1
|
Seke M, Zivkovic M, Stankovic A. Versatile applications of fullerenol nanoparticles. Int J Pharm 2024; 660:124313. [PMID: 38857663 DOI: 10.1016/j.ijpharm.2024.124313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Nanomaterials have become increasingly important over time as research technology has enabled the progressively precise study of materials at the nanoscale. Developing an understanding of how nanomaterials are produced and tuned allows scientists to utilise their unique properties for a variety of applications, many of which are already incorporated into commercial products. Fullerenol nanoparticles C60(OH)n, 2 ≤ n ≤ 44 are fullerene derivatives and are produced synthetically. They have good biocompatibility, low toxicity and no immunological reactivity. In addition, their nanometre size, large surface area to volume ratio, ability to penetrate cell membranes, adaptable surface that can be easily modified with different functional groups, drug release, high physical stability in biological media, ability to remove free radicals, magnetic and optical properties make them desirable candidates for various applications. This review comprehensively summarises the various applications of fullerenol nanoparticles in different scientific fields such as nanobiomedicine, including antibacterial and antiviral agents, and provides an overview of their use in agriculture and biosensor technology. Recommendations are also made for future research that would further elucidate the mechanisms of fullerenols actions.
Collapse
Affiliation(s)
- Mariana Seke
- Laboratory for Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences -National Institute of The Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, P.O.Box 522, 11 000 Belgrade, Serbia.
| | - Maja Zivkovic
- Laboratory for Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences -National Institute of The Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, P.O.Box 522, 11 000 Belgrade, Serbia
| | - Aleksandra Stankovic
- Laboratory for Radiobiology and Molecular Genetics, "Vinča" Institute of Nuclear Sciences -National Institute of The Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, P.O.Box 522, 11 000 Belgrade, Serbia
| |
Collapse
|
2
|
Fan C, Liang Q, Wang Y, Chen P, Wu J, Wu Q, Jiang S, Zhou Y, He R, Tai F. Cu-II-directed self-assembly of fullerenols to ameliorate copper stress in maize seedlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172416. [PMID: 38631627 DOI: 10.1016/j.scitotenv.2024.172416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Widespread use of copper-based agrochemical may cause copper excessive accumulation in agricultural soil to seriously threaten crop production. Recently, fullerenols are playing important roles in helping crops build resistance to abiotic stresses by giving ingenious and successful resolutions. However, there is a lack of knowledge on their beneficial effects in crops under stresses induced by heavy metals. Herein, the visual observation of Cu2+-mediated assembly of fullerenols via electrostatic and coordination actions was carried out in vitro, showing that water-soluble nanocomplexes and water-insoluble cross-linking nanohybrids were selectively fabricated by precisely adjusting feeding ratios of fullerenols and CuSO4. Furthermore, maize simultaneous exposure of fullerenols and CuSO4 solutions was tested to investigate the comparative effects of seed germination and seedling growth relative to exposure of CuSO4 alone. Under moderate Cu2+ stresses (40 and 80 μM), fullerenols significantly mitigated the detrimental effects of seedlings, including phenotype, root and shoot elongation, biomass accumulation, antioxidant capacity, and Cu2+ uptake and copper transporter-related gene expressions in roots. Under 160 μM of Cu2+ as a stressor, fullerenols also accelerated germination of Cu2+-stressed seeds eventually up to the level of the control. Summarily, fullerenols can enhance tolerance of Cu2+-stressed maize mainly due to direct detoxification through fullerenol-Cu2+ interactions restraining the Cu2+ intake into roots and reducing free Cu2+ content in vivo, as well as fullerenol-maize interactions to enhance resistance by maintaining balance of reactive oxygen species and optimizing the excretion and transport of Cu2+. This will unveil valuable insights into the beneficial roles of fullerenols and its mechanism mode in alleviating heavy metal stress on crop plants.
Collapse
Affiliation(s)
- Chenjie Fan
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Qingyuan Liang
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Yan Wang
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Peimei Chen
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Jiakai Wu
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Qingnan Wu
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Shijun Jiang
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Yang Zhou
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Rui He
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China.
| | - Fuju Tai
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
3
|
He R, Fan C, Liang Q, Wang Y, Gao Y, Wu J, Wu Q, Tai F. Directed assembly of fullerenols via electrostatic and coordination interactions to fabricate diverse and water-soluble metal cation-fullerene nanocluster complexes. RSC Adv 2024; 14:1472-1487. [PMID: 38174261 PMCID: PMC10763661 DOI: 10.1039/d3ra07725j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Metal ion-nanocluster coordination complexes can produce a variety of functional engineered nanomaterials with promising characteristics to enable widespread applications. Herein, the visualization observation of the interactions of metal ions and fullerene derivatives, particularly anionic fullerenols (Fol), were carried out in aqueous solutions. The alkali metal salts only resulted in salting out of Fol to gain re-soluble sediments, whereas multivalent metal cations (Mn+, n = 2, 3) modulated further assembly of Fol to produce insoluble hybrids. These provide crucial insights into the directed assembly of Fol that two major forces involved in actuation are electrostatic and coordination effects. Through the precise modulation of feed ratios of Fol to Mn+, a variety of water-soluble Mn+@Fol coordination complexes were facilely prepared and subsequently characterized by various measurements. Among them, X-ray photoelectron spectra validated the coordination effects through the metal cation and oxygen binding feature. Transmission electron microscopy delivered valuable information about diverse morphologies and locally-ordered microstructures at the nanoscale. This study opens a new opportunity for developing a preparation strategy to fabricate water-soluble metal cation-fullerenol coordination complexes with various merits for potential application in biomedical fields.
Collapse
Affiliation(s)
- Rui He
- NanoAgro Center, College of Plant Protection, Henan Agricultural University Zhengzhou 450046 China
| | - Chenjie Fan
- NanoAgro Center, College of Plant Protection, Henan Agricultural University Zhengzhou 450046 China
| | - Qingyuan Liang
- NanoAgro Center, College of Plant Protection, Henan Agricultural University Zhengzhou 450046 China
| | - Yan Wang
- NanoAgro Center, College of Plant Protection, Henan Agricultural University Zhengzhou 450046 China
| | - Yanyan Gao
- NanoAgro Center, College of Plant Protection, Henan Agricultural University Zhengzhou 450046 China
| | - Jiakai Wu
- NanoAgro Center, College of Plant Protection, Henan Agricultural University Zhengzhou 450046 China
| | - Qingnan Wu
- NanoAgro Center, College of Plant Protection, Henan Agricultural University Zhengzhou 450046 China
| | - Fuju Tai
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University Zhengzhou 450046 China
| |
Collapse
|
4
|
Xia Y, Ma J, Zheng J, Lu Z, Zhang Q, Li B, Chen S, Li D, Zhang Q, Hong L, Zhao B, Yang C. Facile Synthesis of Biocompatible Amine Oxide Grafted Fullerene and Its Antioxidant Performances without Metal Loading. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222110238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Ma J, Zhang Q, Hong L, Xie Y, Yang Z, Xu Y, Wang Q, Zhou Y, Yang C. Controllable Synthesis of Ultrasmall Copper Nanoparticles Decorated Fullerenol Composite for Antibacterial Application and Wound Healing under Visible Light. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Kumar S, Kaur P, Brar RS, Babu JN. Nanoscale zerovalent copper (nZVC) catalyzed environmental remediation of organic and inorganic contaminants: A review. Heliyon 2022; 8:e10140. [PMID: 36042719 PMCID: PMC9420493 DOI: 10.1016/j.heliyon.2022.e10140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/09/2022] [Accepted: 07/28/2022] [Indexed: 11/23/2022] Open
Abstract
Over the past decade, the nano zerovalent copper has emerged as an effective nano-catalyst for the environment remediation processes due to its ease of synthesis, low cost, controllable particle size and high reactivity despite its release during the remediation process and related concentration dependent toxicities. However, the improvised techniques involving the use of supports or immobilizer for the synthesis of Cu0 has significantly increased its stability and motivated the researchers to explore the applicability of Cu0 for the environment remediation processes, which is evident from access to numerous reports on nano zerovalent copper mediated remediation of contaminants. Initially, this review allows the understanding of the various resources used to synthesize zerovalent copper nanomaterial and the structure of Cu0 nanoparticles, followed by focus on the reaction mechanism and the species involved in the contaminant remediation process. The studies comprehensively presented the application of nano zerovalent copper for remediation of organic/inorganic contaminants in combination with various oxidizing and reducing agents under oxic and anoxic conditions. Further, it was evaluated that the immobilizers or support combined with various irradiation sources originates a synergistic effect and have a significant effect on the stability and the redox properties of nZVC in the remediation process. Therefore, the review proposed that the future scope of research should include rigorous focus on deriving an exact mechanism for synergistic effect for the removal of contaminants by supported nZVC.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, 151302, Punjab, India
| | - Parminder Kaur
- Department of Chemistry, Akal University, Talwandi Sabo, Bathinda, 151302, Punjab, India
| | | | - J Nagendra Babu
- Department of Chemistry, School of Basic and Applied Science, Central University of Punjab, Bathinda, 151001, Punjab, India
| |
Collapse
|
7
|
Hou W, Shi G, Wu S, Mo J, Shen L, Zhang X, Zhu Y. Application of Fullerenes as Photosensitizers for Antimicrobial Photodynamic Inactivation: A Review. Front Microbiol 2022; 13:957698. [PMID: 35910649 PMCID: PMC9329950 DOI: 10.3389/fmicb.2022.957698] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial photodynamic inactivation (aPDI) is a newly emerged treatment approach that can effectively address the issue of multidrug resistance resulting from the overuse of antibiotics. Fullerenes can be used as promising photosensitizers (PSs) for aPDI due to the advantages of high triplet state yields, good photostability, wide antibacterial spectrum, and permissibility of versatile functionalization. This review introduces the photodynamic activities of fullerenes and the up-to-date understanding of the antibacterial mechanisms of fullerene-based aPDI. The most recent works on the functionalization of fullerenes and the application of fullerene derivatives as PSs for aPDI are also summarized. Finally, certain remaining challenges are emphasized to provide guidance on future research directions for achieving clinical application of fullerene-based aPDI.
Collapse
Affiliation(s)
- Wenjia Hou
- School of Medicine, Ningbo University, Ningbo, China
| | - Guorui Shi
- School of Medicine, Ningbo University, Ningbo, China
| | - Songze Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Jiayi Mo
- School of Medicine, Ningbo University, Ningbo, China
| | - Lan Shen
- School of Medicine, Ningbo University, Ningbo, China
| | - Xiuqiang Zhang
- Ningbo Key Laboratory of Hearing and Balance Medicine, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Yabin Zhu
- School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|