1
|
Yang G, Liu S, Ji S, Wu X, Wang J. Pd/NHC sequentially catalyzed atroposelective synthesis of planar-chiral macrocycles. Chem Sci 2024; 15:19599-19603. [PMID: 39568868 PMCID: PMC11575558 DOI: 10.1039/d4sc05482b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/02/2024] [Indexed: 11/22/2024] Open
Abstract
Planar-chiral macrocycles play a pivotal role in host-guest chemistry and drug discovery. However, compared with the synthesis of other types of chiral compounds, the asymmetric construction of planar-chiral macrocycles still remains a forbidding challenge. Herein, we report a sequential palladium and N-heterocyclic carbene catalysis to build planar-chiral macrocycles. This protocol features broad scope and good functional group tolerance, and allows a rapid assembling of planar-chiral macrocycles with excellent enantioselectivities.
Collapse
Affiliation(s)
- Gongming Yang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Ministry of Education, Tsinghua University Beijing 100084 China
| | - Shangde Liu
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Ministry of Education, Tsinghua University Beijing 100084 China
| | - Shujie Ji
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Ministry of Education, Tsinghua University Beijing 100084 China
| | - Xingsen Wu
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Ministry of Education, Tsinghua University Beijing 100084 China
| | - Jian Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Ministry of Education, Tsinghua University Beijing 100084 China
| |
Collapse
|
2
|
Mariya Vincent D, Mostafa H, Suneer A, Radha Krishnan S, Ong M, Itahana Y, Itahana K, Viswanathan R. Development of Natural-Product-Inspired ABCB1 Inhibitors Through Regioselective Tryptophan C3-Benzylation. Chemistry 2024; 30:e202401782. [PMID: 39190779 DOI: 10.1002/chem.202401782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
The emergence of drug resistance in cancer cells eventually causing relapse is a serious threat that demands new advances. Upregulation of the ATP-dependent binding cassette (ABC) transporters, such as ABCB1, significantly contributes to the emergence of drug resistance in cancer. Despite more than 30 years of therapeutic discovery, and several generations of inhibitors against P-gp, the search for effective agents that minimize toxicity to human cells, while maintaining efflux pump inhibition is still underway. Leads derived from natural product scaffolds are well-known to be effective in various therapeutic approaches. Inspired by the biosynthetic pathway to Nocardioazine A, a marine alkaloid known to inhibit the P-gp efflux pump in cancer cells, we devised a regioselective pathway to create structurally unique indole-C3-benzyl cyclo-L-Trp-L-Trp diketopiperazines (DKPs). Using bat cells as a model to derive effective ABCB1 inhibitors for targeting human P-gp efflux pumps, we have recently identified exo-C3-N-Dbn-Trp2 (13) as a lead ABCB1 inhibitor. This C3-benzylated lead inhibited ABCB1 better than Verapamil.[21] Additionally, C3-N-Dbn-Trp2 restored chemotherapy sensitivity in drug-resistant human cancer cells and had no adverse effect on cell proliferation in cell cultures. For a clearer structure-activity relationship, we developed a broader screen to test C3-functionalized pyrroloindolines as ABCB1 inhibitors and observed that C3-benzylation is outperforming respective isoprenylated derivatives. Results arising from the molecular docking studies indicate that the interactions at the access tunnel between ABCB1 and the inhibitor result in a powerful predictor for the efficacy of the inhibitor. Based on fluorescence-based assays, we conclude that the most efficacious inhibitor is the p-cyano-derived exo-C3-N-Dbn-Trp2 (33 a), closely followed by the p-nitro substituted analogue. By combining assay results with molecular docking studies, we further correlate that the predictions based on the inhibitor interactions at the access tunnel provide clues about the design of improved ABCB1 inhibitors. As it has been well documented that ABCB1 itself is powerfully engaged in multi-drug resistance, this work lays the foundation for the design of a new class of inhibitors based on the endogenous amino acid-derived cyclo-L-Trp-L-Trp DKP scaffold.
Collapse
Affiliation(s)
- Dona Mariya Vincent
- Departments of Chemistry & Biology, Indian Institute of Science Education and Research, Tirupati, A. P., India
| | - Habib Mostafa
- Departments of Chemistry & Biology, Indian Institute of Science Education and Research, Tirupati, A. P., India
| | - Anza Suneer
- Departments of Chemistry & Biology, Indian Institute of Science Education and Research, Tirupati, A. P., India
| | | | - Mingmin Ong
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore, Singapore
| | - Yoko Itahana
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore, Singapore
| | - Koji Itahana
- Programme in Cancer & Stem Cell Biology, Duke-NUS Medical School, 169857, Singapore, Singapore
| | - Rajesh Viswanathan
- Departments of Chemistry & Biology, Indian Institute of Science Education and Research, Tirupati, A. P., India
| |
Collapse
|
3
|
Engelhardt PM, Keyzers R, Brimble MA. Histidine-bridged cyclic peptide natural products: isolation, biosynthesis and synthetic studies. Org Biomol Chem 2024; 22:8374-8396. [PMID: 39352687 DOI: 10.1039/d4ob01259c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The histidine bridge is a rare and often overlooked structural motif in macrocyclic peptide natural products, yet there are several examples in nature of cyclic peptides bearing this moiety that exhibit potent biological activity. These interesting compounds have been the focus of several studies reporting their isolation, biosynthesis and chemical synthesis over the last four decades. This review summarises the findings on the structure, biological activity and, where possible, proposed biosynthesis and progress towards the synthesis of histidine-bridged cyclic peptides.
Collapse
Affiliation(s)
- Pascal M Engelhardt
- School of Chemical Sciences, University of Auckland, 23 Symonds St., Auckland 1010, New Zealand.
| | - Robert Keyzers
- School of Chemical and Physical Sciences, Victoria University of Wellington, Laby Building Kelburn Parade, Wellington 6012, New Zealand.
| | - Margaret A Brimble
- School of Chemical Sciences, University of Auckland, 23 Symonds St., Auckland 1010, New Zealand.
| |
Collapse
|
4
|
Zhang J, Yu L, Ogawa H, Nagata Y, Nakamura H. Modular, Scalable Total Synthesis of Lapparbin with a Noncanonical Biaryl Linkage. Angew Chem Int Ed Engl 2024; 63:e202409987. [PMID: 39008709 DOI: 10.1002/anie.202409987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
We report the development of a novel synthetic approach for the highly strained atrop-Tyr C-6-to-Trp N-1' linkage, which can be executed on a decagram scale using a modular strategy involving palladium-catalyzed C-H arylation followed by Larock macrocyclization. The first total synthesis of lapparbin (1) was achieved by applying this synthetic strategy. Furthermore, the modular synthesis utilizing C-H arylation and Larock macrocyclization, discovered in the total synthesis of lapparbin (1), was demonstrated to be applicable to various arbitrary biaryl linkages, including non-natural types.
Collapse
Affiliation(s)
- Jie Zhang
- The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, 999077, Hong Kong SAR, China
| | - Longhui Yu
- The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, 999077, Hong Kong SAR, China
| | - Hiroshige Ogawa
- The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, 999077, Hong Kong SAR, China
| | - Yuuya Nagata
- WPI Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
| | - Hugh Nakamura
- The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, 999077, Hong Kong SAR, China
| |
Collapse
|
5
|
Xiao Y, Zhou H, Shi P, Zhao X, Liu H, Li X. Clickable tryptophan modification for late-stage diversification of native peptides. SCIENCE ADVANCES 2024; 10:eadp9958. [PMID: 38985871 PMCID: PMC11235173 DOI: 10.1126/sciadv.adp9958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
As the least abundant residue in proteins, tryptophan widely exists in peptide drugs and bioactive natural products and contributes to drug-target interactions in multiple ways. We report here a clickable tryptophan modification for late-stage diversification of native peptides, via catalyst-free C2-sulfenylation with 8-quinoline thiosulfonate reagents in trifluoroacetic acid (TFA). A wide range of groups including trifluoromethylthio (SCF3), difluoromethylthio (SCF2H), (ethoxycarbonyl)difluoromethylthio (SCF2CO2Et), alkylthio, and arylthio were readily incorporated. The rapid reaction kinetics of Trp modification and full tolerance with other 19 proteinogenic amino acids, as well as the super dissolving capability of TFA, render this method suitable for all kinds of Trp-containing peptides without limitations from sequences, hydrophobicity, and aggregation propensity. The late-stage modification of 15 therapeutic peptides (1.0 to 7.6 kilodaltons) and the improved bioactivity and serum stability of SCF3- and SCF2H-modified melittin analogs illustrated the effectiveness of this method and its potential in pharmacokinetic property improvement.
Collapse
Affiliation(s)
- Yisa Xiao
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Haiyan Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, Guangdong Province 515063, P. R. China
| | - Pengfei Shi
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xueqian Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, P. R. China
| | - Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| |
Collapse
|
6
|
Wan C, Sun R, Xia W, Jiang H, Chen BX, Kuo PC, Zhang WR, Yang G, Li D, Chiang CW, Weng Y. Electrochemical Bioconjugation of Tryptophan Residues: A Strategy for Peptide Modification. Org Lett 2024; 26:5447-5452. [PMID: 38896796 DOI: 10.1021/acs.orglett.4c01662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Interest in electrocatalytic bioconjugation reactions has surged, particularly for modifying tryptophan and tyrosine residues in proteins. We used a cost-effective graphite felt electrode and low-current methodology to achieve selective bioconjugation of tryptophan with thiophenols, yielding up to 92%. This method exclusively labeled tryptophan residues and incorporated fluorinated tryptophan for NMR analysis. Eight polypeptides, including lanreotide and leuprorelin, were effectively coupled, demonstrating the method's versatility and potential for novel diagnostic and therapeutic agents.
Collapse
Affiliation(s)
- Chenggang Wan
- Hubei Key Laboratory of Precision Manufacturing for Small-molecular Active Pharmaceutical Ingredients, School of Chemistry and Chemical Engineering, Hubei University, Wuhan, P. R. China
| | - Rong Sun
- Hubei Key Laboratory of Precision Manufacturing for Small-molecular Active Pharmaceutical Ingredients, School of Chemistry and Chemical Engineering, Hubei University, Wuhan, P. R. China
| | - Wenjie Xia
- Hubei Key Laboratory of Precision Manufacturing for Small-molecular Active Pharmaceutical Ingredients, School of Chemistry and Chemical Engineering, Hubei University, Wuhan, P. R. China
| | - Haoyang Jiang
- Hubei Key Laboratory of Precision Manufacturing for Small-molecular Active Pharmaceutical Ingredients, School of Chemistry and Chemical Engineering, Hubei University, Wuhan, P. R. China
| | - Bo-Xun Chen
- Department of Chemistry, Soochow University, No. 70 Linhsi Road Shihlin District, Taipei 111002, Taiwan
| | - Pei-Chi Kuo
- Department of Chemistry, Soochow University, No. 70 Linhsi Road Shihlin District, Taipei 111002, Taiwan
| | - Wan-Rou Zhang
- Department of Chemistry, Soochow University, No. 70 Linhsi Road Shihlin District, Taipei 111002, Taiwan
| | - Guichun Yang
- Hubei Key Laboratory of Precision Manufacturing for Small-molecular Active Pharmaceutical Ingredients, School of Chemistry and Chemical Engineering, Hubei University, Wuhan, P. R. China
| | - Dingyu Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue Qiaokou District, Wuhan, P. R. China
| | - Chien-Wei Chiang
- Department of Chemistry, Soochow University, No. 70 Linhsi Road Shihlin District, Taipei 111002, Taiwan
| | - Yue Weng
- Hubei Key Laboratory of Precision Manufacturing for Small-molecular Active Pharmaceutical Ingredients, School of Chemistry and Chemical Engineering, Hubei University, Wuhan, P. R. China
| |
Collapse
|
7
|
Tan X, Liu Q, Fang Y, Yang S, Chen F, Wang J, Ouyang D, Dong J, Zeng W. Introducing enzymatic cleavage features and transfer learning realizes accurate peptide half-life prediction across species and organs. Brief Bioinform 2024; 25:bbae350. [PMID: 39038937 PMCID: PMC11262833 DOI: 10.1093/bib/bbae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/05/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024] Open
Abstract
Peptide drugs are becoming star drug agents with high efficiency and selectivity which open up new therapeutic avenues for various diseases. However, the sensitivity to hydrolase and the relatively short half-life have severely hindered their development. In this study, a new generation artificial intelligence-based system for accurate prediction of peptide half-life was proposed, which realized the half-life prediction of both natural and modified peptides and successfully bridged the evaluation possibility between two important species (human, mouse) and two organs (blood, intestine). To achieve this, enzymatic cleavage descriptors were integrated with traditional peptide descriptors to construct a better representation. Then, robust models with accurate performance were established by comparing traditional machine learning and transfer learning, systematically. Results indicated that enzymatic cleavage features could certainly enhance model performance. The deep learning model integrating transfer learning significantly improved predictive accuracy, achieving remarkable R2 values: 0.84 for natural peptides and 0.90 for modified peptides in human blood, 0.984 for natural peptides and 0.93 for modified peptides in mouse blood, and 0.94 for modified peptides in mouse intestine on the test set, respectively. These models not only successfully composed the above-mentioned system but also improved by approximately 15% in terms of correlation compared to related works. This study is expected to provide powerful solutions for peptide half-life evaluation and boost peptide drug development.
Collapse
Affiliation(s)
- Xiaorong Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha 410083, P.R. China
| | - Qianhui Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha 410083, P.R. China
| | - Yanpeng Fang
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha 410083, P.R. China
| | - Sen Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha 410083, P.R. China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha 410083, P.R. China
| | - Jianmin Wang
- The Interdisciplinary Graduate Program in Integrative Biotechnology and Translational Medicine, Yonsei University, 214, Veritas A Hall, Yonsei Univeristy, 85 Songdogwahak-ro, Incheon 21983, Republic of Korea
| | - Defang Ouyang
- Institute of Chinese Medical Sciences (ICMS), State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jie Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha 410083, P.R. China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, No. 172 Tongzipo Road, Yuelu District, Changsha 410083, P.R. China
| |
Collapse
|
8
|
Todorovic M, Blanc A, Wang Z, Lozada J, Froelich J, Zeisler J, Zhang C, Merkens H, Benard F, Perrin DM. 5-Hydroxypyrroloindoline Affords Tryptathionine and 2,2'-bis-Indole Peptide Staples: Application to Melanotan-II. Chemistry 2024; 30:e202304270. [PMID: 38285527 DOI: 10.1002/chem.202304270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 01/31/2024]
Abstract
With peptides increasingly favored as drugs, natural product motifs, namely the tryptathionine staple, found in amatoxins and phallotoxins, and the 2,2'-bis-indole found in staurosporine represent unexplored staples for unnatural peptide macrocycles. We disclose the efficient condensation of a 5-hydroxypyrroloindoline with either a cysteine-thiol or a tryptophan-indole to form a tryptathionine or 2-2'-bis-indole staple. Judicious use of protecting groups provides for chemoselective stapling using α-MSH, which provides a basis for investigating both chemoselectivity and affinity. Both classes of stapled peptides show nanomolar Ki's, with one showing a sub-nanomolar Ki value.
Collapse
Affiliation(s)
- Mihajlo Todorovic
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| | - Antoine Blanc
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| | - Zhou Wang
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| | - Jerome Lozada
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| | - Juliette Froelich
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| | - Jutta Zeisler
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, V5Z 1 L3, Vancouver, BC, Canada
| | - Chengcheng Zhang
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, V5Z 1 L3, Vancouver, BC, Canada
| | - Helen Merkens
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, V5Z 1 L3, Vancouver, BC, Canada
| | - Francois Benard
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, V5Z 1 L3, Vancouver, BC, Canada
| | - David M Perrin
- Chemistry Department, University of British Columbia, 2036 Main Mall, V6T 1Z1, Vancouver, BC, Canada
| |
Collapse
|
9
|
Yang G, He Y, Wang T, Li Z, Wang J. Atroposelective Synthesis of Planar-Chiral Indoles via Carbene Catalyzed Macrocyclization. Angew Chem Int Ed Engl 2024; 63:e202316739. [PMID: 38014469 DOI: 10.1002/anie.202316739] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
Indole-based planar-chiral macrocycles are widely found in natural products and bioactive molecules. However, in sharp contrast to the preparation of indole-based axially chiral structures, the enantioselective catalysis of indole-based planar-chiral macrocycles is still a formidable task so far. Here we report an N-heterocyclic carbene (NHC)-catalyzed intramolecular atroposelective macrocyclization of 3-carboxaldehyde indole/pyrroles, featuring with broad substrate scope and good functional group tolerance, and allowing for a rapid access to diverse indole/pyrrole-based planar-chiral macrocycles with various tether-lengths (10-16 members) in good yields and with excellent enantioselectivities. Importantly, the indole-based macrocyclic structures with both planar and axial chirality were directly and efficiently obtained through this protocol with excellent enantioselectivities and diastereoselectivities. In addition, these synthesized planar-chiral macrocycles offer many possibilities for chemists to develop new catalysts or ligands, as well as new reactions.
Collapse
Affiliation(s)
- Gongming Yang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Yi He
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Tianyi Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Zhipeng Li
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Jian Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
Meena R, Shekhar S, Ansari SB, Tiwari A, Lal J, Reddy DN. Metal-free sp 2 -C7-H Borylation of Tryptophan Containing Peptides and Late-stage Modification. Chem Asian J 2023; 18:e202300638. [PMID: 37847482 DOI: 10.1002/asia.202300638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
The discovery of milder and robust strategies to enable the introduction of organoboronates in peptides remains conspicuously underdeveloped. Herein, we demonstrate an efficient method for the site-selective sp2 -C7-H borylation of tryptophan under metal-free condition using BBr3 directed by pivaloyl group. The versatility of this approach is that gram scale synthesis and C7-borylated N-Phth-Trp(N-Piv)(C7-BPin)-OMe was modified into various C7-substituted derivatives. Moreover, the strategy enables for the peptide elongation and late-stage borylation of peptides, natural product Brevianamide F and drug Oglufanide.
Collapse
Affiliation(s)
- Rachana Meena
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Shashank Shekhar
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Shabina B Ansari
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Ashwani Tiwari
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Jhajan Lal
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Damodara N Reddy
- Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow, 226031, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| |
Collapse
|
11
|
Raileanu M, Borlan R, Campu A, Janosi L, Turcu I, Focsan M, Bacalum M. No country for old antibiotics! Antimicrobial peptides (AMPs) as next-generation treatment for skin and soft tissue infection. Int J Pharm 2023:123169. [PMID: 37356506 DOI: 10.1016/j.ijpharm.2023.123169] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
In recent years, the unprecedented rise of bacterial antibiotic resistance together with the lack of adequate therapies have made the treatment of skin infections and chronic wounds challenging, urging the scientific community to focus on the development of new and more efficient treatment strategies. In this context, there is a growing interest in the use of natural molecules with antimicrobial features, capable of supporting wound healing i.e., antimicrobial peptides (AMPs), for the treatment of skin and soft tissue infections. In this review, we give a short overview of the bacterial skin infections as well as some of the classic treatments used for topical application. We then summarize the AMPs classes, stressing the importance of the appropriate selection of the peptides based on their characteristics and physicochemical properties in order to maximize the antibacterial efficacy of the therapeutic systems against multi-drug resistant pathogens. Additionally, the present paper provides a comprehensive and rigorous assessment of the latest clinical trials investigating the efficacy of AMPs in the treatment of skin and soft tissue infections, highlighting the relevant outcomes. Seeking to obtain novel and improved compounds with synergistic activity, while also decreasing some of the known side effects of AMPs, we present two employed strategies using AMPs: (i) AMPs-conjugated nanosystems for systemic and topical drug delivery systems and (ii) antibiotics-peptide conjugates as a strategy to overcome antibiotics resistance. Finally, an important property of some of the AMPs used in wound treatment is highlighted: their ability to help in wound healing by generally promoting cell proliferation and migration, and in some cases re-epithelialization and angiogenesis among others. Thus, as the pursuit of improvement is an ongoing effort, this work presents the advances made in the treatment of skin and soft tissue infections along with their advantages and limitations, while the still remaining challenges are addressed by providing future prospects and strategies to overcome them.
Collapse
Affiliation(s)
- Mina Raileanu
- Department of Life and Environmental Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, Reactorului 30, Măgurele 077125, Romania
| | - Raluca Borlan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurian No. 42, 400271 Cluj-Napoca, Romania
| | - Andreea Campu
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurian No. 42, 400271 Cluj-Napoca, Romania
| | - Lorant Janosi
- Molecular and Biomolecular Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, 400293 Cluj-Napoca, Romania
| | - Ioan Turcu
- Molecular and Biomolecular Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, 400293 Cluj-Napoca, Romania
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurian No. 42, 400271 Cluj-Napoca, Romania.
| | - Mihaela Bacalum
- Department of Life and Environmental Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, Reactorului 30, Măgurele 077125, Romania.
| |
Collapse
|
12
|
Laws D, Plouch EV, Blakey SB. Synthesis of Ribosomally Synthesized and Post-Translationally Modified Peptides Containing C-C Cross-Links. JOURNAL OF NATURAL PRODUCTS 2022; 85:2519-2539. [PMID: 36136399 PMCID: PMC9617794 DOI: 10.1021/acs.jnatprod.2c00508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are known for their macrocyclic structures, which impart unique biological activity. One rapidly emerging subclass of RiPP natural products contains macrocyclic C-C cross-links between two amino acid side chains. These linkages, often biosynthetically formed by a single rSAM or P450 enzyme, introduce significant structural and synthetic complexity to the molecules. While nature utilizes elegant mechanisms to produce C-C cross-linked RiPPs, synthetic tools are only able to access a portion of these biologically relevant natural products. This review provides an overview of the structures in this subclass as well as a discussion on their chemical syntheses.
Collapse
Affiliation(s)
- David Laws
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Eleda V Plouch
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Simon B Blakey
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
13
|
Tryptophan, more than just an interfacial amino acid in the membrane activity of cationic cell-penetrating and antimicrobial peptides. Q Rev Biophys 2022; 55:e10. [PMID: 35979810 DOI: 10.1017/s0033583522000105] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Trp is unique among the amino acids since it is involved in many different types of noncovalent interactions such as electrostatic and hydrophobic ones, but also in π-π, π-cation, π-anion and π-ion pair interactions. In membranotropic peptides and proteins, Trp locates preferentially at the water-membrane interface. In antimicrobial or cell-penetrating peptides (AMPs and CPPs respectively), Trp is well-known for its strong role in the capacity of these peptides to interact and affect the membrane organisation of both bacteria and animal cells at the level of the lipid bilayer. This essential amino acid can however be involved in other types of interactions, not only with lipids, but also with other membrane partners, that are crucial to understand the functional roles of membranotropic peptides. This review is focused on this latter less known role of Trp and describes in details, both in qualitative and quantitative ways: (i) the physico-chemical properties of Trp; (ii) its effect in CPP internalisation; (iii) its importance in AMP activity; (iv) its role in the interaction of AMPs with glycoconjugates or lipids in bacteria membranes and the consequences on the activity of the peptides; (v) its role in the interaction of CPPs with negatively charged polysaccharides or lipids of animal membranes and the consequences on the activity of the peptides. We intend to bring highlights of the physico-chemical properties of Trp and describe its extensive possibilities of interactions, not only at the well-known level of the lipid bilayer, but with other less considered cell membrane components, such as carbohydrates and the extracellular matrix. The focus on these interactions will allow the reader to reevaluate reported studies. Altogether, our review gathers dedicated studies to show how unique are Trp properties, which should be taken into account to design future membranotropic peptides with expected antimicrobial or cell-penetrating activity.
Collapse
|
14
|
Lin YC, Schneider F, Eberle KJ, Chiodi D, Nakamura H, Reisberg SH, Chen J, Saito M, Baran PS. Atroposelective Total Synthesis of Darobactin A. J Am Chem Soc 2022; 144:14458-14462. [PMID: 35926121 PMCID: PMC9829381 DOI: 10.1021/jacs.2c05892] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A concise, modular synthesis of the novel antibiotic darobactin A is disclosed. The synthesis successfully forges the hallmark strained macrocyclic ring systems in a sequential fashion. Key transformations include two atroposelective Larock-based macrocyclizations, one of which proceeds with exquisite regioselectivity despite bearing an unprotected alkyne. The synthesis is designed with medicinal chemistry considerations in mind, appending key portions of the molecule at a late stage. Requisite unnatural amino acid building blocks are easily prepared in an enantiopure form using C-H activation and decarboxylative cross-coupling tactics.
Collapse
Affiliation(s)
- You-Chen Lin
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Fabian Schneider
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Kelly J Eberle
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Debora Chiodi
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Hugh Nakamura
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Solomon H Reisberg
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jason Chen
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Masato Saito
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Phil S Baran
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
15
|
Nesic M, Ryffel DB, Maturano J, Shevlin M, Pollack SR, Gauthier DR, Trigo-Mouriño P, Zhang LK, Schultz DM, McCabe Dunn JM, Campeau LC, Patel NR, Petrone DA, Sarlah D. Total Synthesis of Darobactin A. J Am Chem Soc 2022; 144:14026-14030. [PMID: 35900216 DOI: 10.1021/jacs.2c05891] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The collaborative total synthesis of darobactin A, a recently isolated antibiotic that selectively targets Gram-negative bacteria, has been accomplished in a convergent fashion with a longest linear sequence of 16 steps from d-Garner's aldehyde and l-serine. Scalable routes toward three non-canonical amino acids were developed to enable the synthesis. The closure of the bismacrocycle was realized through sequential, halogen-selective Larock indole syntheses, where the proper order of cyclizations proved crucial for the formation of the desired atropisomer of the natural product.
Collapse
Affiliation(s)
- Marko Nesic
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - David B Ryffel
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jonathan Maturano
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael Shevlin
- Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, New Jersey 07065, United States
| | - Scott R Pollack
- Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, New Jersey 07065, United States
| | - Donald R Gauthier
- Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, New Jersey 07065, United States
| | - Pablo Trigo-Mouriño
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Li-Kang Zhang
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Danielle M Schultz
- Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, New Jersey 07065, United States
| | - Jamie M McCabe Dunn
- Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, New Jersey 07065, United States
| | - Louis-Charles Campeau
- Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, New Jersey 07065, United States
| | - Niki R Patel
- Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, New Jersey 07065, United States
| | - David A Petrone
- Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, New Jersey 07065, United States
| | - David Sarlah
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|