1
|
Chen ZQ, Daly B, Yao CY, Crory HSN, Xu Y, Ye Z, Gunaratne HQN, Kimura A, Uchiyama S, Bell SEJ, Anslyn EV, de Silva AP. Scaling-up molecular logic to meso-systems via self-assembly. Nat Commun 2025; 16:3015. [PMID: 40148329 PMCID: PMC11950191 DOI: 10.1038/s41467-025-58379-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/19/2025] [Indexed: 03/29/2025] Open
Abstract
Due to the small size and biocompatibility of molecules, molecular logic-based computation is a gateway to the informational basis of life processes. Logic-based computation operates widely with discrete molecules of up to nanometric sizes. The contribution of molecule-based bulk materials of milli/centimetric size to the field has begun in more recent years. However, artificial molecule-based meso-scale systems which intrinsically perform logic operations are very rare. Here, we show that self-assembled systems consisting of cyclophane octacarboxylates and a cationic surfactant can perform such functions, where a membrane itself behaves as a Reset-Set Flip-Flop which is integrated with 7 more logic elements. Now that molecular logic-based computation operates across a wide range of contiguous size-scales, the way opens for its general use in information processing aspects of biology and synthetic biology.
Collapse
Affiliation(s)
- Ze-Qing Chen
- School of Chemistry and Chemical Engineering, Queen's University, Belfast, BT9 5AG, Northern Ireland, UK
| | - Brian Daly
- School of Chemistry and Chemical Engineering, Queen's University, Belfast, BT9 5AG, Northern Ireland, UK
| | - Chao-Yi Yao
- School of Chemistry and Chemical Engineering, Central South University, Yuelu District, Changsha, Hunan Province, 410006, China
| | - Hannah S N Crory
- School of Chemistry and Chemical Engineering, Queen's University, Belfast, BT9 5AG, Northern Ireland, UK
| | - Yikai Xu
- School of Chemistry and Chemical Engineering, Queen's University, Belfast, BT9 5AG, Northern Ireland, UK
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ziwei Ye
- School of Chemistry and Chemical Engineering, Queen's University, Belfast, BT9 5AG, Northern Ireland, UK
| | - H Q Nimal Gunaratne
- School of Chemistry and Chemical Engineering, Queen's University, Belfast, BT9 5AG, Northern Ireland, UK
| | - Ayumi Kimura
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Seiichi Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Steven E J Bell
- School of Chemistry and Chemical Engineering, Queen's University, Belfast, BT9 5AG, Northern Ireland, UK
| | - Eric V Anslyn
- School of Chemistry and Chemical Engineering, Queen's University, Belfast, BT9 5AG, Northern Ireland, UK
- Department of Chemistry, University of Texas at Austin, 100 E 24th Street, Norman Hackerman Building, Austin, TX, 78712, USA
| | - A Prasanna de Silva
- School of Chemistry and Chemical Engineering, Queen's University, Belfast, BT9 5AG, Northern Ireland, UK.
| |
Collapse
|
2
|
He X, Man VH, Yang W, Lee TS, Wang J. ABCG2: A Milestone Charge Model for Accurate Solvation Free Energy Calculation. J Chem Theory Comput 2025; 21:3032-3043. [PMID: 40068154 PMCID: PMC11948320 DOI: 10.1021/acs.jctc.5c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025]
Abstract
In this report, we describe the development and validation of ABCG2, a new charge model with milestone free energy accuracy, while allowing instantaneous atomic charge assignment for arbitrary organic molecules. In combination with the second-generation general AMBER force field (GAFF2), ABCG2 led to a root-mean-square error (RMSE) of 0.99 kcal/mol on the hydration free energy calculation of all 642 solutes in the FreeSolv database, for the first time meeting the chemical accuracy threshold through physics-based molecular simulation against the golden-standard data set. Against the Minnesota Solvation Database, the solvation free energy calculation on 2068 pairs of a range of organic solutes in diverse solvents led to an RMSE of 0.89 kcal/mol. The 1913 data points of transfer free energies from the aqueous solution to organic solvents obtained an RMSE of 0.85 kcal/mol, corresponding to 0.63 log units for logP. The benchmark on densities of neat liquids for 1839 organic molecules and heat of vaporizations of 874 organic liquids achieved a comparable performance with the default restrained electrostatic potential (RESP) charge method of GAFF2. The fluctuations of assigned partial atomic charges over different input conformations from ABCG2 are demonstrated to be much smaller than those of RESP from statistics of 96 real drug molecules. The validation results demonstrated not only the accuracy but also the transferability and generality of the GAFF2/ABCG2 combination.
Collapse
Affiliation(s)
- Xibing He
- Department
of Pharmaceutical Sciences and Computational Chemical Genomics Screening
Center, School of Pharmacy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Viet H. Man
- Department
of Pharmaceutical Sciences and Computational Chemical Genomics Screening
Center, School of Pharmacy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Wei Yang
- Department
of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, United States
| | - Tai-Sung Lee
- Laboratory
for Biomolecular Simulation Research, Center for Integrative Proteomics
Research, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Junmei Wang
- Department
of Pharmaceutical Sciences and Computational Chemical Genomics Screening
Center, School of Pharmacy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
3
|
Kiss E, Mester D, Bojtár M, Miskolczy Z, Biczók L, Hessz D, Kállay M, Kubinyi M. Supramolecular Control of the Photoisomerization of a Coumarin-Based Photoswitch. ACS OMEGA 2024; 9:51652-51664. [PMID: 39758680 PMCID: PMC11696389 DOI: 10.1021/acsomega.4c08106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025]
Abstract
The complex formation of the cationic stilbene-type photoswitch CP with the anionic macrocycles carboxylato-pillar[5]arene (WP5) and carboxylato-pillar[6]arene (WP6) has been investigated in aqueous solution by optical spectroscopic, NMR and isothermal calorimetric experiments and theoretical calculations. Subsequently, the photoisomerization reactions of the supramolecular complexes formed have been studied. CP consists of a 7-diethylamino-coumarin fluorophore and an N-methylpyridinium unit, which are connected via an ethene bridge. The trans isomer of CP is fluorescent, and its cis isomer is dark. The binding constants of the WP6 complexes of the two photoisomers of CP are larger by 2 orders of magnitude than those of the respective complexes with WP5, and trans-CP forms more stable complexes with the individual pillararenes than the cis isomer. As shown by NMR spectroscopic measurements and theoretical calculations, the two isomers of CP form external complexes with WP5 and inclusion complexes with WP6. On complexation with WP6, the quantum yields of both the trans-to-cis and cis-to-trans photoisomerization reactions of CP increase significantly, and the fluorescence quantum yield of trans-CP is also enhanced. These changes are due to the suppression of the TICT deactivation process, which is characteristic of 7-dialkylamino-coumarin derivatives.
Collapse
Affiliation(s)
- Etelka Kiss
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - Dávid Mester
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
- MTA-BME
Lendület Quantum Chemistry Research Group, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
- ELKH-BME
Quantum Chemistry Research Group, Budapest
University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - Márton Bojtár
- Chemical
Biology Research Group, Institute of Organic Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2, 1117 Budapest, Hungary
| | - Zsombor Miskolczy
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural
Sciences, HUN-REN Research Network, H-1519 Budapest, P.O. Box 286, Hungary
| | - László Biczók
- Institute
of Materials and Environmental Chemistry, Research Centre for Natural
Sciences, HUN-REN Research Network, H-1519 Budapest, P.O. Box 286, Hungary
| | - Dóra Hessz
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - Mihály Kállay
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
- MTA-BME
Lendület Quantum Chemistry Research Group, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
- ELKH-BME
Quantum Chemistry Research Group, Budapest
University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
| | - Miklós Kubinyi
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary
| |
Collapse
|
4
|
Sun Z, Procacci P. Methodological and force field effects in the molecular dynamics-based prediction of binding free energies of host-guest systems. Phys Chem Chem Phys 2024; 26:19887-19899. [PMID: 38990073 DOI: 10.1039/d4cp01804d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
As a contribution to the understanding and rationalization of methodological and modeling effects in recent host-guest SAMPL challenges, using an alchemical molecular dynamics technique we have examined the impact of force field parameterization and ionic strength in connection with guest charge neutralization on computed dissociation free energies in two typical SAMPL heavily charged macrocyclic hosts encapsulating small protonated amines with disparate binding affinities. We have shown that the methodological treatment for host neutralization, with explicit ions or with the background neutralizing plasma in the context of alchemical calculations under periodic boundary conditions, has a moderate effect on the calculated affinities. On the other hand, we have shown that seemingly small differences in the force field parameterization in highly symmetric hosts can produce systematic effects on the structural features that can have a significant impact on the predicted binding affinities.
Collapse
Affiliation(s)
- Zhaoxi Sun
- Changping Laboratory, Beijing 102206, China
| | - Piero Procacci
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
5
|
Zhang W, Bazan-Bergamino EA, Doan AP, Zhang X, Isaacs L. Pillar[6]MaxQ functions as an in vivo sequestrant for rocuronium and vecuronium. Chem Commun (Camb) 2024; 60:4350-4353. [PMID: 38546190 DOI: 10.1039/d4cc00772g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The binding affinity of pillar[6]MaxQ toward a panel of neuromuscular blockers and neurotransmitters was measured in phosphate buffered saline by isothermal titration calorimetry and 1H NMR spectroscopy. In vivo efficacy studies showed that P6MQ sequesters rocuronium and vecuronium and reverses their influence on the recovery of the train-of-four (TOF) ratio.
Collapse
Affiliation(s)
- Wanping Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China.
| | | | - Anton P Doan
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| | - Xiangjun Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China.
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.
| |
Collapse
|
6
|
Amezcua M, Setiadi J, Mobley DL. The SAMPL9 host-guest blind challenge: an overview of binding free energy predictive accuracy. Phys Chem Chem Phys 2024; 26:9207-9225. [PMID: 38444308 PMCID: PMC10954238 DOI: 10.1039/d3cp05111k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/03/2024] [Indexed: 03/07/2024]
Abstract
We report the results of the SAMPL9 host-guest blind challenge for predicting binding free energies. The challenge focused on macrocycles from pillar[n]-arene and cyclodextrin host families, including WP6, and bCD and HbCD. A variety of methods were used by participants to submit binding free energy predictions. A machine learning approach based on molecular descriptors achieved the highest accuracy (RMSE of 2.04 kcal mol-1) among the ranked methods in the WP6 dataset. Interestingly, predictions for WP6 obtained via docking tended to outperform all methods (RMSE of 1.70 kcal mol-1), most of which are MD based and computationally more expensive. In general, methods applying force fields achieved better correlation with experiments for WP6 opposed to the machine learning and docking models. In the cyclodextrin-phenothiazine challenge, the ATM approach emerged as the top performing method with RMSE less than 1.86 kcal mol-1. Correlation metrics of ranked methods in this dataset were relatively poor compared to WP6. We also highlight several lessons learned to guide future work and help improve studies on the systems discussed. For example, WP6 may be present in other microstates other than its -12 state in the presence of certain guests. Machine learning approaches can be used to fine tune or help train force fields for certain chemistry (i.e. WP6-G4). Certain phenothiazines occupy distinct primary and secondary orientations, some of which were considered individually for accurate binding free energies. The accuracy of predictions from certain methods while starting from a single binding pose/orientation demonstrates the sensitivity of calculated binding free energies to the orientation, and in some cases the likely dominant orientation for the system. Computational and experimental results suggest that guest phenothiazine core traverses both the secondary and primary faces of the cyclodextrin hosts, a bulky cationic side chain will primarily occupy the primary face, and the phenothiazine core substituent resides at the larger secondary face.
Collapse
Affiliation(s)
- Martin Amezcua
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, USA.
| | - Jeffry Setiadi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | - David L Mobley
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697, USA.
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, USA
| |
Collapse
|
7
|
Balduzzi F, Stewart P, Samanta SK, Mooibroek TJ, Hoeg-Jensen T, Shi K, Smith BD, Davis AP. A High-Affinity "Synthavidin" Receptor for Squaraine Dyes. Angew Chem Int Ed Engl 2023; 62:e202314373. [PMID: 37816075 DOI: 10.1002/anie.202314373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/12/2023]
Abstract
Strong-binding host-guest pairings in aqueous media have potential as "supramolecular glues" in biomedical techniques, complementing the widely-used (strept)avidin-biotin combination. We have previously found that squaraine dyes are bound very strongly by tetralactam macrocycles possessing anthracenyl units as cavity walls. Here we show that replacing the anthracenes with pentacyclic 5,7,12,14-tetrahydro-5,7,12,14-tetraoxapentacene (TOP) units generates receptors which bind squaraines with increased affinities (around Ka =1010 m-1 ) and improved selectivities. Binding can be followed through changes to squaraine fluorescence and absorbance. The TOP units are easy to prepare and potentially variable, while the TOP-based receptor shows improved photostability, both in itself and in complex with squaraines. The results suggest that this system could prove valuable in the further development of practical "synthavidin" chemistry.
Collapse
Affiliation(s)
- Federica Balduzzi
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, United Kingdom
| | - Patrick Stewart
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, United Kingdom
| | - Soumen K Samanta
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, United Kingdom
| | - Tiddo J Mooibroek
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, United Kingdom
| | | | - Kejia Shi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, United States
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, United States
| | - Anthony P Davis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, United Kingdom
| |
Collapse
|
8
|
Macchiagodena M, Pagliai M, Procacci P. NE-RDFE: A protocol and toolkit for computing relative dissociation free energies with GROMACS between dissimilar molecules using bidirectional nonequilibrium dual topology schemes. J Comput Chem 2023; 44:1221-1230. [PMID: 36704972 DOI: 10.1002/jcc.27077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/20/2022] [Accepted: 01/07/2023] [Indexed: 01/28/2023]
Abstract
We describe a step-by-step protocol and toolkit for the computation of the relative dissociation free energy (RDFE) with the GROMACS molecular dynamics package, based on a novel bidirectional nonequilibrium alchemical approach. The proposed methodology does not require any intervention on the code and allows computing with good accuracy the RDFE between small molecules with arbitrary differences in volume, charge, and chemical topology. The procedure is illustrated for the challenging SAMPL9 batch of host-guest pairs. The article is supplemented by a detailed online tutorial, available at https://procacci.github.io/vdssb_gromacs/NE-RDFE and by a public Zenodo repository available at https://zenodo.org/record/6982932.
Collapse
Affiliation(s)
- Marina Macchiagodena
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Marco Pagliai
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Piero Procacci
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Sesto Fiorentino, Italy
| |
Collapse
|
9
|
Brockett AT, Xue W, King D, Deng CL, Zhai C, Shuster M, Rastogi S, Briken V, Roesch MR, Isaacs L. Pillar[6]MaxQ: A Potent Supramolecular Host for In Vivo Sequestration of Methamphetamine and Fentanyl. Chem 2023; 9:881-900. [PMID: 37346394 PMCID: PMC10281757 DOI: 10.1016/j.chempr.2022.11.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pillar[6]MaxQ (P6AS) functions as an in vivo sequestration agent for methamphetamine and fentanyl. We use 1H NMR, isothermal titration calorimetry, and molecular modelling to deduce the geometry and strength of the P6AS•drug complexes. P6AS forms tight complexes with fentanyl (Kd=9.8 nM), PCP (17.1 nM), MDMA (25.5 nM), mephedrone (52.4 nM), and methamphetamine (101 nM). P6AS has good in vitro biocompatibility according to MTS metabolic, Adenylate Kinase cell death, and hERG ion channel inhibition assays, and the Ames fluctuation test. The no observed adverse effect level for P6AS is 45 mg/kg. The hyperlocomotion of mice treated with methamphetamine (0.5 mg/kg) can be ameliorated by treatment with P6AS (35.7 mg/kg) 5-minutes later, whereas the hyperlocomotion of mice treated with fentanyl (0.1 mg/kg) can be controlled by treatment with P6AS (5 mg/kg) up to 15-minutes later. P6AS has significant potential for development as a broad spectrum in vivo sequestration agent.
Collapse
Affiliation(s)
- Adam T. Brockett
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, United States
| | - Weijian Xue
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - David King
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Chun-Lin Deng
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Canjia Zhai
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Michael Shuster
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - Shivangi Rastogi
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, United States
| | - Matthew R. Roesch
- Department of Psychology and Program in Neuroscience and Cognitive Science (NACS), University of Maryland, College Park, MD 20742, United States
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| |
Collapse
|
10
|
Liu X, Zheng L, Cong Y, Gong Z, Yin Z, Zhang JZH, Liu Z, Sun Z. Comprehensive evaluation of end-point free energy techniques in carboxylated-pillar[6]arene host-guest binding: II. regression and dielectric constant. J Comput Aided Mol Des 2022; 36:879-894. [PMID: 36394776 DOI: 10.1007/s10822-022-00487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/29/2022] [Indexed: 11/18/2022]
Abstract
End-point free energy calculations as a powerful tool have been widely applied in protein-ligand and protein-protein interactions. It is often recognized that these end-point techniques serve as an option of intermediate accuracy and computational cost compared with more rigorous statistical mechanic models (e.g., alchemical transformation) and coarser molecular docking. However, it is observed that this intermediate level of accuracy does not hold in relatively simple and prototypical host-guest systems. Specifically, in our previous work investigating a set of carboxylated-pillar[6]arene host-guest complexes, end-point methods provide free energy estimates deviating significantly from the experimental reference, and the rank of binding affinities is also incorrectly computed. These observations suggest the unsuitability and inapplicability of standard end-point free energy techniques in host-guest systems, and alteration and development are required to make them practically usable. In this work, we consider two ways to improve the performance of end-point techniques. The first one is the PBSA_E regression that varies the weights of different free energy terms in the end-point calculation procedure, while the second one is considering the interior dielectric constant as an additional variable in the end-point equation. By detailed investigation of the calculation procedure and the simulation outcome, we prove that these two treatments (i.e., regression and dielectric constant) are manipulating the end-point equation in a somehow similar way, i.e., weakening the electrostatic contribution and strengthening the non-polar terms, although there are still many detailed differences between these two methods. With the trained end-point scheme, the RMSE of the computed affinities is improved from the standard ~ 12 kcal/mol to ~ 2.4 kcal/mol, which is comparable to another altered end-point method (ELIE) trained with system-specific data. By tuning PBSA_E weighting factors with the host-specific data, it is possible to further decrease the prediction error to ~ 2.1 kcal/mol. These observations along with the extremely efficient optimized-structure computation procedure suggest the regression (i.e., PBSA_E as well as its GBSA_E extension) as a practically applicable solution that brings end-point methods back into the library of usable tools for host-guest binding. However, the dielectric-constant-variable scheme cannot effectively minimize the experiment-calculation discrepancy for absolute binding affinities, but is able to improve the calculation of affinity ranks. This phenomenon is somehow different from the protein-ligand case and suggests the difference between host-guest and biomacromolecular (protein-ligand and protein-protein) systems. Therefore, the spectrum of tools usable for protein-ligand complexes could be unsuitable for host-guest binding, and numerical validations are necessary to screen out really workable solutions in these 'prototypical' situations.
Collapse
Affiliation(s)
- Xiao Liu
- School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai, 201620, China.
| | - Lei Zheng
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China
| | - Yalong Cong
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zhihao Gong
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 310027, China.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Zhixiang Yin
- School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - John Z H Zhang
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China. .,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China. .,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China. .,Department of Chemistry, New York University, NY, NY, 10003, USA.
| | - Zhirong Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhaoxi Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
11
|
Liu X, Zheng L, Qin C, Zhang JZH, Sun Z. Comprehensive evaluation of end-point free energy techniques in carboxylated-pillar[6]arene host-guest binding: I. Standard procedure. J Comput Aided Mol Des 2022; 36:735-752. [PMID: 36136209 DOI: 10.1007/s10822-022-00475-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Despite the massive application of end-point free energy methods in protein-ligand and protein-protein interactions, computational understandings about their performance in relatively simple and prototypical host-guest systems are limited. In this work, we present a comprehensive benchmark calculation with standard end-point free energy techniques in a recent host-guest dataset containing 13 host-guest pairs involving the carboxylated-pillar[6]arene host. We first assess the charge schemes for solutes by comparing the charge-produced electrostatics with many ab initio references, in order to obtain a preliminary albeit detailed view of the charge quality. Then, we focus on four modelling details of end-point free energy calculations, including the docking procedure for the generation of initial condition, the charge scheme for host and guest molecules, the water model used in explicit-solvent sampling, and the end-point methods for free energy estimation. The binding thermodynamics obtained with different modelling schemes are compared with experimental references, and some practical guidelines on maximizing the performance of end-point methods in practical host-guest systems are summarized. Further, we compare our simulation outcome with predictions in the grand challenge and discuss further developments to improve the prediction quality of end-point free energy methods. Overall, unlike the widely acknowledged applicability in protein-ligand binding, the standard end-point calculations cannot produce useful outcomes in host-guest binding and thus are not recommended unless alterations are performed.
Collapse
Affiliation(s)
- Xiao Liu
- School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai, 201620, China.
| | - Lei Zheng
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China
| | - Chu Qin
- School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - John Z H Zhang
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.,Department of Chemistry, New York University, New York, NY, 10003, USA
| | - Zhaoxi Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
12
|
Zhai C, Isaacs L. New Synthetic Route to Water‐Soluble Prism[5]arene Hosts and Their Molecular Recognition Properties**. Chemistry 2022; 28:e202201743. [DOI: 10.1002/chem.202201743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Canjia Zhai
- Department of Chemistry and Biochemistry University of Maryland College Park 20742 Maryland USA
| | - Lyle Isaacs
- Department of Chemistry and Biochemistry University of Maryland College Park 20742 Maryland USA
| |
Collapse
|
13
|
Procacci P. Relative Binding Free Energy between Chemically Distant Compounds Using a Bidirectional Nonequilibrium Approach. J Chem Theory Comput 2022; 18:4014-4026. [PMID: 35642423 PMCID: PMC9202353 DOI: 10.1021/acs.jctc.2c00295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Indexed: 12/02/2022]
Abstract
In the context of advanced hit-to-lead drug design based on atomistic molecular dynamics simulations, we propose a dual topology alchemical approach for calculating the relative binding free energy (RBFE) between two chemically distant compounds. The method (termed NE-RBFE) relies on the enhanced sampling of the end-states in bulk and in the bound state via Hamiltonian Replica Exchange, alchemically connected by a series of independent and fast nonequilibrium (NE) simulations. The technique has been implemented in a bidirectional fashion, applying the Crooks theorem to the NE work distributions for RBFE predictions. The dissipation of the NE process, negatively affecting accuracy, has been minimized by introducing a smooth regularization based on shifted electrostatic and Lennard-Jones non bonded potentials. As a challenging testbed, we have applied our method to the calculation of the RBFEs in the recent host-guest SAMPL international contest, featuring a macrocyclic host with guests varying in the net charge, volume, and chemical fingerprints. Closure validation has been successfully verified in cycles involving compounds with disparate Tanimoto coefficients, volume, and net charge. NE-RBFE is specifically tailored for massively parallel facilities and can be used with little or no code modification on most of the popular software packages supporting nonequilibrium alchemical simulations, such as Gromacs, Amber, NAMD, or OpenMM. The proposed methodology bypasses most of the entanglements and limitations of the standard single topology RBFE approach for strictly congeneric series based on free-energy perturbation, such as slowly relaxing cavity water, sampling issues along the alchemical stratification, and the need for highly overlapping molecular fingerprints.
Collapse
Affiliation(s)
- Piero Procacci
- Dipartimento di Chimica “Ugo
Schiff”, Università degli
Studi di Firenze, Via
della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
14
|
Procacci P, Guarnieri G. SAMPL9 blind predictions using nonequilibrium alchemical approaches. J Chem Phys 2022; 156:164104. [PMID: 35490003 DOI: 10.1063/5.0086640] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We present our blind predictions for the Statistical Assessment of the Modeling of Proteins and Ligands (SAMPL), ninth challenge, focusing on the binding of WP6 (carboxy-pillar[6]arene) with ammonium/diammonium cationic guests. Host-guest binding free energies have been calculated using the recently developed virtual double system single box approach, based on the enhanced sampling of the bound and unbound end-states followed by fast switching nonequilibrium alchemical simulations [M. Macchiagodena et al., J. Chem. Theory Comput. 16, 7160 (2020)]. As far as Pearson and Kendall coefficients are concerned, performances were acceptable and, in general, better than those we submitted for calixarenes, cucurbituril-like open cavitand, and beta-cyclodextrines in previous SAMPL host-guest challenges, confirming the reliability of nonequilibrium approaches for absolute binding free energy calculations. In comparison with previous submissions, we found a rather large mean signed error that we attribute to the way the finite charge correction was addressed through the assumption of a neutralizing background plasma.
Collapse
Affiliation(s)
- Piero Procacci
- Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Italy
| | - Guido Guarnieri
- ENEA, Portici Research Centre, DTE-ICT-HPC, P.le E. Fermi, 1, I-80055 Portici, NA, Italy
| |
Collapse
|