1
|
Liu B, Wang J, Li C. Application of PLS-NN model based on mid-infrared spectroscopy in the origin identification of Cornus officinalis. RSC Adv 2024; 14:15209-15219. [PMID: 38737973 PMCID: PMC11082643 DOI: 10.1039/d4ra00953c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024] Open
Abstract
Mid-infrared spectroscopy has been increasingly used as a nondestructive analytical technique in Chinese herbal medicine identification in recent years. In this study, a new chemometric model named as PLS-NN model was proposed based on the mid-infrared spectral data of Cornus officinalis samples from 11 origins. It was realized by combining the partial least squares and neural networks for the identification of the origin of Chinese herbal medicines. First, we extracted features from the spectral data in 3448 bands using the partial least squares method, and extracted 122 components that contained more than 95% of the information. Then, we trained the PLS-NN model by neural network using the extracted components as inputs and the corresponding origin classes as outputs. Finally, based on an external test set, we evaluated the generalization ability of the PLS-NN model using metrics such as accuracy, F1-Score and Kappa coefficient. The results show that the PLS-NN model performs well in all three metrics when compared to models such as Decision trees, Support vector machine, Partial least squares Discriminant analysis, and Naive bayes. The model not only realizes the dimensionality reduction of full-spectrum data and improves the training efficiency of the model, but also has higher accuracy compared with the full-spectrum data model. The PLS-NN model was applied to identify the origin of Cornus officinalis with an accuracy of 91.9%.
Collapse
Affiliation(s)
- Bing Liu
- Public Foundational Courses Department, Nanjing Vocational University of Industry Technology Nanjing 210023 China
| | - Junqi Wang
- School of Electrical Engineering, Nanjing Vocational University of Industry Technology Nanjing 210023 China
| | - Chaoning Li
- Research and Development Department, Jiangsu Changxingyang Intelligent Home Company Limited Suzhou 215009 China
| |
Collapse
|
2
|
Chen B, Zhu Y, Ma S, Zhao B, Feng F. A semi-packed gas chromatographic column with staggered elliptic cylindrical post arrays. Analyst 2024; 149:1579-1585. [PMID: 38288594 DOI: 10.1039/d3an02016a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
A semi-packed gas chromatographic column has the advantages of high specific surface area and low column pressure. We report that the stagnation regions formed in the adjacent posts along the channel of the semi-packed columns can decrease the area and height of chromatographic peaks, which makes it difficult to detect low-concentration mixed gases. A semi-packed column with staggered elliptic cylindrical post arrays (SC-S) made using a micro-electro-mechanical system technique is presented, and the separation performance of SC-S is compared with that of a semi-packed column with aligned elliptic cylindrical post arrays (SC-A). The simulation results show that the width of stagnation regions in SC-S is 86.89% smaller than that in SC-A. The experimental results indicate that the area and height of chromatographic peaks increased as stagnation regions reduced. In the separation of the alkane mixture from C8 through C10 with 10 ppm concentration, the chromatographic peak of decane was hardly identified in SC-A while the chromatographic peak in SC-S was still clearly visible. The chromatographic peak heights of octane and nonane were increased by 65.06% and 130.00%, respectively, in SC-S. The peak areas of octane and nonane were increased by 120.45% and 168.18%, respectively.
Collapse
Affiliation(s)
- Boxin Chen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchen Zhu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaojie Ma
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Ba M, Li W, Song Y, Zhang Y, Xu X, Liu H, Cai Z, Hu S, Liu X, Sun T. Hydroxyl-functionalized pillar[5]arene with high separation performance for gas chromatography. Analyst 2024; 149:925-934. [PMID: 38192226 DOI: 10.1039/d3an01975f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Here we report the first example of employing hydroxyl-functionalized pillar[5]arene (P5A-C10-OH) as stationary phase for capillary gas chromatographic (GC) separations. The statically coated P5A-C10-OH capillary column possessed moderate polarity and column efficiency of 3233 plates per m determined by n-dodecane. As a result, the P5A-C10-OH column exhibited high-resolution capability for the mixture of 17 analytes from apolar to polar nature. Importantly, it exhibited advantageous performance for high resolution of the challenging isomers of bromonitrobenzene, chloroaniline, bromoaniline, iodoaniline and dimethylaniline with good peak shapes over the P5A-C10 and commercial HP-35 columns. In addition, eight cis-/trans-isomers with diverse types were baseline separated on the P5A-C10-OH column. And the application of detecting isomeric impurities in real samples gave strong evidence of its potential and feasibility for the viable GC analysis.
Collapse
Affiliation(s)
- Mengyi Ba
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, P. R. China.
| | - Wen Li
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, P. R. China.
| | - Yanli Song
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, P. R. China.
| | - Yuanyuan Zhang
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, P. R. China.
| | - Xiang Xu
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, P. R. China.
| | - Haixin Liu
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, P. R. China.
| | - Zhiqiang Cai
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, P. R. China.
| | - Shaoqiang Hu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China.
| | - Xianming Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China.
| | - Tao Sun
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China.
| |
Collapse
|
4
|
Ba M, Chen R, Huang Q, Song Y, Li W, Zhang Y, Liu H, Xu X, Zhang W, Cai Z, Sun T. High-Resolution Performance of Polycaprolactone Functionalized with Guanidinium Ionic Liquid for Gas Chromatography. Chem Biodivers 2023; 20:e202300350. [PMID: 37377049 DOI: 10.1002/cbdv.202300350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 06/29/2023]
Abstract
This work firstly reported a new polycaprolactone based material functionalized with guanidinium ionic liquid (PCL-GIL) as the stationary phase with high resolution performance for capillary gas chromatography (GC). It is composed of polycaprolactone (PCL) and guanidinium ionic liquid (GIL) with amphiphilic conformation. The PCL-GIL capillary column coated by static method exhibited high column efficiency of 3942 plates/m and moderate polarity. As a result, the PCL-GIL column exhibited high-resolution capability. For a mixture of 27 analytes with a wide ranging polarity and outperformed the PCL-2OH and HP-35 columns, showing its advantageous separation capability for analytes of diverse types. Moreover, the PCL-GIL column showed high resolving capability for various positional isomers and cis-/trans-isomers, including alkylbenzenes, chlorobenzenes, naphthalenes, bromonitrobenzenes, chloronitrobenzenes, benzaldehydes, phenols, alcohols, respectively. In a word, PCL derivatized by GIL units as a new type of stationary phase has a promising future in GC separations.
Collapse
Affiliation(s)
- Mengyi Ba
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, P. R. China
| | - Ruonan Chen
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, P. R. China
| | - Qiuchen Huang
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, P. R. China
| | - Yanli Song
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, P. R. China
| | - Wen Li
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, P. R. China
| | - Yuanyuan Zhang
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, P. R. China
| | - Haixin Liu
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, P. R. China
| | - Xiang Xu
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, P. R. China
| | - Weidong Zhang
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, P. R. China
| | - Zhiqiang Cai
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, P. R. China
| | - Tao Sun
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
- Hebei Key Laboratory of Heterocyclic Compounds, Handan University, Handan, China
| |
Collapse
|
5
|
Sun T, Chen R, Huang Q, Ba M, Cai Z, Chen H, Qi Y, Chen H, Liu X, Nardiello D, Quinto M. Efficient gas chromatographic separation of xylene and other aromatic isomers by using pillar[6]arene-based stationary phase. Anal Chim Acta 2023; 1251:340979. [PMID: 36925280 DOI: 10.1016/j.aca.2023.340979] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
The separation of aromatic isomers, in particular xylene isomers, represents a big issue in chemical and petroleum industries, owing to their similar molecular sizes and boiling points. In this work, the investigation ofpillar[6]arene derivative modified by long alkyl chains (P6A-C10) as a stationary phase for high-resolution gas chromatographic (GC) separations of xylene isomers is presented. Pillar[n]arenes are a new class of macrocyclic hosts that can accommodate specific guests due to their highly symmetrical and rigid pillar architectures with π-electron rich cavities. The P6A-C10 column showed high-resolution performance towards xylene isomers, with peculiar advantages if compared with the commercial HP-5, HP-35, DB-17, and PEG-20Mcolumns.A quantum chemistry calculation has been performed, showing a difference in non-covalent interactions with the P6A-C10 pillar framework, which leads to specific selectivity for xylene isomers.Furthermore, the P6A-C10 column exhibited good repeatability.
Collapse
Affiliation(s)
- Tao Sun
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, PR China.
| | - Ruonan Chen
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, PR China
| | - Qiuchen Huang
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, PR China
| | - Mengyi Ba
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, PR China
| | - Zhiqiang Cai
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, PR China.
| | - Haipeng Chen
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, PR China
| | - Yueheng Qi
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, PR China
| | - Hong Chen
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, PR China
| | - Xianming Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, PR China
| | - Donatella Nardiello
- Department of Agriculture, Food, Natural Resource, and Engineering (DAFNE), via Napoli 25, I-71122, Foggia, Italy
| | - Maurizio Quinto
- Department of Agriculture, Food, Natural Resource, and Engineering (DAFNE), via Napoli 25, I-71122, Foggia, Italy.
| |
Collapse
|
6
|
Sun Z, Qi M. End-modification of poly(ether-carbonate) copolymer by adamantane cages: An effective approach for improving the selectivity of gas chromatographic stationary phases. J Chromatogr A 2023; 1695:463940. [PMID: 36990034 DOI: 10.1016/j.chroma.2023.463940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
This work reports the investigation of a new poly(propylene-carbonate) copolymer terminated by the adamantane cages (APPC) as the stationary phase for gas chromatographic (GC) analyses. In GC, the selectivity of a stationary phase is the key factor that governs the column separation performance for analytes, particularly those of high similarity in structures and properties. As such, we employed more than a dozen of isomer mixtures of separation difficulty for investigating the separation performance of the APPC column, involving the isomers of alkanes, alkylbenzenes, halobenzenes phenols and anilines. Meanwhile, the column coated with poly(propylene carbonate) diol (PPCD) differing from APPC only in their terminal groups and two commercial columns coated with polyethylene glycol (PEG) and polysiloxane, respectively, were used as the reference columns. The separation results evidenced the distinctly advantageous performance of the APPC column over the reference columns. Moreover, the APPC column showed excellent repeatability and reproducibility with the relative standard deviation (RSD) values over the range of 0.01%-0.04% for run-to-run, 0.15%-0.28% for day-to-day and 3.4%-3.9% for column-to-column (n = 4). Its application to GC-MS analysis of the verbena essential oil demonstrated its separation advantages for a wide range of components in practical samples. Up to date, the adamantyl-terminated poly(ether-carbonate) copolymers have not been reported in any fields. Its high-resolution performance demonstrates the feasibility of adamantyl-terminated block copolymers as highly selective stationary phases for GC analyses, which offers a vast room for fundamental researches and applications.
Collapse
Affiliation(s)
- Ziqi Sun
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Meiling Qi
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
7
|
Separation performance of the calix[8]arene functionalized with polyethylene glycol units for capillary gas chromatography. ANAL SCI 2023; 39:989-998. [PMID: 36826712 DOI: 10.1007/s44211-023-00307-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023]
Abstract
In this paper, an amphiphilic calix[8]arene with polyethylene glycol unit branches (C8A-PEG) was synthesized and applied for capillary gas chromatography (GC). The C8A-PEG was coated on the inner wall of a capillary column by a static method with the column efficiency of 3165 plates/m and polar nature. As demonstrated, the C8A-PEG column has excellent physicochemical properties and separation performance since it has π-electron-rich 3D cavity which combines with polar PEG units. Compared with two columns corresponding to the construction units C8A and PEG, the C8A-PEG column shows distinctly advantageous performance for the mixture of 22 components with diverse types. Impressively, it shows satisfactory resolution for positional isomers and cis-/trans- isomers, especially the challenging isomers of toluidine and dimethylaniline. The outstanding distinguishing capability of the C8A-PEG stationary phase is mainly attributed to the abundant molecular recognition interactions, including van der Waals, dipole-dipole, H-bonding and π-π stacking interactions. This work has proved that the new GC stationary phases constructed by different units can complement each other's advantages, improve their physicochemical properties and separation performance, and have broad application prospects in chromatographic analysis.
Collapse
|
8
|
Sun T, Chen R, Huang Q, Ba M, Cai Z, Hu S, Liu X, Nardiello D, Quinto M. Chromatographic Separation of Aromatic Amine Isomers: A Solved Issue by a New Amphiphilic Pillar[6]arene Stationary Phase. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56132-56142. [PMID: 36472861 DOI: 10.1021/acsami.2c17889] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this work, the fabrication, synthesis, and characterization of a new stationary phase based on an amphiphilic pillar[6]arene (P6A-C10-2NH2) for gas chromatographic analyses are reported. The gas chromatography (GC) column prepared with P6A-C10-2NH2 stationary phase exhibited a medium polarity, an efficiency of 3219 plates/m, and unmatched resolving capabilities toward chloroaniline, bromoaniline, iodoaniline, and toluidine isomers. Furthermore, the P6A-C10-2NH2 column showed excellent repeatability with maximum relative standard deviations equal to 0.02, 0.07, and 2.56% for run-to-run, day-to-day, and column-to-column, respectively, demonstrating a great potential as a new stationary phase in separation science.
Collapse
Affiliation(s)
- Tao Sun
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Ruonan Chen
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, Liaoning, P. R. China
| | - Qiuchen Huang
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, Liaoning, P. R. China
| | - Mengyi Ba
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, Liaoning, P. R. China
| | - Zhiqiang Cai
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, Liaoning, P. R. China
| | - Shaoqiang Hu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Xianming Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Donatella Nardiello
- Department of Agriculture, Food, Natural Resource, and Engineering (DAFNE), via Napoli 25, Foggia I-71122, Italy
| | - Maurizio Quinto
- Department of Agriculture, Food, Natural Resource, and Engineering (DAFNE), via Napoli 25, Foggia I-71122, Italy
| |
Collapse
|
9
|
A new stationary phase for capillary gas chromatography based on amphiphilic triblock copolymer – Benzimidazolium ionic liquid. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Chen R, Cai Z, Li W, Huang Q, Nardiello D, Quinto M, Liu X, Hu S, Sun T. A New Capillary Gas Chromatography Column Based on Poly(ethylene glycol) Methyl Ether-Functionalized Calix[4]arene. Chem Biodivers 2022; 19:e202200829. [PMID: 36372775 DOI: 10.1002/cbdv.202200829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/04/2022] [Indexed: 11/15/2022]
Abstract
In this work, a novel capillary column (C4A-mPEG) with a calixarene-based polymer stationary phase (poly(ethylene glycol) methyl ether-functionalized 4-tert-butylcalix[4]arene) was designed and used for gas chromatographic (GC) separations. The C4A-mPEG capillary column, prepared by the static coating method, showed moderate polarity and a column efficiency of 2332 plates/m, determined by 1-octanol at 120 °C. The separation features of C4A-mPEG stationary phase, resulting from its unique structure and multiple molecular recognition processes with analytes, including π-π, H-bonding, dipole-dipole, and van der Waals interactions, allowed to obtain high-resolution performances for a wide range of compounds and their isomers, especially benzaldehydes, phenols, and anilines. Moreover, compared with 4-tertbutyl calix[4]arene (C4A) and polyethylene glycol (PEG) stationary phases, a higher resolving capability was also observed for the separation of toluidine and xylidine isomers.
Collapse
Affiliation(s)
- Ruonan Chen
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, P. R. China
| | - Zhiqiang Cai
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, P. R. China
| | - Wei Li
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, P. R. China
| | - Qiuchen Huang
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, 111003, Liaoning, P. R. China
| | - Donatella Nardiello
- Department of Agriculture, Food, Natural Resource, and Engineering (DAFNE), via Napoli 25, 71122, Foggia, Italy
| | - Maurizio Quinto
- Department of Agriculture, Food, Natural Resource, and Engineering (DAFNE), via Napoli 25, 71122, Foggia, Italy
| | - Xianming Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, Henan, P. R. China
| | - Shaoqiang Hu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, Henan, P. R. China
| | - Tao Sun
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, Henan, P. R. China
| |
Collapse
|
11
|
Huang Q, Cai Z, Li W, Chen R, Zhang W, Jin K, Zhao Y, Li Y, Sun T. Novel, Selective Calix[6]Arene - Polyethylene Glycol (C6A-PEG) Stationary Phase for Capillary Gas Chromatography (GC). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2143794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Qiuchen Huang
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, China
| | - Zhiqiang Cai
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, China
| | - Wei Li
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, China
| | - Ruonan Chen
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, China
| | - Wei Zhang
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream, School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, China
| | - Keyun Jin
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, China
| | - Yi Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, China
| | - Yiwen Li
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, China
| | - Tao Sun
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, China
- Hebei Key Laboratory of Heterocyclic Compounds, Handan University, Handan, China
| |
Collapse
|
12
|
Chen R, Cai Z, Huang Q, Zhang W, Jin K, Zhao Y, Li Y, Sun T, Ji H, Li S. Benzimidazolium Ionic‐Liquid‐Functionalized Star‐shaped Copolymer Stationary Phase for Capillary Gas Chromatography. ChemistrySelect 2022. [DOI: 10.1002/slct.202202847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ruonan Chen
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream School of Petrochemical Engineering Shenyang University of Technology Liaoyang 111003 P. R. China
| | - Zhiqiang Cai
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream School of Petrochemical Engineering Shenyang University of Technology Liaoyang 111003 P. R. China
| | - Qiuchen Huang
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream School of Petrochemical Engineering Shenyang University of Technology Liaoyang 111003 P. R. China
| | - Wei Zhang
- Liaoning Province Professional and Technical Innovation Center for Fine Chemical Engineering of Aromatics Downstream School of Petrochemical Engineering Shenyang University of Technology Liaoyang 111003 P. R. China
| | - Keyun Jin
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P. R. China
| | - Yi Zhao
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P. R. China
| | - Yiwen Li
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P. R. China
| | - Tao Sun
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang 471934 P. R. China
| | - Hongying Ji
- Shandong Center for Food and Drug Evaluation & Inspection Jinan 250014 P. R. China
| | - Shuai Li
- Key Laboratory for Chemical Drug Research of Shandong Province Institute of Pharmaceutical Sciences of Shandong Province Jinan 250101 P. R. China
| |
Collapse
|
13
|
A Bromine-Terminated Triblock Copolymer (Br-PCL-PDMS-PCL-Br) as the Stationary Phase for Gas Chromatography Analysis. Chromatographia 2022. [DOI: 10.1007/s10337-022-04202-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|