1
|
Girase R, Gujarathi NA, Sukhia A, Kota SSN, Patil TS, Aher AA, Agrawal YO, Ojha S, Sharma C, Goyal SN. Targeted nanoliposomes for precision rheumatoid arthritis therapy: a review on mechanisms and in vivo potential. Drug Deliv 2025; 32:2459772. [PMID: 39891600 PMCID: PMC11789225 DOI: 10.1080/10717544.2025.2459772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/26/2024] [Accepted: 01/23/2025] [Indexed: 02/03/2025] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory immune-triggered disease that causes synovitis, cartilage degradation, and joint injury. In nanotechnology, conventional liposomes were extensively investigated for RA. However, they frequently undergo rapid clearance, reducing circulation time and therapeutic efficacy. Additionally, their stability in the bloodstream is often compromised, resulting in premature drug release. The current review explores the potential of targeted liposomal-based nanosystems in the treatment of RA. It highlights the pathophysiology of RA, explores selective targeting sites, and elucidates diverse mechanisms of novel liposomal types and their applications. Furthermore, the targeting strategies of pH-sensitive, flexible, surface-modified, PEGylated, acoustic, ROS-mediated, and biofunctionalized liposomes are addressed. Targeted nanoliposomes showed potential in precisely delivering drugs to CD44, SR-A, FR-β, FLS, and toll-like receptors through the high affinity of ligands. In vitro studies interpreted stable release profiles and improved stability. Ex vivo studies on skin demonstrated that ultradeformable and glycerol-conjugated liposomes enhanced drug penetrability. In vivo experiments for liposomal types in the arthritis rat model depicted remarkable efficacy in reducing joint swelling, pro-inflammatory cytokines, and synovial hyperplasia. In conclusion, these targeted liposomes represented a significant leap forward in drug delivery, offering effective therapeutic options for RA. In the future, integrating these advanced liposomes with artificial intelligence, immunotherapy, and precision medicine holds great promise.
Collapse
Affiliation(s)
- Rushikesh Girase
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule, India
| | | | - Amey Sukhia
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sri Sai Nikitha Kota
- Department of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, USA
| | | | - Abhijeet A. Aher
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule, India
| | | | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sameer N. Goyal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule, India
| |
Collapse
|
2
|
Pandey V, Pandey T. A Mechanistic Understanding of Reactive Oxygen Species (ROS)-Responsive Bio-Polymeric Nanoparticles: Current State, Challenges and Future Toward Precision Therapeutics. Biopolymers 2025; 116:e70027. [PMID: 40370134 DOI: 10.1002/bip.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 03/19/2025] [Accepted: 05/07/2025] [Indexed: 05/16/2025]
Abstract
Inflammation is a hallmark of various pathological conditions, including cancer, cardiovascular diseases, neurodegenerative disorders, and autoimmune diseases. Reactive oxygen species (ROS) are crucial mediators in the inflammatory microenvironment, playing a pivotal role in both normal cellular processes and disease progression. Targeting ROS overproduction in inflamed tissues has emerged as a promising therapeutic strategy. Polymeric nanoparticles (NPs) responsive to ROS levels in pathological tissues have gained substantial attention as precision drug delivery systems, capable of ensuring controlled, site-specific drug release. This review provides a comprehensive mechanistic insight into ROS-responsive polymeric nanoparticles, examining their structural design, functionalization strategies, drug release mechanisms, and potential for targeted therapies in inflammatory conditions. Furthermore, we discuss recent advancements, challenges, and future directions in utilizing ROS-responsive polymeric nanoparticles for precision therapeutics, highlighting their transformative potential in clinical applications.
Collapse
Affiliation(s)
- Vivek Pandey
- Department of Chemistry, School for Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Tejasvi Pandey
- Department of Forensic Sciences, School for Bioengineering and Biosciences Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
3
|
Zamanian MY, Zafari H, Osminina MK, Skakodub AA, Al‐Aouadi RFA, Golmohammadi M, Nikbakht N, Fatemi I. Improving dexamethasone drug loading and efficacy in treating rheumatoid arthritis via liposome: Focusing on inflammation and molecular mechanisms. Animal Model Exp Med 2025; 8:5-19. [PMID: 39627850 PMCID: PMC11798740 DOI: 10.1002/ame2.12518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/04/2024] [Indexed: 02/07/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that affects approximately 0.46% of the global population. Conventional therapeutics for RA, including disease-modifying antirheumatic drugs (DMARDs), nonsteroidal anti-inflammatory drugs (NSAIDs), and corticosteroids, frequently result in unintended adverse effects. Dexamethasone (DEX) is a potent glucocorticoid used to treat RA due to its anti-inflammatory and immunosuppressive properties. Liposomal delivery of DEX, particularly when liposomes are surface-modified with targeting ligands like peptides or sialic acid, can improve drug efficacy by enhancing its distribution to inflamed joints and minimizing toxicity. This study investigates the potential of liposomal drug delivery systems to enhance the efficacy and targeting of DEX in the treatment of RA. Results from various studies demonstrate that liposomal DEX significantly inhibits arthritis progression in animal models, reduces joint inflammation and damage, and alleviates cartilage destruction compared to free DEX. The liposomal formulation also shows better hemocompatibility, fewer adverse effects on body weight and immune organ index, and a longer circulation time with higher bioavailability. The anti-inflammatory mechanism is associated with the downregulation of pro-inflammatory cytokines like tumor necrosis factor-α (TNF-α) and B-cell-activating factor (BAFF), which are key players in the pathogenesis of RA. Additionally, liposomal DEX can induce the expression of anti-inflammatory cytokines like interleukin-10 (IL-10), which has significant anti-inflammatory and immunoregulatory properties. The findings suggest that liposomal DEX represents a promising candidate for effective and safe RA therapy, with the potential to improve the management of this debilitating disease by providing targeted delivery and sustained release of the drug.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, School of MedicineHamadan University of Medical SciencesHamadanIran
- Department of Pharmacology and Toxicology, School of PharmacyHamadan University of Medical SciencesHamadanIran
| | - Hamidreza Zafari
- Department of Orthopedic Surgery, Joint Reconstruction Research Center, Imam Khomeini Hospital Complex, School of MedicineTehran University of Medical SciencesTehranIran
| | - Maria K. Osminina
- Pediatric departmentI.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University)MoscowRussian Federation
| | - Alla A. Skakodub
- Department of Pediatric Preventive Dentistry E.V. BorovskyI.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University)MoscowRussian Federation
| | | | | | - Nikta Nikbakht
- Department of Physical Medicine and Rehabilitation, School of PharmacyHamadan University of Medical SciencesHamadanIran
| | - Iman Fatemi
- Research Center of Tropical and Infectious DiseasesKerman University of Medical SciencesKermanIran
| |
Collapse
|
4
|
Zhao L, Li L, Zhang Y, He Z, Chen X, Liu Y, Shi B, Liu Y. Targeting Synovial Macrophages with Astaxanthin-Loaded Liposomes for Antioxidant Treatment of Osteoarthritis. ACS Biomater Sci Eng 2024; 10:7191-7205. [PMID: 39413302 DOI: 10.1021/acsbiomaterials.4c00998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Osteoarthritis (OA) is a chronic joint disease highly associated with an imbalance in the network of inflammatory factors and typically characterized by oxidative stress and cartilage damage. Moreover, the specificity of the joint structure makes it difficult for drugs to achieve good penetration and effective enrichment in the joint cavity. Therefore, therapeutic strategies that increase the specific targeting of drugs to inflammatory joint and incorporate antioxidative stress effects are important to improve the efficacy of OA. Here, we developed a folic acid-modified liposomal nanoparticle (AST@Lip-FA) loaded with the antioxidant astaxanthin (AST) to enhance the water solubility and stability of AST and to target the delivery of AST to the site of OA, leading to a significant improvement in therapeutic efficacy. In vitro experiments demonstrated that, due to the recognition by FA of the receptor folate receptor β on the surface of activated macrophages, the cellular uptake efficiency of AST@Lip-FA was increased. Meanwhile, intracellularly overexpressed inflammatory mediators such as reactive oxygen species and nitric oxide were efficiently removed by AST@Lip-FA. In addition, in the ACLT-induced OA mouse model, AST@Lip-FA was precisely enriched in the inflamed joints and achieved long-term retention, fully utilizing the anti-inflammatory, antioxidant, and cartilage-protecting effects of AST to effectively alleviate the progression of OA. In summary, AST@Lip-FA has an important prospect as a potential and effective therapeutic strategy for OA.
Collapse
Affiliation(s)
- Linlin Zhao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Liangxiao Li
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yingyu Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Ziye He
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xin Chen
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yingying Liu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Bin Shi
- Department of Traditional Chinese Medicine Orthopedics, Neck-Shoulder and Lumbocrural Pain Hospital Affiliated to Shandong First Medical University, Jinan 250014, Shandong, China
| | - Yajun Liu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| |
Collapse
|
5
|
Ma L, Wu H, Cao J, Zhang N, Li Y, Zheng J, Jiang X, Gao J. Mesenchymal Stem Cell-Based Biomimetic Liposome for Targeted Treatment of Rheumatoid Arthritis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47206-47215. [PMID: 39190615 DOI: 10.1021/acsami.4c09080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disorder that severely compromises joint health. The primary therapeutic strategy for advanced RA aims to inhibit joint inflammation. However, the nonspecific distribution of pharmacological agents has limited therapeutic efficacy and heightens the risks associated with RA treatment. To address this issue, we developed mesenchymal stem cell (MSC)-based biomimetic liposomes, termed MSCsome, which were composed of a fusion between MSC membranes and liposomes. MSC some with relatively simple preparation method effectively enhanced the targeting efficiency of drug to diseased joints. Interaction between lymphocyte function-associated antigen-1 and intercellular adhesion molecule-1 enhanced the affinity of the MSCsome for polarized macrophages, thereby improving its targeting capability to affected joints. The effective targeted delivery facilitated drug accumulation in joints, resulting in the significant inhibition of the inflammation, as well as protection and repair of the cartilage. In conclusion, this study introduced MSCsome as a promising approach for the effective treatment of advanced RA, providing a novel perspective on targeted drug delivery therapy for inflammatory diseases.
Collapse
Affiliation(s)
- Lan Ma
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- College of Pharmacy, Inner Mongolia Medical University, Chilechuan Dairy Economic Development Zone, Hohhot, Inner Mongolia Autonomous Region 010110, China
| | - Honghui Wu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321002, China
| | - Jian Cao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yaosheng Li
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Juanjuan Zheng
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinchi Jiang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Zhou Y, Xu M, Shen W, Xu Y, Shao A, Xu P, Yao K, Han H, Ye J. Recent Advances in Nanomedicine for Ocular Fundus Neovascularization Disease Management. Adv Healthc Mater 2024; 13:e2304626. [PMID: 38406994 PMCID: PMC11468720 DOI: 10.1002/adhm.202304626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/22/2024] [Indexed: 02/27/2024]
Abstract
As an indispensable part of the human sensory system, visual acuity may be impaired and even develop into irreversible blindness due to various ocular pathologies. Among ocular diseases, fundus neovascularization diseases (FNDs) are prominent etiologies of visual impairment worldwide. Intravitreal injection of anti-vascular endothelial growth factor drugs remains the primary therapy but is hurdled by common complications and incomplete potency. To renovate the current therapeutic modalities, nanomedicine emerged as the times required, which is endowed with advanced capabilities, able to fulfill the effective ocular fundus drug delivery and achieve precise drug release control, thus further improving the therapeutic effect. This review provides a comprehensive summary of advances in nanomedicine for FND management from state-of-the-art studies. First, the current therapeutic modalities for FNDs are thoroughly introduced, focusing on the key challenges of ocular fundus drug delivery. Second, nanocarriers are comprehensively reviewed for ocular posterior drug delivery based on the nanostructures: polymer-based nanocarriers, lipid-based nanocarriers, and inorganic nanoparticles. Thirdly, the characteristics of the fundus microenvironment, their pathological changes during FNDs, and corresponding strategies for constructing smart nanocarriers are elaborated. Furthermore, the challenges and prospects of nanomedicine for FND management are thoroughly discussed.
Collapse
Affiliation(s)
- Yifan Zhou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Mingyu Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Wenyue Shen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Yufeng Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - An Shao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Peifang Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| |
Collapse
|
7
|
Dwivedi SD, Shukla R, Yadav K, Rathor LS, Singh D, Singh MR. Mechanistic insight on the role of iRhom2-TNF-α-BAFF signaling pathway in various autoimmune disorders. Adv Biol Regul 2024; 92:101011. [PMID: 38151421 DOI: 10.1016/j.jbior.2023.101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/23/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
iRhom2 is a crucial cofactor involved in upregulation of TNF receptors (TNFRs) and the pro-inflammatory cytokine tumor necrosis factor (TNF-) from the cell surface by ADAM17. Tumor necrosis factor- α converting enzyme (TACE) is another name given to ADAM17. Many membrane attached biologically active molecules are cleaved by this enzyme which includes TNFRs and the pro-inflammatory cytokine tumor necrosis factor- α. The TNF receptors are of two types TNFR1 and TNFR2. iRhom2 belongs to the pseudo-protease class of rhomboid family, its abundance is observed in the immune cells. Biological activity of ADAM17 is affected in multiple levels by the iRhom2. ADAM17 is trafficked into the Golgi apparatus by the action of iRhom2, where it gets matured proteolytically and is stimulated to perform its function on the cell surface. This process of activation of ADAM17 results in the protection of the organism from the cascade of inflammatory reactions, as this activation blocks the TNF- α mediated secretion responsible for inflammatory responses produced. Present paper illustrates about the iRhom2-TNF-α-BAFF signaling pathway and its correlation with several autoimmune disorders such as Rheumatoid Arthritis, Systemic Lupus Erythematosus, Hemophilia Arthropathy, Alzheimer's disease and Tylosis with esophageal cancer etc.
Collapse
Affiliation(s)
- Shradha Devi Dwivedi
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur (C.G), 492010, India
| | - Rashi Shukla
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur (C.G), 492010, India
| | - Krishna Yadav
- Raipur Institute of Pharmaceutical Educations and Research, Sarona, Raipur, Chhattisgarh, 492010, India
| | - Lokendra Singh Rathor
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur (C.G), 492010, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur (C.G), 492010, India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur (C.G), 492010, India.
| |
Collapse
|
8
|
Maheshwari R, Sharma M, Chidrawar VR. Niosomes based formulation containing tenoxicam: A newer solution for the rheumatic diseases. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:473-482. [PMID: 37923009 DOI: 10.1016/j.pharma.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE This investigation aimed to explore the potential of non-ionic surfactant based niosomal vesicles encapsulating tenoxicam (TN; anti-rheumatic drug) for the treatment of rheumatic diseases. MATERIAL AND METHODS Mechanical dispersion technique with controlled pressure was employed to prepare different niosomal formulations. The effects of different ratios of surfactant (span-60), lipid, and sodium deoxycholate on noisome's physicochemical properties have been examined. Moreover, inhibition of TNF-α in lipopolysaccharide-activated cultured Human leukemia monocytic (THP-1) cells were demonstrated to assess the in vitro inflammation profile. Finally, the optimized niosomal formulation (TN3) was prepared in gel matrix consist of carbopol 934 (termed as TN34) and stability was also tested at 4±2 ̊C, 25±2 ̊C, 37±2 ̊C and 45±2 ̊C for 6 months. RESULTS The optimized niosomal formulation exhibited a small vesicle size (165±14nm) and high drug encapsulation (79.64±1.5%). Niosomal gel formulation TN34 showed pH (6.7), viscosity (6810±3.34 cps), spreadability (19.11±1.87gm.cm/sec) and also displayed sustained release pattern of drug release (98.16±0.07% TN released from gel matrix in 24h) in vitro release study. TN34 exhibited substantial anti-inflammatory response, with ∼75% inhibition of TNF-α in 48h. Stability investigation revealed that refrigerator temperature is most suitable for the storage of niosomal gel. CONCLUSION Transdermal niosomal formulation displayed promising potential in the treatment of rheumatic diseases.
Collapse
Affiliation(s)
- Rahul Maheshwari
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Green Industrial Park, TSIIC, Jadcherla-509301, Hyderabad, India.
| | - Mayank Sharma
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Shirpur-425405, MH, India
| | - Vijay R Chidrawar
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Green Industrial Park, TSIIC, Jadcherla-509301, Hyderabad, India
| |
Collapse
|
9
|
Dwivedi SD, Bhoi A, Pradhan M, Sahu KK, Singh D, Singh MR. Role and uptake of metal-based nanoconstructs as targeted therapeutic carriers for rheumatoid arthritis. 3 Biotech 2024; 14:142. [PMID: 38693915 PMCID: PMC11058151 DOI: 10.1007/s13205-024-03990-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
Rheumatoid Arthritis (RA) is a chronic autoimmune systemic inflammatory disease that affects the joints and other vital organs and diminishes the quality of life. The current developments and innovative treatment options have significantly slowed disease progression and improved their quality of life. Medicaments can be delivered to the inflamed synovium via nanoparticle systems, minimizing systemic and undesirable side effects. Numerous nanoparticles such as polymeric, liposomal, and metallic nanoparticles reported are impending as a good carrier with therapeutic properties. Other issues to be considered along are nontoxicity, nanosize, charge, optical property, and ease of high surface functionalization that make them suitable carriers for drug delivery. Metallic nanoparticles (MNPs) (such as silver, gold, zinc, iron, titanium oxide, and selenium) not only act as good carrier with desired optical property, and high surface modification ability but also have their own therapeutical potential such as anti-oxidant, anti-inflammatory, and anti-arthritic properties, making them one of the most promising options for RA treatment. Regardless, cellular uptake of MNPs is one of the most significant criterions for targeting the medication. This paper discusses the numerous interactions of nanoparticles with cells, as well as cellular uptake of NPs. This review provides the mechanistic overview on MNPs involved in RA therapies and regulation anti-arthritis response such as ability to reduce oxidative stress, suppressing the release of proinflammatory cytokines and expression of LPS induced COX-2, and modulation of MAPK and PI3K pathways in Kuppfer cells and hepatic stellate cells. Despite of that MNPs have also ability to regulates enzymes like glutathione peroxidases (GPxs), thioredoxin reductases (TrxRs) and act as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Shradha Devi Dwivedi
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010 India
| | - Anita Bhoi
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, C.G 492010 India
| | - Madhulika Pradhan
- Gracious College of Pharmacy, Abhanpur Raipur, Chhattisgarh 493661 India
| | - Keshav Kant Sahu
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur, C.G 492010 India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010 India
| | - Manju Rawat Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492010 India
| |
Collapse
|
10
|
Song Y, Yang P, Guo W, Lu P, Huang C, Cai Z, Jiang X, Yang G, Du Y, Zhao F. Supramolecular Hydrogel Dexamethasone-Diclofenac for the Treatment of Rheumatoid Arthritis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:645. [PMID: 38607179 PMCID: PMC11013297 DOI: 10.3390/nano14070645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024]
Abstract
Rheumatoid arthritis (RA) severely affects patients' quality of life and is commonly treated with glucocorticosteroids injections, like dexamethasone, which may have side effects. This study aimed to create a novel low dose of twin-drug hydrogel containing dexamethasone and diclofenac and explore its potential as a drug delivery system for an enhanced anti-inflammatory effect. Its characterization involved rheology, transmission electron microscope (TEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). Furthermore, the hydrogel demonstrated thixotropic properties. The hydrogel exhibited no cytotoxicity against RAW 264.7 macrophages. Furthermore, the hydrogel demonstrated a significant anti-inflammatory efficacy by effectively downregulating the levels of NO, TNF-α, and IL-6 in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. The co-delivery approach, when intra-articularly injected in adjuvant-induced arthritis (AIA) rats, significantly alleviated chronic inflammation leading to reduced synovitis, delayed bone erosion onset, and the downregulation of inflammatory cytokines. The biocompatibility and adverse effect evaluation indicated good biological safety. Furthermore, the hydrogel demonstrated efficacy in reducing NF-κB nuclear translocation in LPS-induced RAW 264.7 macrophages and inhibited p-NF-kB, COX-2, and iNOS expression both in RAW 264.7 macrophages and the joints of AIA rats. In conclusion, the findings indicate that the hydrogel possesses potent anti-inflammatory activity, which effectively addresses the limitations associated with free forms. It presents a promising therapeutic strategy for the management of RA.
Collapse
Affiliation(s)
- Yanqin Song
- Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education of China, School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (P.Y.); (W.G.); (P.L.); (C.H.); (Z.C.); (X.J.); (G.Y.)
- Yantai Center for Food and Drug Control, Yantai 264005, China
| | - Pufan Yang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education of China, School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (P.Y.); (W.G.); (P.L.); (C.H.); (Z.C.); (X.J.); (G.Y.)
| | - Wen Guo
- Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education of China, School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (P.Y.); (W.G.); (P.L.); (C.H.); (Z.C.); (X.J.); (G.Y.)
| | - Panpan Lu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education of China, School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (P.Y.); (W.G.); (P.L.); (C.H.); (Z.C.); (X.J.); (G.Y.)
| | - Congying Huang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education of China, School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (P.Y.); (W.G.); (P.L.); (C.H.); (Z.C.); (X.J.); (G.Y.)
| | - Zhiruo Cai
- Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education of China, School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (P.Y.); (W.G.); (P.L.); (C.H.); (Z.C.); (X.J.); (G.Y.)
| | - Xin Jiang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education of China, School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (P.Y.); (W.G.); (P.L.); (C.H.); (Z.C.); (X.J.); (G.Y.)
| | - Gangqiang Yang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education of China, School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (P.Y.); (W.G.); (P.L.); (C.H.); (Z.C.); (X.J.); (G.Y.)
| | - Yuan Du
- Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education of China, School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (P.Y.); (W.G.); (P.L.); (C.H.); (Z.C.); (X.J.); (G.Y.)
| | - Feng Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation Ministry of Education of China, School of Pharmacy, Yantai University, Yantai 264005, China; (Y.S.); (P.Y.); (W.G.); (P.L.); (C.H.); (Z.C.); (X.J.); (G.Y.)
| |
Collapse
|
11
|
Rubanová D, Skoroplyas S, Libánská A, Randárová E, Bryja J, Chorvátová M, Etrych T, Kubala L. Therapeutic activity and biodistribution of a nano-sized polymer-dexamethasone conjugate intended for the targeted treatment of rheumatoid arthritis. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 55:102716. [PMID: 38738529 DOI: 10.1016/j.nano.2023.102716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/02/2023] [Accepted: 10/21/2023] [Indexed: 05/14/2024]
Abstract
Rheumatoid arthritis is a chronic inflammatory autoimmune disease caused by alteration of the immune system. Current therapies have several limitations and the use of nanomedicines represents a promising strategy to overcome them. By employing a mouse model of adjuvant induced arthritis, we aimed to evaluate the biodistribution and therapeutic effects of glucocorticoid dexamethasone conjugated to a nanocarrier based on biocompatible N-(2-hydroxypropyl) methacrylamide copolymers. We observed an increased accumulation of dexamethasone polymer nanomedicines in the arthritic mouse paw using non-invasive fluorescent in vivo imaging and confirmed it by the analysis of tissue homogenates. The dexamethasone conjugate exhibited a dose-dependent healing effect on arthritis and an improved therapeutic outcome compared to free dexamethasone. Particularly, significant reduction of accumulation of RA mediator RANKL was observed. Overall, our data suggest that the conjugation of dexamethasone to a polymer nanocarrier by means of stimuli-sensitive spacer is suitable strategy for improving rheumatoid arthritis therapy.
Collapse
Affiliation(s)
- Daniela Rubanová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Svitlana Skoroplyas
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Alena Libánská
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague, Czech Republic
| | - Eva Randárová
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague, Czech Republic
| | - Josef Bryja
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Michaela Chorvátová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomáš Etrych
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovského nám. 2, 162 00 Prague, Czech Republic
| | - Lukáš Kubala
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00 Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Pekařská 53, 602 00 Brno, Czech Republic.
| |
Collapse
|
12
|
Yi Z, Ran Y, Chen X, Tong Q, Ma L, Tan Y, Ma X, Li X. Tea polyphenol carrier-enhanced dexamethasone nanomedicines for inflammation-targeted treatment of rheumatoid arthritis. J Mater Chem B 2023; 11:11505-11518. [PMID: 38038124 DOI: 10.1039/d3tb02316h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease characterized by synovial inflammation, cartilage damage and bone erosion. In the progression of RA, the inflammatory mediators including ROS, NO, TNF-α, and IL-6 play important roles in the aggravation of inflammation. Hence, reducing the generation and release of inflammatory mediators is of great importance. However, the high dose and frequent administration of clinical anti-inflammatory drugs such as glucocorticoids (GCs) usually lead to severe side effects. The development of nanotechnology provides a promising strategy to overcome these issues. Here, polyphenol-based nanoparticles with inherent anti-oxidative and anti-inflammatory activities were developed and used as a kind of nanocarrier to deliver dexamethasone (Dex). The in vitro experiments confirmed that the nanoparticles and drugs could act synergistically for suppressing inflammatory mediators in the LPS/INF-γ-induced inflammatory cell model. After intravenous administration, the Dex-loaded nanoparticles with good biosafety showed effective accumulation in inflamed joints and improved therapeutic efficacy by inducing anesis of synovial inflammation and cartilage destruction over free Dex in a collagen-induced arthritis (CIA) mouse model. The results demonstrated that polyphenol-based nanoparticles with therapeutic functions may serve as an innovative platform to synergize with chemotherapeutic agents for enhanced treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Zeng Yi
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yaqin Ran
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiangyu Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qiulan Tong
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Lei Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yunfei Tan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiaomin Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xudong Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China.
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
13
|
Rani R, Raina N, Sharma A, Kumar P, Tulli HS, Gupta M. Advancement in nanotechnology for treatment of rheumatoid arthritis: scope and potential applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2287-2310. [PMID: 37166463 DOI: 10.1007/s00210-023-02514-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Rheumatoid arthritis is a hyperactive immune disorder that results in severe inflammation in synovial joints, cartilage, and bone deterioration, resulting in immobilization of joints. Traditional approaches for the treatment of rheumatoid arthritis are associated with some limiting factors such as suboptimal patient compliance, inability to control the progression of disorder, and safety concerns. Therefore, innovative drug delivery carriers for efficient therapeutic delivery at inflamed synovial sites with better safety assessment are urgently needed to address these issues. From this perspective, nanotechnology is an outstanding alternative to traditional drug delivery approaches, and it has shown great promise in developing novel carriers to treat rheumatoid arthritis. Considering the current research and future application of nanocarriers, it is believed that nanocarriers can be a crucial element in rheumatoid arthritis treatment. This paper covers all currently available pathophysiological aspects of rheumatoid arthritis and treatment options. Future research for the reduction of synovial inflammation should focus on developing multifunction nanoparticles capable of delivering therapeutic agents with improved safety, efficacy, and cost-effectiveness to be commercialized.
Collapse
Affiliation(s)
- Radha Rani
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Neha Raina
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Ajay Sharma
- Institute of Nuclear Medicine & Allied Sciences (INMAS-DRDO), Ministry of Defence, Brig. SK Mazumdar Marg, Lucknow Road, Timarpur, Delhi-110054, India
| | - Pramod Kumar
- Institute of Lung Health and Immunity, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Hardeep Singh Tulli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, 133207, India
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.
| |
Collapse
|
14
|
Wang P, Zhang Y, Lei H, Yu J, Zhou Q, Shi X, Zhu Y, Zhang D, Zhang P, Wang K, Dong K, Xing J, Dong Y. Hyaluronic acid-based M1 macrophage targeting and environmental responsive drug releasing nanoparticle for enhanced treatment of rheumatoid arthritis. Carbohydr Polym 2023; 316:121018. [PMID: 37321721 DOI: 10.1016/j.carbpol.2023.121018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/30/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023]
Abstract
Herein, hyaluronic acid (HA) and β-cyclodextrin (β-CD) is used to form targeted drug delivery platform HCPC/DEX NPs with previously prepared carbon dots (CDs) as cross-linker, dexamethasone (DEX) is loaded for rheumatoid arthritis (RA) treatment. The drug loading capacity of β-CD and M1 macrophage targeting of HA were utilized for efficient delivery of DEX to the inflammatory joints. Because of the environmental responsive degradation of HA, DEX can be released in 24 h and inhibit the inflammatory response in M1 macrophages. The drug loading of NPs is 4.79 %. Cellular uptake evaluation confirmed that NPs can specifically target to M1 macrophages via HA ligands, the uptake of M1 macrophages is 3.7 times that of normal macrophages. In vivo experiments revealed that NPs can accumulate in RA joints to alleviate inflammation and accelerate cartilage healing, the accumulation can be observed in 24 h. The cartilage thickness increased to 0.45 mm after HCPC/DEX NPs treatment, indicating its good RA therapeutic effect. Importantly, this study was the first to utilize the potential acid and reactive oxygen species responsiveness of HA to release drug and prepare M1 macrophage targeting nanodrug for RA treatment, which provides a safe and effective RA therapeutic strategy.
Collapse
Affiliation(s)
- Pengchong Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Ying Zhang
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hengyu Lei
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jie Yu
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qinyuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xianpeng Shi
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yaning Zhu
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Dan Zhang
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Peng Zhang
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Ke Wang
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kai Dong
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Jianfeng Xing
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
15
|
Liu Y, Wang Z, Wang Y, Feng Y, Xu M, Ma X, Shi Q, Deng H, Ren F, Chen Y, Chen H. Ca-DEX biomineralization-inducing nuts reverse oxidative stress and bone loss in rheumatoid arthritis. NANOSCALE 2023; 15:13822-13833. [PMID: 37578313 DOI: 10.1039/d3nr01324c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune disease, and the inflammatory response during its development can lead to joint cartilage and bone damage up to disability. Dexamethasone (DEX) can effectively alleviate the inflammatory response in RA, but the severe adverse effects that occur after its long-term administration limit its clinical development. Herein, we propose a Ca-DEX biomineralization-inducing nut (CaCO3-DEX) with controlled release properties for mitigating the toxic side effects of DEX in RA treatment, especially the damage to cartilage and bone. CaCO3-DEX releases the drug and Ca2+ preferentially in an inflammatory environment. Both in vitro and in vivo studies demonstrate that CaCO3-DEX significantly reduces the secretion of pro-inflammatory factors and inhibits ROS production in vitro, as well as demonstrates superior pro-biomineralization and osteogenic differentiation potential. In the collagen-induced rheumatoid arthritis model (CIA model), CaCO3-DEX significantly reduces the clinical score of arthritis in mice, and the imaging results show a noticeable relief of edema and bone erosion in CIA model mice treated with CaCO3-DEX, while inflammatory factors at the injury areas are significantly reduced, which provides favorable protection to cartilage and bone.
Collapse
Affiliation(s)
- Yaqing Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China.
| | - Zongzhang Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China.
| | - Yiru Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China.
| | - Yushuo Feng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China.
| | - Mengjiao Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China.
| | - Xiaoqian Ma
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China.
| | - Qianqian Shi
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China.
| | - Huaping Deng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China.
| | - Fangfang Ren
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China.
| | - Yong Chen
- Department of Stomatology, School of Medicine, Xiamen University, Xiamen, China.
| | - Hongmin Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, China.
| |
Collapse
|
16
|
Zhao L, Ling L, Lu J, Jiang F, Sun J, Zhang Z, Huang Y, Liu X, Zhu Y, Fu X, Peng S, Yuan W, Zhao R, Zhang Z. Reactive oxygen species-responsive mitochondria-targeted liposomal quercetin attenuates retinal ischemia-reperfusion injury via regulating SIRT1/FOXO3A and p38 MAPK signaling pathways. Bioeng Transl Med 2023; 8:e10460. [PMID: 37206232 PMCID: PMC10189480 DOI: 10.1002/btm2.10460] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
Retinal ischemia-reperfusion (RIR) injury is involved in the pathogenesis of various vision-threatening diseases. The overproduction of reactive oxygen species (ROS) is thought to be the main cause of RIR injury. A variety of natural products, including quercetin (Que), exhibit potent antioxidant activity. However, the lack of an efficient delivery system for hydrophobic Que and the presence of various intraocular barriers limit the effective retinal delivery of Que in clinical settings. In this study, we encapsulated Que into ROS-responsive mitochondria-targeted liposomes (abbreviated to Que@TPP-ROS-Lips) to achieve the sustained delivery of Que to the retina. The intracellular uptake, lysosome escape ability, and mitochondria targeting ability of Que@TPP-ROS-Lips were evaluated in R28 retinal cells. Treating R28 cells with Que@TPP-ROS-Lips significantly ameliorated the decrease in ATP content, ROS generation, and increase in the release of lactate dehydrogenase in an in vitro oxygen-glucose deprivation (OGD) model of retinal ischemia. In a rat model, the intravitreal injection of Que@TPP-ROS-Lips 24 h after inducing retinal ischemia significantly enhanced retinal electrophysiological recovery and reduced neuroinflammation, oxidative stress, and apoptosis. Que@TPP-ROS-Lips were taken up by retina for at least 14 days after intravitreal administration. Molecular docking and functional biological experiments revealed that Que targets FOXO3A to inhibit oxidative stress and inflammation. Que@TPP-ROS-Lips also partially inhibited the p38 MAPK signaling pathway, which contributes to oxidative stress and inflammation. In conclusion, our new platform for ROS-responsive and mitochondria-targeted drug release shows promise for the treatment of RIR injury and promotes the clinical application of hydrophobic natural products.
Collapse
Affiliation(s)
- Laien Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Longbing Ling
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Feng Jiang
- Department of OphthalmologyTianjin Medical University General HospitalTianjinPeople's Republic of China
| | - Jianchao Sun
- School of Environment and Material EngineeringYantai UniversityYantaiPeople's Republic of China
| | - Zhen Zhang
- College of Chemistry and Chemical EngineeringYantai UniversityYantaiPeople's Republic of China
| | - Yanmei Huang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Xiaoqian Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Yanjuan Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Xiaoxuan Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Shengjun Peng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Wenze Yuan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Ruikang Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Zhuhong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| |
Collapse
|
17
|
Shen Q, Du Y. A comprehensive review of advanced drug delivery systems for the treatment of rheumatoid arthritis. Int J Pharm 2023; 635:122698. [PMID: 36754181 DOI: 10.1016/j.ijpharm.2023.122698] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/21/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Rheumatoid arthritis (RA), a chronic autoimmune disease, is characterized by articular pain and swelling, synovial hyperplasia, and cartilage and bone destruction. Conventional treatment strategies for RA involve the use of anti-rheumatic drugs, which warrant high-dose, frequent, and long-term administration, resulting in serious adverse effects and poor patient compliance. To overcome these problems and improve clinical efficacy, drug delivery systems (DDS) have been designed for RA treatment. These systems have shown success in animal models of RA. In this review, representative DDS that target RA through passive or active effects on inflammatory cells are discussed and highlighted using examples. In particular, DDS allowing controlled and targeted drug release based on a variety of stimuli, intra-articular DDS, and transdermal DDS for RA treatment are described. Thus, this review provides an improved understanding of these DDS and paves the way for the development of novel DDS for efficient RA treatment.
Collapse
Affiliation(s)
- Qiying Shen
- School of Pharmacy, Hangzhou Normal University, 2318 Yu-HangTang Road, Hangzhou 311121, China; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-HangTang Road, Hangzhou 310058, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-HangTang Road, Hangzhou 310058, China.
| |
Collapse
|
18
|
Macrophage-Targeted Dextran Sulfate-Dexamethasone Conjugate Micelles for Effective Treatment of Rheumatoid Arthritis. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020591. [PMID: 36677648 PMCID: PMC9863669 DOI: 10.3390/molecules28020591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic immune disease that causes joint affection and even disability. Activated macrophages play an important role in the pathogenesis and progression of RA by producing pro-inflammatory factors. The use of dexamethasone (DXM) is effective in relieving the intractable pain and inflammatory progression of RA. However, long-term use of DXM is strongly associated with increased rates of diabetes, osteoporosis, bone fractures, and mortality, which hinders its clinical use. In this study, the dextran sulfate-cisaconitic anhydride-dexamethasone (DXM@DS-cad-DXM) micelles were prepared to treat RA by selectively recognizing scavenger receptor (SR) on the activated macrophages. The potent targeting property of DXM@DS-cad-DXM micelles to SR was by fluorescence microscope. Additionally, the effective accumulation and powerful anti-inflammatory activity of DXM@DS-cad-DXM micelles were observed in the inflamed joints of adjuvant-induced arthritis (AIA) rats after intravenous administration. Overall, DXM@DS-cad-DXM micelles are a potentially effective nanomedicine for targeted therapy of RA.
Collapse
|
19
|
Wang Q, Zhang D, Lu J, Zhang J, Xuan Z, Gong L, Yang M, Jin L, Le J, Zhu A, Liang H, Benjamin Naman C, Zhang J, Zhao L, He S, Wang Q, Liu H, Yan X, Zhao L, Cui W. PLGA-PEG-fucoxanthin nanoparticles protect against ischemic stroke in vivo. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|