1
|
Bartoš L, Lund M, Vácha R. Enhanced diffusion through multivalency. SOFT MATTER 2025; 21:179-185. [PMID: 39628400 PMCID: PMC11615653 DOI: 10.1039/d4sm00778f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/12/2024] [Indexed: 12/06/2024]
Abstract
The diffusion of macromolecules, nanoparticles, viruses, and bacteria is essential for targeting hosts or cellular destinations. While these entities can bind to receptors and ligands on host surfaces, the impact of multiple binding sites-referred to as multivalency-on diffusion along strands or surfaces is poorly understood. Through numerical simulations, we have discovered a significant acceleration in diffusion for particles with increasing valency, while maintaining the same overall affinity to the host surface. This acceleration arises from the redistribution of the binding affinity of the particle across multiple binding ligands. As a result, particles that are immobilized when monovalent can achieve near-unrestricted diffusion upon becoming multivalent. Additionally, we demonstrate that the diffusion of multivalent particles with a rigid ligand distribution can be modulated by patterned host receptors. These findings provide insights into the complex diffusion mechanisms of multivalent particles and biological entities, and offer new strategies for designing advanced nanoparticle systems with tailored diffusion properties, thereby enhancing their effectiveness in applications such as drug delivery and diagnostics.
Collapse
Affiliation(s)
- Ladislav Bartoš
- CEITEC - Central European Institute of Technology, Kamenice 753/5, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.
| | - Mikael Lund
- Division of Computational Chemistry, Lund University, Sweden.
- LINXS Institute of Advanced Neutron and X-ray Science, Lund University, Sweden
| | - Robert Vácha
- CEITEC - Central European Institute of Technology, Kamenice 753/5, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic.
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic
| |
Collapse
|
2
|
Zheng JA, Holmes-Cerfon M, Pine DJ, Marbach S. Hopping and crawling DNA-coated colloids. Proc Natl Acad Sci U S A 2024; 121:e2318865121. [PMID: 39352927 PMCID: PMC11474044 DOI: 10.1073/pnas.2318865121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 08/09/2024] [Indexed: 10/04/2024] Open
Abstract
Understanding the motion of particles with multivalent ligand-receptors is important for biomedical applications and material design. Yet, even among a single design, the prototypical DNA-coated colloids, seemingly similar micrometric particles hop or roll, depending on the study. We shed light on this problem by observing DNA-coated colloids diffusing near surfaces coated with complementary strands for a wide array of coating designs. We find colloids rapidly switch between 2 modes: They hop-with long and fast steps-and crawl-with short and slow steps. Both modes occur at all temperatures around the melting point and over various designs. The particles become increasingly subdiffusive as temperature decreases, in line with subsequent velocity steps becoming increasingly anticorrelated, corresponding to switchbacks in the trajectories. Overall, crawling (or hopping) phases are more predominant at low (or high) temperatures; crawling is also more efficient at low temperatures than hopping to cover large distances. We rationalize this behavior within a simple model: At lower temperatures, the number of bound strands increases, and detachment of all bonds is unlikely, hence, hopping is prevented and crawling favored. We thus reveal the mechanism behind a common design rule relying on increased strand density for long-range self-assembly: Dense strands on surfaces are required to enable crawling, possibly facilitating particle rearrangements.
Collapse
Affiliation(s)
| | - Miranda Holmes-Cerfon
- Department of Mathematics, University of British Columbia, Vancouver, BCV6T 1Z2, Canada
| | - David J. Pine
- Department of Physics, New York University, New York, NY10003
- Department of Chemical and Biomolecular Engineering, New York University, New York, NY11201
| | - Sophie Marbach
- Department of Mathematics, Courant Institute of Mathematical Sciences, New York University, New York, NY10012
- Department of Chemistry, CNRS, Sorbonne Université, Physicochimie des Electrolytes et Nanosystèmes Interfaciaux, ParisF-75005, France
| |
Collapse
|
3
|
Rivera-Morán JA, Lang PR. Analysing Sources of Error in Total Internal Reflection Microscopy (TIRM) Experiments and Data Analysis. Polymers (Basel) 2023; 15:4208. [PMID: 37959890 PMCID: PMC10647835 DOI: 10.3390/polym15214208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Many phenomena observed in synthetic and biological colloidal suspensions are dominated by the static interaction energies and the hydrodynamic interactions that act both between individual particles and also between colloids and macroscopic interfaces. This calls for methods that allow precise measurements of the corresponding forces. One method used for this purpose is total internal reflection microscopy (TIRM), which has been employed for around three decades to measure in particular the interactions between a single particle suspended in a liquid and a solid surface. However, given the importance of the observable variables, it is crucial to understand the possibilities and limitations of the method. In this paper, we investigate the influence of technically unavoidable noise effects and an inappropriate choice of particle size and sampling time on TIRM measurement results. Our main focus is on the measurement of diffusion coefficients and drift velocities, as the influence of error sources on dynamic properties has not been investigated so far. We find that detector shot noise and prolonged sampling times may cause erroneous results in the steep parts of the interaction potential where forces of the order of pico-Newtons or larger act on the particle, while the effect of background noise is negligible below certain thresholds. Furthermore, noise does not significantly affect dynamic data but we find that lengthy sampling times and/or probe particles with too small a radius will cause issues. Most importantly, we observe that dynamic results are very likely to differ from the standard hydrodynamic predictions for stick boundary conditions due to partial slip.
Collapse
Affiliation(s)
| | - Peter R. Lang
- Forschungszentrum Jülich GmbH, IBI-4, 52425 Jülich, Germany;
| |
Collapse
|
4
|
Shelke Y, Camerin F, Marín-Aguilar S, Verweij RW, Dijkstra M, Kraft DJ. Flexible Colloidal Molecules with Directional Bonds and Controlled Flexibility. ACS NANO 2023. [PMID: 37363931 DOI: 10.1021/acsnano.3c00751] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Colloidal molecules are ideal model systems for mimicking real molecules and can serve as versatile building blocks for the bottom-up self-assembly of flexible and smart materials. While most colloidal molecules are rigid objects, the development of colloidal joints has made it possible to endow them with conformational flexibility. However, their unrestricted range of motion does not capture the limited movement and bond directionality that is instead typical of real molecules. In this work, we create flexible colloidal molecules with an in situ controllable motion range and bond directionality by assembling spherical particles onto cubes functionalized with complementary surface-mobile DNA. By varying the sphere-to-cube size ratio, we obtain colloidal molecules with different coordination numbers and find that they feature a constrained range of motion above a critical size ratio. Using theory and simulations, we show that the particle shape together with the multivalent bonds creates an effective free-energy landscape for the motion of the sphere on the surface of the cube. We quantify the confinement of the spheres on the surface of the cube and the probability to change facet. We find that temperature can be used as an extra control parameter to switch in situ between full and constrained flexibility. These flexible colloidal molecules with a temperature switching motion range can be used to investigate the effect of directional yet flexible bonds in determining their self-assembly and phase behavior, and may be employed as constructional units in microrobotics and smart materials.
Collapse
Affiliation(s)
- Yogesh Shelke
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO Box 9504, Leiden 2300 RA, The Netherlands
| | - Fabrizio Camerin
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht 3584 CC, The Netherlands
| | - Susana Marín-Aguilar
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht 3584 CC, The Netherlands
| | - Ruben W Verweij
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO Box 9504, Leiden 2300 RA, The Netherlands
| | - Marjolein Dijkstra
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht 3584 CC, The Netherlands
| | - Daniela J Kraft
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO Box 9504, Leiden 2300 RA, The Netherlands
| |
Collapse
|
5
|
Vu TQ, Sant'Anna LE, Kamat NP. Tuning Targeted Liposome Avidity to Cells via Lipid Phase Separation. Biomacromolecules 2023; 24:1574-1584. [PMID: 36943688 PMCID: PMC10874583 DOI: 10.1021/acs.biomac.2c01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The addition of both cell-targeting moieties and polyethylene glycol (PEG) to nanoparticle (NP) drug delivery systems is a standard approach to improve the biodistribution, specificity, and uptake of therapeutic cargo. The spatial presentation of these molecules affects avidity of the NP to target cells in part through an interplay between the local ligand concentration and the steric hindrance imposed by PEG molecules. Here, we show that lipid phase separation in nanoparticles can modulate liposome avidity by changing the proximity of PEG and targeting protein molecules on a nanoparticle surface. Using lipid-anchored nickel-nitrilotriacetic acid (Ni-NTA) as a model ligand, we demonstrate that the attachment of lipid anchored Ni-NTA and PEG molecules to distinct lipid domains in nanoparticles can enhance liposome binding to cancer cells by increasing ligand clustering and reducing steric hindrance. We then use this technique to enhance the binding of RGD-modified liposomes, which can bind to integrins overexpressed on many cancer cells. These results demonstrate the potential of lipid phase separation to modulate the spatial presentation of targeting and shielding molecules on lipid nanocarriers, offering a powerful tool to enhance the efficacy of NP drug delivery systems.
Collapse
Affiliation(s)
- Timothy Q Vu
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Lucas E Sant'Anna
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Neha P Kamat
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Huang C, Huang J, Zhu S, Tang T, Chen Y, Qian F. Multivalent nanobodies with rationally optimized linker and valency for intravitreal VEGF neutralization. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
7
|
Chu W, Prodromou R, Moore B, Elhanafi D, Kilgore R, Shastry S, Menegatti S. Development of Peptide Ligands for the Purification of α-1 Antitrypsin from Cell Culture Fluids. J Chromatogr A 2022; 1679:463363. [DOI: 10.1016/j.chroma.2022.463363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
|
8
|
Lowensohn J, Stevens L, Goldstein D, Mognetti BM. Sliding across a surface: Particles with fixed and mobile ligands. J Chem Phys 2022; 156:164902. [PMID: 35490015 DOI: 10.1063/5.0084848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A quantitative model of the mobility of ligand-presenting particles at the interface is pivotal to understanding important systems in biology and nanotechnology. In this work, we investigate the emerging dynamics of particles featuring ligands that selectively bind receptors decorating an interface. The formation of a ligand-receptor complex leads to a molecular bridge anchoring the particle to the surface. We consider systems with reversible bridges in which ligand-receptor pairs bind/unbind with finite reaction rates. For a given set of bridges, the particle can explore a tiny fraction of the surface as the extensivity of the bridges is finite. We show how, at timescales longer than the bridges' lifetime, the average position of the particle diffuses away from its initial value. We distill our findings into two analytic equations for the sliding diffusion constant of particles carrying mobile and fixed ligands. We quantitatively validate our theoretical predictions using reaction-diffusion simulations. We compare our findings with results from recent literature studies and discuss the molecular parameters that likely affect the particle's mobility most. Our results, along with recent literature studies, will allow inferring the microscopic parameters at play in complex biological systems from experimental trajectories.
Collapse
Affiliation(s)
- Janna Lowensohn
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Boulevard du Triomphe, Code Postal 231 1050 Brussels, Belgium
| | - Laurie Stevens
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Boulevard du Triomphe, Code Postal 231 1050 Brussels, Belgium
| | - Daniel Goldstein
- Department of Physics and Astronomy, Tufts University, 574 Boston Avenue, Medford, Massachusetts 02155, USA
| | - Bortolo Matteo Mognetti
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, Boulevard du Triomphe, Code Postal 231 1050 Brussels, Belgium
| |
Collapse
|
9
|
Cui F, Marbach S, Zheng JA, Holmes-Cerfon M, Pine DJ. Comprehensive view of microscopic interactions between DNA-coated colloids. Nat Commun 2022; 13:2304. [PMID: 35484104 PMCID: PMC9051097 DOI: 10.1038/s41467-022-29853-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
The self-assembly of DNA-coated colloids into highly-ordered structures offers great promise for advanced optical materials. However, control of disorder, defects, melting, and crystal growth is hindered by the lack of a microscopic understanding of DNA-mediated colloidal interactions. Here we use total internal reflection microscopy to measure in situ the interaction potential between DNA-coated colloids with nanometer resolution and the macroscopic melting behavior. The range and strength of the interaction are measured and linked to key material design parameters, including DNA sequence, polymer length, grafting density, and complementary fraction. We present a first-principles model that screens and combines existing theories into one coherent framework and quantitatively reproduces our experimental data without fitting parameters over a wide range of DNA ligand designs. Our theory identifies a subtle competition between DNA binding and steric repulsion and accurately predicts adhesion and melting at a molecular level. Combining experimental and theoretical results, our work provides a quantitative and predictive approach for guiding material design with DNA-nanotechnology and can be further extended to a diversity of colloidal and biological systems. A quantitative prediction of DNA-mediated interactions between colloids is crucial to the design of colloidal structures for optical applications. Cui et al. measure the interaction potential with nanometer resolution and propose a theory to accurately predict adhesion and melting at a molecular level.
Collapse
Affiliation(s)
- Fan Cui
- Department of Physics, New York University, New York, NY, USA
| | - Sophie Marbach
- Courant Institute of Mathematical Sciences, New York University, New York, NY, USA.,CNRS, Sorbonne Université, Physicochimie des Electrolytes et Nanosystèmes, Interfaciaux, F-75005, Paris, France
| | | | | | - David J Pine
- Department of Physics, New York University, New York, NY, USA. .,Department of Chemical & Biomolecular Engineering, New York University, New York, NY, USA.
| |
Collapse
|
10
|
Marbach S, Zheng JA, Holmes-Cerfon M. The nanocaterpillar's random walk: diffusion with ligand-receptor contacts. SOFT MATTER 2022; 18:3130-3146. [PMID: 35348560 DOI: 10.1039/d1sm01544c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Particles with ligand-receptor contacts bind and unbind fluctuating "legs" to surfaces, whose fluctuations cause the particle to diffuse. Quantifying the diffusion of such "nanoscale caterpillars" is a challenge, since binding events often occur on very short time and length scales. Here we derive an analytical formula, validated by simulations, for the long time translational diffusion coefficient of an overdamped nanocaterpillar, under a range of modeling assumptions. We demonstrate that the effective diffusion coefficient, which depends on the microscopic parameters governing the legs, can be orders of magnitude smaller than the background diffusion coefficient. Furthermore it varies rapidly with temperature, and reproduces the striking variations seen in existing data and our own measurements of the diffusion of DNA-coated colloids. Our model gives insight into the mechanism of motion, and allows us to ask: when does a nanocaterpillar prefer to move by sliding, where one leg is always linked to the surface, and when does it prefer to move by hopping, which requires all legs to unbind simultaneously? We compare a range of systems (viruses, molecular motors, white blood cells, protein cargos in the nuclear pore complex, bacteria such as Escherichia coli, and DNA-coated colloids) and present guidelines to control the mode of motion for materials design.
Collapse
Affiliation(s)
- Sophie Marbach
- Courant Institute of Mathematical Sciences, New York University, NY, 10012, USA.
- CNRS, Sorbonne Université, Physicochimie des Electrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France
| | | | | |
Collapse
|
11
|
Morzy D, Bastings M. Significance of Receptor Mobility in Multivalent Binding on Lipid Membranes. Angew Chem Int Ed Engl 2022; 61:e202114167. [PMID: 34982497 PMCID: PMC9303963 DOI: 10.1002/anie.202114167] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Indexed: 01/16/2023]
Abstract
Numerous key biological processes rely on the concept of multivalency, where ligands achieve stable binding only upon engaging multiple receptors. These processes, like viral entry or immune synapse formation, occur on the diffusive cellular membrane. One crucial, yet underexplored aspect of multivalent binding is the mobility of coupled receptors. Here, we discuss the consequences of mobility in multivalent processes from four perspectives: (I) The facilitation of receptor recruitment by the multivalent ligand due to their diffusivity prior to binding. (II) The effects of receptor preassembly, which allows their local accumulation. (III) The consequences of changes in mobility upon the formation of receptor/ligand complex. (IV) The changes in the diffusivity of lipid environment surrounding engaged receptors. We demonstrate how understanding mobility is essential for fully unravelling the principles of multivalent membrane processes, leading to further development in studies on receptor interactions, and guide the design of new generations of multivalent ligands.
Collapse
Affiliation(s)
- Diana Morzy
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, École Polytechnique Fédérale de Lausanne, Route Cantonale, 1015, Lausanne, Switzerland
| | - Maartje Bastings
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, École Polytechnique Fédérale de Lausanne, Route Cantonale, 1015, Lausanne, Switzerland
| |
Collapse
|
12
|
Morzy D, Bastings M. Significance of Receptor Mobility in Multivalent Binding on Lipid Membranes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Diana Morzy
- Programmable Biomaterials Laboratory Institute of Materials School of Engineering École Polytechnique Fédérale de Lausanne Route Cantonale 1015 Lausanne Switzerland
| | - Maartje Bastings
- Programmable Biomaterials Laboratory Institute of Materials School of Engineering École Polytechnique Fédérale de Lausanne Route Cantonale 1015 Lausanne Switzerland
| |
Collapse
|
13
|
Cui F, Pine DJ. Effect of photon counting shot noise on total internal reflection microscopy. SOFT MATTER 2021; 18:162-171. [PMID: 34851340 DOI: 10.1039/d1sm01587g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Total internal reflection microscopy (TIRM) measures changes in the distance between a colloidal particle and a transparent substrate by measuring the scattering intensity of the particle illuminated by an evanescent wave. From the distribution of the recorded separation distances, the height-dependent effective potential φ(z) between the colloidal particle and the substrate can be measured. In this work, we show that spatial resolution with which TIRM can measure φ(z) is limited by the photon counting statistics of the scattered laser light. We develop a model to evaluate the effect of photon counting statistics on different potential profiles using Brownian dynamics simulations and experiments. Our results show that the effect of photon counting statistics depends on spatial gradients ∂φ/∂z of the potential, with the result that sharp features tend to be significantly blurred. We further establish the critical role of photon counting statistics and the intensity integration time τ in TIRM measurements, which is a trade-off between narrowing the width of the photon counting distribution and capturing the instantaneous position of the probe particle.
Collapse
Affiliation(s)
- Fan Cui
- Department of Physics, Center for Soft Matter Research, New York University, 726 Broadway, New York, NY 10003, USA.
| | - David J Pine
- Department of Physics, Center for Soft Matter Research, New York University, 726 Broadway, New York, NY 10003, USA.
- Department of Chemical & Biomolecular Engineering, Tandon School of Engineering, New York University, 6 MetroTech Center, Brooklyn, New York 11201, USA
| |
Collapse
|
14
|
Uribe J, Traberg WC, Hama A, Druet V, Mohamed Z, Ooi A, Pappa AM, Huerta M, Inal S, Owens RM, Daniel S. Dual Mode Sensing of Binding and Blocking of Cancer Exosomes to Biomimetic Human Primary Stem Cell Surfaces. ACS Biomater Sci Eng 2021; 7:5585-5597. [PMID: 34802228 DOI: 10.1021/acsbiomaterials.1c01056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cancer-derived exosomes (cEXOs) facilitate transfer of information between tumor and human primary stromal cells, favoring cancer progression. Although the mechanisms used during this information exchange are still not completely understood, it is known that binding is the initial contact established between cEXOs and cells. Hence, studying binding and finding strategies to block it are of great therapeutic value. However, such studies are challenging for a variety of reasons, including the need for human primary cell culture, the difficulty in decoupling and isolating binding from internalization and cargo delivery, and the lack of techniques to detect these specific interactions. In this work, we created a supported biomimetic stem cell membrane incorporating membrane components from human primary adipose-derived stem cells (ADSCs). We formed the supported membrane on glass and on multielectrode arrays to offer the dual option of optical or electrical detection of cEXO binding to the membrane surface. Using our platform, we show that cEXOs bind to the stem cell membrane and that binding is blocked when an antibody to integrin β1, a component of ADSC surface, is exposed to the membrane surface prior to cEXOs. To test the biological outcome of blocking this interaction, we first confirm that adding cEXOs to cultured ADSCs leads to the upregulation of vascular endothelial growth factor, a measure of proangiogenic activity. Next, when ADSCs are first blocked with anti-integrin β1 and then exposed to cEXOs, the upregulation of proangiogenic activity and cell proliferation are significantly reduced. This biomimetic membrane platform is the first cell-free label-free in vitro platform for the recapitulation and study of cEXO binding to human primary stem cells with potential for therapeutic molecule screening as it is compatible with scale-up and multiplexing.
Collapse
Affiliation(s)
- Johana Uribe
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853-0001, United States
| | - Walther C Traberg
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Adel Hama
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 3955, Kingdom of Saudi Arabia
| | - Victor Druet
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 3955, Kingdom of Saudi Arabia
| | - Zeinab Mohamed
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853-0001, United States
| | - Amanda Ooi
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 3955, Kingdom of Saudi Arabia
| | - Anna-Maria Pappa
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom.,Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Miriam Huerta
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853-5201, United States
| | - Sahika Inal
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 3955, Kingdom of Saudi Arabia
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| | - Susan Daniel
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853-0001, United States.,School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853-5201, United States
| |
Collapse
|