1
|
Zhang B, Xia C, Hu J, Sheng H, Zhu M. Structure control and evolution of atomically precise gold clusters as heterogeneous precatalysts. NANOSCALE 2024; 16:1526-1538. [PMID: 38168796 DOI: 10.1039/d3nr05460h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Metal clusters have distinct features from single atom and nanoparticle (>1 nm) catalysts, making them effective catalysts for various heterogeneous reactions. Nevertheless, the ambiguity and complexity of the catalyst structure preclude in-depth mechanistic studies. The evolution of metal species during synthesis and reaction processes represents another challenge. One effective solution is to precisely control the structure of the metal cluster, thus offering a well-defined pre-catalyst. The well-defined chemical formula and configurations make atomically precise metal nanoclusters optimal choices. To fabricate an atomically precise metal nanocluster-based heterogeneous catalyst with enhanced performance, careful structural design of both the nanocluster and support material, an effective assembling technique, and a pre-treatment method for these hybrids need to be developed. In this review, we summarize recent advances in in the development of heterogeneous catalysts using atomically precise gold and alloy gold nanoclusters as precursors. We will begin with a brief introduction to the structural properties of atomically precise nanoclusters and structure determination of cluster/support hybrids. We will then introduce heterogeneous catalysts prepared from medium size (tens to hundreds of metal atoms) and low nuclearity nanoclusters. We will illustrate how ligand modification, support-cluster interaction, hybrid fabrication, and heteroatom (Pt, Pd Ag, Cu, Cd, Fe) introduction affect the structural properties and pretreatment/reaction-induced structural evolution of gold nanocluster pre-catalysts. Lastly, we will highlight the synthetic method of NCs@MOF hybrids and their effectiveness in circumventing the adverse cluster structural evolution. These findings are expected to shed light on the structure-activity relationship studies and future catalyst design strategies using atomically precise metal nanocluster pre-catalysts.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Chemistry, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Chengcheng Xia
- Department of Chemistry, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Jinhui Hu
- Department of Chemistry, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Hongting Sheng
- Department of Chemistry, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui 230601, P. R. China.
| | - Manzhou Zhu
- Department of Chemistry, Anhui University, Ministry of Education, Anhui University, Hefei, Anhui 230601, P. R. China.
| |
Collapse
|
2
|
Shi Q, Li Z, Cao C, Li G, Barkaoui S. Robust 2 nm-sized gold nanoclusters on Co 3O 4 for CO oxidation. NANOSCALE ADVANCES 2023; 5:5385-5389. [PMID: 37767036 PMCID: PMC10521261 DOI: 10.1039/d3na00561e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
In this study, gold nanoparticles were dispersed on Co3O4 nanoplates, forming a specific Au-Co3O4 interface. Upon calcination at 300 °C in air, aberration-corrected STEM images evidenced that the gold nanoclusters (NCs) on Co3O4{111} were maintained at ca. 2.2 nm, which is similar to the size of the parent Au colloidal particles, demonstrating the stronger metal-support interaction (SMSI) on Co3O4{111}. Au/Co3O4{111} showed good catalytic activity (a full CO conversion achieved at 80 °C) and durability (over 10 hours) in CO oxidation, which was mainly due to the promotion by the surface oxygen vacancies and intrinsic defects of Co3O4{111} for activating O2 and by Au0, Auδ+, and Au+ species on the surface of gold NCs for CO activation, as evidenced by Raman and Fourier-transform infrared (FT-IR) spectroscopy analysis. Au/Co3O4 catalyzed CO oxidation obeyed the Langmuir-Hinshelwood mechanism at low temperatures.
Collapse
Affiliation(s)
- Quanquan Shi
- College of Science, Inner Mongolia Agricultural University Hohhot 010018 China
- Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resource & Key Laboratory of Agricultural Ecological Securi-ty and Green Development at Universities of Inner Mongolia Autonomous Hohhot 010018 China
| | - Zhiwen Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Changhai Cao
- Key Laboratory of Biofuels and Biochemical Engineering, SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd Dalian 116045 China
| | - Gao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Sami Barkaoui
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
3
|
Liu X, Peng F, Li G, Diao K. Dynamic Metal Nanoclusters: A Review on Accurate Crystal Structures. Molecules 2023; 28:5306. [PMID: 37513180 PMCID: PMC10383162 DOI: 10.3390/molecules28145306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Dynamic metal nanoclusters have garnered widespread attention due to their unique properties and potential applications in various fields. Researchers have been dedicated to developing new synthesis methods and strategies to control the morphologies, compositions, and structures of metal nanoclusters. Through optimized synthesis methods, it is possible to prepare clusters with precise sizes and shapes, providing a solid foundation for subsequent research. Accurate determination of their crystal structures is crucial for understanding their behavior and designing custom functional materials. Dynamic metal nanoclusters also demonstrate potential applications in catalysis and optoelectronics. By manipulating the sizes, compositions, and surface structures of the clusters, efficient catalysts and optoelectronic materials can be designed and synthesized for various chemical reactions and energy conversion processes. This review summarizes the research progress in the synthesis methods, crystal structure characterization, and potential applications of dynamic metal nanoclusters. Various nanoclusters composed of different metal elements are introduced, and their potential applications in catalysis, optics, electronics, and energy storage are discussed. Additionally, the important role of dynamic metal nanoclusters in materials science and nanotechnology is explored, along with an overview of the future directions and challenges in this field.
Collapse
Affiliation(s)
- Xiang Liu
- Hunan Drug Inspection Center, Hunan Institute for Drug Control, Changsha 410013, China;
| | - Fan Peng
- Public Course Teaching Department, Changsha Health Vocational College, Changsha 410013, China;
| | - Gao Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Kai Diao
- College of Mathematics and Physics, Chengdu University of Technology, Chengdu 610059, China
| |
Collapse
|
4
|
Li S, Du X, Liu Z, Li Y, Shao Y, Jin R. Size Effects of Atomically Precise Gold Nanoclusters in Catalysis. PRECISION CHEMISTRY 2023; 1:14-28. [PMID: 37025974 PMCID: PMC10069034 DOI: 10.1021/prechem.3c00008] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/17/2023]
Abstract
The emergence of ligand-protected, atomically precise gold nanoclusters (NCs) in recent years has attracted broad interest in catalysis due to their well-defined atomic structures and intriguing properties. Especially, the precise formulas of NCs provide an opportunity to study the size effects at the atomic level without complications by the polydispersity in conventional nanoparticles that obscures the relationship between the size/structure and properties. Herein, we summarize the catalytic size effects of atomically precise, thioate-protected gold NCs in the range of tens to hundreds of metal atoms. The catalytic reactions include electrochemical catalysis, photocatalysis, and thermocatalysis. With the precise sizes and structures, the fundamentals underlying the size effects are analyzed, such as the surface area, electronic properties, and active sites. In the catalytic reactions, one or more factors may exert catalytic effects simultaneously, hence leading to different catalytic-activity trends with the size change of NCs. The summary of literature work disentangles the underlying fundamental mechanisms and provides insights into the size effects. Future studies will lead to further understanding of the size effects and shed light on the catalytic active sites and ultimately promote catalyst design at the atomic level.
Collapse
Affiliation(s)
- Site Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xiangsha Du
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Zhongyu Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yingwei Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yucai Shao
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
5
|
Wang H, Yao R, Zhang R, Ma H, Gao J, Liang M, Zhao Y, Miao Z. CeO 2-Supported TiO 2-Pt Nanorod Composites as Efficient Catalysts for CO Oxidation. Molecules 2023; 28:1867. [PMID: 36838854 PMCID: PMC9959209 DOI: 10.3390/molecules28041867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Supported Pt-based catalysts have been identified as highly selective catalysts for CO oxidation, but their potential for applications has been hampered by the high cost and scarcity of Pt metals as well as aggregation problems at relatively high temperatures. In this work, nanorod structured (TiO2-Pt)/CeO2 catalysts with the addition of 0.3 at% Pt and different atomic ratios of Ti were prepared through a combined dealloying and calcination method. XRD, XPS, SEM, TEM, and STEM measurements were used to confirm the phase composition, surface morphology, and structure of synthesized samples. After calcination treatment, Pt nanoparticles were semi-inlayed on the surface of the CeO2 nanorod, and TiO2 was highly dispersed into the catalyst system, resulting in the formation of (TiO2-Pt)/CeO2 with high specific surface area and large pore volume. The unique structure can provide more reaction path and active sites for catalytic CO oxidation, thus contributing to the generation of catalysts with high catalytic activity. The outstanding catalytic performance is ascribed to the stable structure and proper TiO2 doping as well as the combined effect of Pt, TiO2, and CeO2. The research results are of importance for further development of high catalytic performance nanoporous catalytic materials.
Collapse
Affiliation(s)
- Haiyang Wang
- Xi’an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi’an 710123, China
| | - Ruijuan Yao
- Xi’an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi’an 710123, China
| | - Ruiyin Zhang
- Xi’an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi’an 710123, China
| | - Hao Ma
- Xi’an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi’an 710123, China
| | - Jianjing Gao
- Xi’an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi’an 710123, China
| | - Miaomiao Liang
- School of Materials Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
| | - Yuzhen Zhao
- Xi’an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi’an 710123, China
| | - Zongcheng Miao
- Xi’an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi’an 710123, China
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
6
|
Zhang Y, Khalid MS, Wang M, Li G. New Strategies on Green Synthesis of Dimethyl Carbonate from Carbon Dioxide and Methanol over Oxide Composites. Molecules 2022; 27:5417. [PMID: 36080185 PMCID: PMC9457872 DOI: 10.3390/molecules27175417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Dimethyl carbonate is a generally used chemical substance which is environmentally sustainable in nature and used in a range of industrial applications as intermediate. Although various methods, including methanol phosgenation, transesterification and oxidative carbonylation of methanol, have been developed for large-scale industrial production of DMC, they are expensive, unsafe and use noxious raw materials. Green production of DMC from CO2 and methanol is the most appropriate and eco-friendly method. Numerous catalysts were studied and tested in this regard. The issues of low yield and difficulty in tests have not been resolved fundamentally, which is caused by the inherent problems of the synthetic pathway and limitations imposed by thermodynamics. Electron-assisted activation of CO2 and membrane reactors which can separate products in real-time giving a maximum yield of DMC are also being used in the quest to find more effective production method. In this review paper, we deeply addressed green production methods of DMC using Zr/Ce/Cu-based nanocomposites as catalysts. Moreover, the relationship between the structure and activity of catalysts, catalytic mechanisms, molecular activation and active sites identification of catalysts are also discussed.
Collapse
Affiliation(s)
- Yifei Zhang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
| | - Muhammad Shoaib Khalid
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Meng Wang
- Key Laboratory of Biofuels and Biochemical Engineering, SINOPEC Dalian Research Institute of Petroleum and Petro-Chemicals, Dalian 116045, China
| | - Gao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
7
|
Truttmann V, Drexler H, Stöger‐Pollach M, Kawawaki T, Negishi Y, Barrabés N, Rupprechter G. CeO 2 Supported Gold Nanocluster Catalysts for CO Oxidation: Surface Evolution Influenced by the Ligand Shell. ChemCatChem 2022; 14:e202200322. [PMID: 36035519 PMCID: PMC9400996 DOI: 10.1002/cctc.202200322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/07/2022] [Indexed: 11/15/2022]
Abstract
Monolayer protected Au nanocluster catalysts are known to undergo structural changes during catalytic reactions, including dissociation and migration of ligands onto the support, which strongly affects their activity and stability. To better understand how the nature of ligands influences the catalytic activity of such catalysts, three types of ceria supported Au nanoclusters with different kinds of ligands (thiolates, phosphines and a mixture thereof) have been studied, employing CO oxidation as model reaction. The thiolate-protected Au25/CeO2 showed significantly higher CO conversion after activation at 250 °C than the cluster catalysts possessing phosphine ligands. Temperature programmed oxidation and in situ infrared spectroscopy revealed that while the phosphine ligands seemed to decompose and free Au surface was exposed, temperatures higher than 250 °C are required to efficiently remove them from the whole catalyst system. Moreover, the presence of residues on the support seemed to have much greater influence on the reactivity than the gold particle size.
Collapse
Affiliation(s)
- Vera Truttmann
- Institute of Materials ChemistryTU WienGetreidemarkt 9/1651060ViennaAustria
| | - Hedda Drexler
- Institute of Materials ChemistryTU WienGetreidemarkt 9/1651060ViennaAustria
| | - Michael Stöger‐Pollach
- University Service Center for Transmission Electron Microscopy (USTEM)TU WienWiedner Hauptstraße 8–101040ViennaAustria
| | - Tokuhisa Kawawaki
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo 162-8601Japan
| | - Yuichi Negishi
- Department of Applied ChemistryFaculty of ScienceTokyo University of ScienceKagurazaka, Shinjuku-kuTokyo 162-8601Japan
| | - Noelia Barrabés
- Institute of Materials ChemistryTU WienGetreidemarkt 9/1651060ViennaAustria
| | | |
Collapse
|
8
|
Zhang X, Shi Q, Liu X, Li J, Xu H, Ding H, Li G. Facile Assembly of InVO 4/TiO 2 Heterojunction for Enhanced Photo-Oxidation of Benzyl Alcohol. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1544. [PMID: 35564253 PMCID: PMC9101042 DOI: 10.3390/nano12091544] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023]
Abstract
In this work, an InVO4/TiO2 heterojunction composite catalyst was successfully synthesized through a facile hydrothermal method. The structural and optical characteristics of InVO4/TiO2 heterojunction composites are investigated using a variety of techniques, including powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and spectroscopy techniques. The addition of InVO4 to TiO2 considerably enhanced the photocatalytic performance in selective photo-oxidation of benzyl alcohol (BA). The 10 wt% InVO4/TiO2 composite photocatalyst provided a decent 100% BA conversion with over 99% selectivity for benzaldehyde, and exhibited a maximum conversion rate of 3.03 mmol g-1 h-1, which is substantially higher than bare InVO4 and TiO2. The excellent catalytic activity of the InVO4/TiO2 photocatalyst is associated with the successful assembly of heterostructures, which promotes the charge separation and transfer between InVO4 and TiO2.
Collapse
Affiliation(s)
- Xinyu Zhang
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.Z.); (Q.S.); (J.L.); (H.D.)
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Quanquan Shi
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.Z.); (Q.S.); (J.L.); (H.D.)
| | - Xin Liu
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.Z.); (Q.S.); (J.L.); (H.D.)
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jingmei Li
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.Z.); (Q.S.); (J.L.); (H.D.)
| | - Hui Xu
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.Z.); (Q.S.); (J.L.); (H.D.)
| | - Hongjing Ding
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.Z.); (Q.S.); (J.L.); (H.D.)
| | - Gao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|