1
|
Carretero JC, Rodríguez N, Adrio J. Metal catalyzed asymmetric 1,3-dipolar cycloaddition of azomethine ylides: structural diversity at the dipole partner. Chem Commun (Camb) 2025; 61:3821-3831. [PMID: 39945035 DOI: 10.1039/d4cc06484d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The 1,3-dipolar cycloaddition of azomethine ylides represents a versatile approach for synthesizing pyrrolidines, valuable structural motifs in synthetic and medicinal chemistry. However, most studies to date have relied predominantly on α-iminoesters as ylide precursors, thereby limiting the broader synthetic applications of this strategy. This feature article highlights alternative azomethine ylide precursors, beyond conventional α-iminoesters, which have facilitated the preparation of pyrrolidines with new subtitution patterns.
Collapse
Affiliation(s)
- Juan Carlos Carretero
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem) and Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Spain
| | - Nuria Rodríguez
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem) and Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Spain
| | - Javier Adrio
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem) and Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Spain
| |
Collapse
|
2
|
Kumar SV, Olusegun J, Guiry PJ. Zn(II)-catalyzed asymmetric [3 + 2] cycloaddition of acyclic enones with azomethine ylides. Org Biomol Chem 2024; 22:7148-7153. [PMID: 38920098 DOI: 10.1039/d4ob00854e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The Zn(II)/UCD-Imphanol-catalyzed highly endo-selective [3 + 2] asymmetric cycloaddition of acyclic enones and azomethine ylides has been developed. Moderate to high yields (up to 94%) with excellent endo/exo selectivities (99 : 1) and enantioselectivities up to 96.5 : 3.5 er were obtained.
Collapse
Affiliation(s)
- Sundaravel Vivek Kumar
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Jeremiah Olusegun
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Patrick J Guiry
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
3
|
Jin HS, Zhu T. Synthesis of Benzofuran-Fused Oxepines through Cs 2CO 3-Promoted [4 + 3] Annulation of Aurones with Crotonate-Derived Sulfonium Salts. J Org Chem 2024; 89:3271-3278. [PMID: 38332626 DOI: 10.1021/acs.joc.3c02715] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Benzofuran-fused derivatives display important and reliable therapeutic properties. Herein, we describe the synthesis of benzofuran-fused oxepines using aurones and crotonate-derived sulfonium salts via a [4 + 3] annulation reaction in the presence of Cs2CO3. This reaction proceeds under mild and operationally simple conditions. The synthetic utility of this approach was highlighted by several transformations, including the efficient synthesis of a novel tetracyclic fused benzofuran derivative.
Collapse
Affiliation(s)
- Hai-Shan Jin
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Tong Zhu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
4
|
John D, George K, Radhakrishnan EK. A concise update on the synthetic transformation of aurones via asymmetric cycloaddition, annulation, and Michael/Mannich reactions. RSC Adv 2024; 14:6339-6359. [PMID: 38380237 PMCID: PMC10877098 DOI: 10.1039/d3ra08575a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/13/2024] [Indexed: 02/22/2024] Open
Abstract
This review provides a comprehensive overview of the significance of aurone cores in organic chemistry, highlighting their crucial role as synthetic intermediates. With their innate electrophilic reactivity and convenient accessibility, aurone cores play a vital role in catalysing the development of novel methodologies and facilitating the creation of intricate compounds. The objective of this review is to present a current and insightful compilation that summarizes the progress in aurone synthetic transformations, focusing on diverse cycloaddition ([3 + 2], [4 + 2], [4 + 3], [10 + 2]) and annulation reactions.
Collapse
Affiliation(s)
- Deepa John
- Department of Chemistry, Vellore Institute of Technology Vellore India
| | - Kevin George
- Department of Chemistry, Vellore Institute of Technology Vellore India
| | | |
Collapse
|
5
|
Liu Q, Wang F, He ZY, Zhang H, Wang JR, Li QH, Zhang Z, Xu H. Switchable Synthesis of Spirodihydroindolizines and Indolizines from Aurones and Pyridin-2-yl Active Methylene Compounds. J Org Chem 2024; 89:1753-1761. [PMID: 38252457 DOI: 10.1021/acs.joc.3c02459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
A novel and flexible domino reaction of aurones with pyridin-2-yl active methylene compounds promoted by I2/BF3 has been developed to afford spirodihydroindolizines and indolizines in a controllable manner. When the reaction was performed in 1,2-dichloroethane at 80 °C, a variety of spirodihydroindolizines were obtained, whereas it almost exclusively provided a series of indolizines when the reaction was performed in a mixed solvent of 1,2-dichloroethane and N,N-dimethylformamide at a relatively higher temperature of 100 °C. Being metal-free, excellent product selectivity, high atom economy, good functional group tolerance, and feasibility for large-scale synthesis are the salient features of the developed methodology.
Collapse
Affiliation(s)
- Quan Liu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Feng Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Zeng-Yang He
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
- Technology Center, China Tobacco Anhui Industrial Co., Ltd., Hefei 230088, P. R. China
| | - Hui Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Jia-Rong Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Qing-Hai Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Ze Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Hui Xu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| |
Collapse
|
6
|
Du SS, Zhai YH, Zhang C, Wang MC, Jia SK, Mei GJ, Hua YZ. Dinuclear Zinc-Catalyzed Asymmetric Desymmetrization of Cyclopentendiones: Access to Functional Cyclopentanediones Bearing an All-carbon Quaternary Stereocenter. Chem Asian J 2023; 18:e202300591. [PMID: 37524655 DOI: 10.1002/asia.202300591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
The success in the identification of the two enantioisomeric surfaces of electrophiles by dinuclear zinc catalysts is disclosed. This protocol realizes a dinuclear zinc-cocatalyzed desymmetrization of cyclopentendiones using α-hydroxy aryl ketones as nucleophiles through Michael addition reaction. Under mild conditions, a series of functional cyclopentanediones bearing multiple stereogenic centers including an all-carbon quaternary stereocenter, were obtained in moderate to good yields with excellent stereoselectivities.
Collapse
Affiliation(s)
- Si-Si Du
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City Henan Province, 450000, P. R. China
| | - Ying-Hui Zhai
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City Henan Province, 450000, P. R. China
| | - Cui Zhang
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City Henan Province, 450000, P. R. China
| | - Min-Can Wang
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City Henan Province, 450000, P. R. China
| | - Shi-Kun Jia
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City Henan Province, 450000, P. R. China
| | - Guang-Jian Mei
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City Henan Province, 450000, P. R. China
| | - Yuan-Zhao Hua
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City Henan Province, 450000, P. R. China
| |
Collapse
|
7
|
Borah B, Veeranagaiah NS, Sharma S, Patat M, Prasad MS, Pallepogu R, Chowhan LR. Stereoselective synthesis of CF 3-containing spirocyclic-oxindoles using N-2,2,2-trifluoroethylisatin ketimines: an update. RSC Adv 2023; 13:7063-7075. [PMID: 36875873 PMCID: PMC9977426 DOI: 10.1039/d3ra00017f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
The introduction of fluorine-containing groups into organic molecules either changes or improves the characteristics of the target compounds. On the other hand, spirocyclic-oxindoles featuring C-3 functionalized sp3-hybridized carbon atoms of three-dimensional orthogonally shaped molecules were well recognized in the core structure of varied natural products and synthetic pharmaceutical targets. Consequently, the construction of spirooxindoles by an elegant synthetic approach with efficient stereocontrol has received tremendous interest over the past decades. In this context of the synergic combination of the features associated with fluorine-containing compounds and the synthetic and medicinal efficiency associated with spirooxindoles, the stereodivergent installation of CF3 groups embedded with spirooxindoles is of increasing academic and scientific interest. This mini-review article is dedicated to demonstrating a critical overview of the recent stereoselective synthesis of spirocyclic-oxindoles featuring trifluoromethyl groups by employing the reactivity of N-2,2,2-trifluoroethylisatin ketimines as an efficient and easily prepared synthon, and covers the literature reports from 2020 to date. Besides exploring the advancements accomplished in this area, we also investigate the limitations associated with reaction discovery, mechanistic rationalization, and future applications.
Collapse
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| | - Naveena S Veeranagaiah
- Department of Chemistry, Central University of Karnataka, Kalaburagi Karnataka-585367 India
| | - Samrita Sharma
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| | - Mihir Patat
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| | - Madavi S Prasad
- Department of Chemistry, Asymmetric Synthesis and Catalysis Laboratory, Central University of Tamil Nadu (CUTN) Tiruvarur 610 005 India
| | - Raghavaiah Pallepogu
- Department of Chemistry, Central University of Karnataka, Kalaburagi Karnataka-585367 India
| | - L Raju Chowhan
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| |
Collapse
|
8
|
Liu Q, Yoshikawa I, Kudo K. Synthesis of 2-trifluoromethylated 3-pyrrolines/pyrrolidines via [3+2] cycloaddition of azomethine ylides with the participation of 3,3,3-trifluoroalanine. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.110061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
9
|
Lin H, Gu J, Luo S, Gu Q, Cao X, Ge Y, Wang C, Yuan C, Wang H. DBU‐Catalyzed [3+2] Cycloaddition of Benzoaurones with 3‐Homoacyl Coumarins: Synthesis of Spiro[Benzofuranone‐Cyclopentane] Compounds. ChemistrySelect 2022. [DOI: 10.1002/slct.202201599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huawei Lin
- School of Chemistry and Pharmaceutical Engineering Shandong First Medical University & Shandong Academy of Medical Sciences Taian 271016 Shandong P. R. China
| | - Jing Gu
- School of Chemistry and Pharmaceutical Engineering Shandong First Medical University & Shandong Academy of Medical Sciences Taian 271016 Shandong P. R. China
| | - Shan Luo
- School of Chemistry and Pharmaceutical Engineering Shandong First Medical University & Shandong Academy of Medical Sciences Taian 271016 Shandong P. R. China
| | - Qilong Gu
- School of Chemistry and Pharmaceutical Engineering Shandong First Medical University & Shandong Academy of Medical Sciences Taian 271016 Shandong P. R. China
| | - Xiaoqun Cao
- School of Chemistry and Pharmaceutical Engineering Shandong First Medical University & Shandong Academy of Medical Sciences Taian 271016 Shandong P. R. China
| | - Yanqing Ge
- School of Chemistry and Pharmaceutical Engineering Shandong First Medical University & Shandong Academy of Medical Sciences Taian 271016 Shandong P. R. China
| | - Chang Wang
- School of Pharmaceutical Sciences Shandong First Medical University & Shandong Academy of Medical Sciences Taian 271016 Shandong P. R. China
- Medical Science and Technology Innovation Center Shandong First Medical University & Shandong Academy of Medical Sciences Jinan 250117 Shandong P. R. China
| | - Chunhao Yuan
- School of Chemistry and Pharmaceutical Engineering Shandong First Medical University & Shandong Academy of Medical Sciences Taian 271016 Shandong P. R. China
| | - Hai Wang
- School of Chemistry and Pharmaceutical Engineering Shandong First Medical University & Shandong Academy of Medical Sciences Taian 271016 Shandong P. R. China
| |
Collapse
|
10
|
Wang ZH, Liu JH, Zhang YP, Zhao JQ, You Y, Zhou MQ, Han WY, Yuan WC. Cu-Catalyzed Asymmetric 1,3-Dipolar Cycloaddition of N-2,2,2-Trifluoroethylisatin Ketimines Enables the Desymmetrization of N-Arylmaleimides: Access to Enantioenriched F 3C-Containing Octahydropyrrolo[3,4- c]pyrroles. Org Lett 2022; 24:4052-4057. [PMID: 35622347 DOI: 10.1021/acs.orglett.2c01510] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
With a Cu(OTf)2/chiral ferrocenyl P,N-ligand complex as a catalyst, the enantioselective desymmetrization of N-arylmaleimides was successfully realized by taking advantage of the asymmetric 1,3-dipolar cycloaddition reaction of N-2,2,2-trifluoroethylisatin ketimines. A series of structurally diverse F3C-containing octahydropyrrolo[3,4-c]pyrroles, bearing four contiguous carbon stereocenters and one stereogenic chiral C-N axial bond, were obtained with excellent results (≤99% yield, >20:1 dr, and 99% ee).
Collapse
Affiliation(s)
- Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ji-Hong Liu
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wen-Yong Han
- School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
11
|
Chen SH, Miao YH, Mei GJ, Hua YZ, Jia SK, Wang MC. Dinuclear zinc catalyzed asymmetric [3 + 2] spiroannulation for the synthesis of diverse bispirocyclic saccharines. Org Chem Front 2022. [DOI: 10.1039/d2qo01039a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly atom-economical and novel enantioselective [3 + 2] spiroannulation reaction of saccharine-derived cyclic 1-azadienes with α-hydroxy-1-indanones has been developed.
Collapse
Affiliation(s)
- Shuang-Hu Chen
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, China
| | - Yu-Hang Miao
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, China
| | - Guang-Jian Mei
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, China
| | - Yuan-Zhao Hua
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, China
| | - Shi-Kun Jia
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, China
| | - Min-Can Wang
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
12
|
Zhou P, Yi Y, Hua YZ, Jia SK, Wang MC. Dinuclear Zinc Catalyzed Enantioselective Dearomatization [3+2] Annulation of 2-Nitrobenzofurans and 2-Nitrobenzothiophenes. Chemistry 2021; 28:e202103688. [PMID: 34713514 DOI: 10.1002/chem.202103688] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Indexed: 12/18/2022]
Abstract
The application of dinuclear zinc catalysts in a dearomatization reaction has been developed. Catalytic asymmetric dearomatization [3+2] annulations of 2-nitrobenzofurans or 2-nitrobenzothiophenes with CF3 -containing N-unprotected isatin-derived azomethine ylides catalyzed by dinuclear zinc catalysts are realized with excellent diastereomer ratios (dr) of >20 : 1 and enantiomeric excess (ee) of up to 99 %. This protocol provides a practical, straightforward access to structurally diverse pyrrolidinyl spirooxindoles containing a 2,3-fused-dihydrobenzofuran (or dihydrobenzothiphene) moiety, and four contiguous stereocenters. Reactions can be performed on a gram scale. The absolute configuration of products is confirmed by X-ray single crystal structure analysis, and a possible mechanism is proposed.
Collapse
Affiliation(s)
- Peng Zhou
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City, Henan province 450000, P. R. China
| | - Yang Yi
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City, Henan province 450000, P. R. China
| | - Yuan-Zhao Hua
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City, Henan province 450000, P. R. China
| | - Shi-Kun Jia
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City, Henan province 450000, P. R. China
| | - Min-Can Wang
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City, Henan province 450000, P. R. China
| |
Collapse
|
13
|
Yang WP, Jia SK, Liu TT, Hua YZ, Wang MC. Dinuclear zinc-catalyzed asymmetric [3 + 2] cyclization reaction for direct assembly of chiral α-amino-γ-butyrolactones bearing three stereocenters. Org Chem Front 2021. [DOI: 10.1039/d1qo01338f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A highly atom-economic and novel enantioselective [3 + 2] cyclization reaction for the construction of optical α-amino-γ-butyrolactones possessing three stereocenters.
Collapse
Affiliation(s)
- Wen-Peng Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shi-Kun Jia
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Tian-Tian Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yuan-Zhao Hua
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Min-Can Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|