection of analytes at concentrations in the picomolar range. As most optical biosensors, they bring an evanescent wave in the surrounding medium, which makes them sensitive to both surface refractive index variations (= the useful biosensing signal) and to bulk refractive index changes (= the non-useful signal for biosensing). This dual sensitivity makes them prone to drift. In this work, we study partially gold-coated TFBGs around their cross-section. These gratings present the ability to discriminate both volume and surface refractive index changes, which is interesting in biosensing to enhance the signal-to-noise ratio. The effects induced in the TFBGs transmitted amplitude spectra were analyzed for surrounding refractive index (SRI) changes in the range 1.3360-1.3370. Then, the gold film was biofunctionalized with human epidermal growth factor receptor (HER2) aptamers using thiol chemistry. The detection of HER2 proteins (a relevant cancer biomarker) at 10-9 g/mL, 10-8 g/mL and 10-6 g/mL demonstrated the advantage to identify environmental perturbations through the bare area of the TFBGs, which is left not functionalized. The non-specific drifts that could exist in samples are eliminated and a wavelength shift only related to the surface modification is obtained.
Collapse
|
19
|
Salahandish R, Haghayegh F, Ayala-Charca G, Hyun JE, Khalghollah M, Zare A, Far B, Berenger BM, Niu YD, Ghafar-Zadeh E, Sanati-Nezhad A. Bi-ECDAQ: An electrochemical dual-immuno-biosensor accompanied by a customized bi-potentiostat for clinical detection of SARS-CoV-2 Nucleocapsid proteins. Biosens Bioelectron 2022; 203:114018. [PMID: 35114466 PMCID: PMC8786409 DOI: 10.1016/j.bios.2022.114018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/08/2022] [Accepted: 01/15/2022] [Indexed: 01/10/2023]
Abstract
Multiplex electrochemical biosensors have been used for eliminating the matrix effect in complex bodily fluids or enabling the detection of two or more bioanalytes, overall resulting in more sensitive assays and accurate diagnostics. Many electrochemical biosensors lack reliable and low-cost multiplexing to meet the requirements of point-of-care detection due to either limited functional biosensors for multi-electrode detection or incompatible readout systems. We developed a new dual electrochemical biosensing unit accompanied by a customized potentiostat to address the unmet need for point-of-care multi-electrode electrochemical biosensing. The two-working electrode system was developed using screen-printing of a carboxyl-rich nanomaterial containing ink, with both working electrodes offering active sites for recognition of bioanalytes. The low-cost bi-potentiostat system (∼$80) was developed and customized specifically to the bi-electrode design and used for rapid, repeatable, and accurate measurement of electrochemical impedance spectroscopy signals from the dual biosensor. This binary electrochemical data acquisition (Bi-ECDAQ) system accurately and selectively detected SARS-CoV-2 Nucleocapsid protein (N-protein) in both spiked samples and clinical nasopharyngeal swab samples of COVID-19 patients within 30 min. The two working electrodes offered the limit of detection of 116 fg/mL and 150 fg/mL, respectively, with the dynamic detection range of 1-10,000 pg/mL and the sensitivity range of 2744-2936 Ω mL/pg.mm2 for the detection of N-protein. The potentiostat performed comparable or better than commercial Autolab potentiostats while it is significantly lower cost. The open-source Bi-ECDAQ presents a customizable and flexible approach towards addressing the need for rapid and accurate point-of-care electrochemical biosensors for the rapid detection of various diseases.
Collapse
Affiliation(s)
- Razieh Salahandish
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Fatemeh Haghayegh
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Giancarlo Ayala-Charca
- Biologically Inspired Sensors and Actuators (BioSA), Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, M3J1P3, Canada
| | - Jae Eun Hyun
- Alberta Public Health Laboratory, Alberta Precision Laboratories, 3330 Hospital Drive, Calgary, Alberta, T2N 4W4, Canada
| | - Mahmood Khalghollah
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Department of Electrical and Software Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Azam Zare
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Behrouz Far
- Department of Electrical and Software Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Byron M Berenger
- Alberta Public Health Laboratory, Alberta Precision Laboratories, 3330 Hospital Drive, Calgary, Alberta, T2N 4W4, Canada; Department of Pathology and Laboratory Medicine, University of Calgary, 3535 Research Rd, Calgary, Alberta, T2L 1Y1, Canada
| | - Yan Dong Niu
- Department of Pathology and Laboratory Medicine, University of Calgary, 3535 Research Rd, Calgary, Alberta, T2L 1Y1, Canada; Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and Actuators (BioSA), Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, M3J1P3, Canada.
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada; Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|