1
|
Jiang S, Zhuang D, Liu P, Xu Q, Luo X, Wang T, Zhang C, Yan R. Synthesis of isothiocyanato alkyl sulfides from alkenes using KSCN and DMTSM. Org Biomol Chem 2024; 22:4472-4477. [PMID: 38775306 DOI: 10.1039/d4ob00487f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
A method for the synthesis of isothiocyanato alkyl sulfides from KSCN and DMTSM under metal-free conditions has been developed. The features of this reaction are low-cost, readily accessible starting materials and the use of KSCN as nucleophiles for C-NCS bond formation. Alkenes with various substituted groups react smoothly and the desired products are obtained in moderate to good yields.
Collapse
Affiliation(s)
- Shixuan Jiang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| | - Daijiao Zhuang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| | - Peihua Liu
- Research Institute of Oil and Gas Technology of Changqing Oilfield Company, Xian 710018, Shanxi, China
| | - Qiyang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| | - Xiaofeng Luo
- Chengdu Guibao Science and Technology Co., Ltd, Chengdu 610041, Sichuan, China
| | - Tianqiang Wang
- Chengdu Guibao Science and Technology Co., Ltd, Chengdu 610041, Sichuan, China
| | - Chengcheng Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| | - Rulong Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, China.
| |
Collapse
|
2
|
Ziyaei Halimehjani A, Dağalan Z, Marjani Z, Gündüz F, Daştan A, Nişancı B. Catalyst/Metal/Solvent-Free Markovnikov Hydrothiolation of Unactivated Alkenes with Dithiocarbamic Acids. J Org Chem 2024; 89:5353-5362. [PMID: 38564378 DOI: 10.1021/acs.joc.3c02722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Catalyst-free Markovnikov-selective hydrothiolation of unactivated alkenes still remains a great challenge. Herein, we develop a catalyst/metal/solvent-free methodology for the Markovnikov hydrothiolation of unactivated alkenes with in situ prepared dithiocarbamic acids, providing a wide array of alkyl dithiocarbamates. A variety of terminal, internal, cyclic, and acyclic unactivated alkenes were applied successfully in this protocol. This three-component thiol-ene reaction can be considered as a new family of click reactions.
Collapse
Affiliation(s)
| | - Ziya Dağalan
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum 25240, Turkey
| | - Zahra Marjani
- Faculty of Chemistry, Kharazmi University, 49 Mofateh Street, Tehran 15719-14911, Iran
| | - Figen Gündüz
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum 25240, Turkey
| | - Arif Daştan
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum 25240, Turkey
| | - Bilal Nişancı
- Department of Chemistry, Faculty of Sciences, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
3
|
Yang Z, Liu J, Xie LG. 1,2-Fluorosulfenylation of unactivated alkenes with thiols and a fluoride source promoted by bromodimethylsulfonium bromide. Chem Commun (Camb) 2023; 59:14153-14156. [PMID: 37955272 DOI: 10.1039/d3cc05045a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
A practical method that enables the fluorosulfenylation of unactivated alkenes processed directly with thiols and fluoride salts is presented. Good to excellent efficiencies and functional group tolerance are observed for both alkene substrates and thiols. The procedure also allows the use of gaseous ethylene as a two-carbon building block for β-fluoro thioether products.
Collapse
Affiliation(s)
- Zihui Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Jia Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Lan-Gui Xie
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
4
|
Tang M, Wang Y, Huang S, Xie LG. Synthesis of Aryl Thioalkynes Enabled by Electrophilic Sulfenylation of Alkynes and the Following Elimination. J Org Chem 2023; 88:15466-15472. [PMID: 37861448 DOI: 10.1021/acs.joc.3c01592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
An unexpected deprotonative process of thiirenium ions is presented, which provides a new synthesis of aryl thioalkynes directly from terminal alkynes via the electrophilic activation of the carbon-carbon triple bonds. The conditions are well compatible with various functional-group-substituted aryl alkynes. The direct elimination from the thiirenium ion intermediate, or its tautomer, benzyl vinyl carbocation, is supported by control experiments and labeling reaction.
Collapse
Affiliation(s)
- Meizhong Tang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ye Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lan-Gui Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
5
|
Dong B, Chen Y, Xie S, Zhang J, Shen J, Xie LG. Practical synthesis of unsymmetrical disulfides promoted by bromodimethylsulfonium bromide. Org Biomol Chem 2023; 21:930-934. [PMID: 36625377 DOI: 10.1039/d2ob02124b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Oxidative cross-coupling of two thiols is the most direct tool for the synthesis of unsymmetrical disulfides and highly desirable across academia and industry. However, the inevitable formation of significant amounts of the corresponding symmetrical by-products is a major issue. We herein present a method toward the synthesis of unsymmetrical disulfides in which the homo-coupling of the thiols is effectively inhibited by adding the two thiols sequentially, taking advantage of rapid oxidation of the thiol by bromodimethylsulfonium bromide.
Collapse
Affiliation(s)
- Bo Dong
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Yifeng Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Shubing Xie
- Anhui Changjiang Institute of Metrology, Hefei 230088, China
| | - Jieying Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China. .,Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing 210023, China.
| | - Lan-Gui Xie
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
6
|
Jiang YQ, Wang YH, Zhou CF, Zhang YQ, Ling Y, Zhao Y, Liu GQ. N-Fluorobenzenesulfonimide-Mediated Intermolecular Carboselenenylation of Olefins with Aromatics and Diselenides. J Org Chem 2022; 87:14609-14622. [DOI: 10.1021/acs.joc.2c01989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- You-Qin Jiang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People’s Republic of China
| | - Yong-Hao Wang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People’s Republic of China
| | - Chen-Fan Zhou
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People’s Republic of China
| | - Yun-Qian Zhang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People’s Republic of China
| | - Yong Ling
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People’s Republic of China
| | - Yu Zhao
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People’s Republic of China
| | - Gong-Qing Liu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226019, People’s Republic of China
| |
Collapse
|
7
|
Liang Y, Jiao H, Zhang H, Wang YQ, Zhao X. Chiral Chalcogenide-Catalyzed Enantioselective Electrophilic Hydrothiolation of Alkenes. Org Lett 2022; 24:7210-7215. [PMID: 36154012 DOI: 10.1021/acs.orglett.2c03009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new strategy for the construction of chiral sulfides by catalytic enantioselective hydrothiolation of alkenes via an electrophilic pathway has been developed. Using this strategy, cyclic and acyclic unactivated alkenes efficiently afforded various chiral products in the presence of electrophilic sulfur reagents and silanes through chiral chalcogenide catalysis. The obtained products were easily transformed into other types of valuable chiral sulfur-containing compounds. Mechanistic studies revealed that the superior construction of chiral thiiranium ion intermediate is the key to achieving such a transformation.
Collapse
Affiliation(s)
- Yaoyu Liang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Hui Jiao
- Provincial Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Hang Zhang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - You-Qing Wang
- Provincial Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|
8
|
Tang M, Wei Y, Huang S, Xie LG. Regio- and Stereoselective Synthesis of β-Methylthio Vinyl Triflates. Org Lett 2022; 24:7026-7030. [PMID: 36129306 DOI: 10.1021/acs.orglett.2c02880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vinyl triflates are commonly employed as electrophilic vinyl sources in complex synthesis. The triflation of enolates is commonly required for the preparation of vinyl triflates, generally under strongly basic conditions. Herein, the reaction between alkynes and dimethyl(methylthio)sulfonium trifluoromethanesulfonate is presented, which leads to the development of a facile synthesis of β-methylthio vinyl triflates in a chemo-, regio-, and stereoselective manner under neutral and extremely simple conditions.
Collapse
Affiliation(s)
- Meizhong Tang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yongjiao Wei
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lan-Gui Xie
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
9
|
Wang J, Tang M, Gu W, Huang S, Xie LG. Synthesis of Pyrrole via Formal Cycloaddition of Allyl Ketone and Amine under Metal-Free Conditions. J Org Chem 2022; 87:12482-12490. [PMID: 36053128 DOI: 10.1021/acs.joc.2c01565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A new metal-free synthesis of pyrrole from allyl ketone and amine has been established. The reaction proceeds via an thiolative activation of the C-C double bond with dimethyl(methylthio)sulfonium trifluoromethanesulfonate, followed by a nucleophilic ring-opening addition of primary amine to the generated episulfonium intermediate, and then an internal condensation and aromatization. This mild procedure provides a novel strategy to the construction of substituted pyrroles through a formal [4 + 1] cycloaddition reaction.
Collapse
Affiliation(s)
- Jinli Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Meizhong Tang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Weijin Gu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lan-Gui Xie
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
10
|
Kopf S, Bourriquen F, Li W, Neumann H, Junge K, Beller M. Recent Developments for the Deuterium and Tritium Labeling of Organic Molecules. Chem Rev 2022; 122:6634-6718. [PMID: 35179363 DOI: 10.1021/acs.chemrev.1c00795] [Citation(s) in RCA: 242] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organic compounds labeled with hydrogen isotopes play a crucial role in numerous areas, from materials science to medicinal chemistry. Indeed, while the replacement of hydrogen by deuterium gives rise to improved absorption, distribution, metabolism, and excretion (ADME) properties in drugs and enables the preparation of internal standards for analytical mass spectrometry, the use of tritium-labeled compounds is a key technique all along drug discovery and development in the pharmaceutical industry. For these reasons, the interest in new methodologies for the isotopic enrichment of organic molecules and the extent of their applications are equally rising. In this regard, this Review intends to comprehensively discuss the new developments in this area over the last years (2017-2021). Notably, besides the fundamental hydrogen isotope exchange (HIE) reactions and the use of isotopically labeled analogues of common organic reagents, a plethora of reductive and dehalogenative deuteration techniques and other transformations with isotope incorporation are emerging and are now part of the labeling toolkit.
Collapse
Affiliation(s)
- Sara Kopf
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Wu Li
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Kathrin Junge
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | |
Collapse
|