1
|
Vakili S, Mohamadnia Z, Ahmadi E. Self-Healing, Electrically Conductive, Antibacterial, and Adhesive Eutectogel Containing Polymerizable Deep Eutectic Solvent for Human Motion Sensing and Wound Healing. Biomacromolecules 2024; 25:7704-7722. [PMID: 39541135 DOI: 10.1021/acs.biomac.4c00960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Flexible electronic devices such as wearable sensors are essential to advance human-machine interactions. Conductive eutectogels are promising for wearable sensors, despite their challenges in self-healing and adhesion properties. This study introduces a multifunctional eutectogel based on a novel polymerizable deep eutectic solvent (PDES) prepared by the incorporation of diallyldimethylammonium chloride (DADMAC) and glycerol in the presence of polycyclodextrin (PCD)/dopamine-grafted gelatin (Gel-DOP)/oxidized sodium alginate (OSA). The synthesized eutectogel has reversible Schiff-base bonds, hydrogen bonds, and host-guest interactions, which enable rapid self-healing upon network disruption. GPDO-15 eutectogel has significant tissue adhesion, high stretchability (419%), good ionic conductivity (0.79 mS·cm-1), and favorable antibacterial and self-healing properties. These eutectogels achieve 90% antibacterial effect, show excellent biocompatibility, and can be used as sensors to monitor human activities with strong stability and durability. The in vivo studies indicate that the eutectogels can improve the wound healing process which makes them an effective option for biological dressings.
Collapse
Affiliation(s)
- Shaghayegh Vakili
- Department of Chemistry, Faculty of Science, University of Zanjan, P.O. Box, 45195-313 Zanjan, Iran
| | - Zahra Mohamadnia
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, 45137-66731 Zanjan, Iran
| | - Ebrahim Ahmadi
- Department of Chemistry, Faculty of Science, University of Zanjan, P.O. Box, 45195-313 Zanjan, Iran
| |
Collapse
|
2
|
Sadeghi M, Habibi Y, Bohlool T, Mohamadnia Z, Nikfarjam N, Norouzi M. Fabrication of a self-healing hydrogel with antibacterial activity using host-guest interactions between dopamine-modified alginate and β-cyclodextrin dimer. Int J Biol Macromol 2024; 273:132827. [PMID: 38834128 DOI: 10.1016/j.ijbiomac.2024.132827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Self-healing hydrogels possess an ability to recover their functionality after experiencing damage by regenerating cross-links. The main challenge in making self-healing hydrogels based on host-guest (HG) interactions is their limited mechanical strength, which can be solved using beta-cyclodextrin dimers (β-CDsD). Here, β-CDsD as a host cross-linker was used to increase the mechanical property of the HG interactions. Alginate with acceptable biocompatibility was modified by dopamine (ALG-DOP) and employed as a guest polymer. Self-healing hydrogel was developed between them, and Ag nanoparticles were added to create an antibacterial activity. Dopamine with appropriate size and suitable adhesiveness established HG interactions with β-CDsD, and cells were able to grow well on hydrogel. This hydrogel showed an impressive self-healing capability <5 min. These hydrogels revealed a respectable porosity from 15 to 55 μm essential for exchanging the substances required for cell growth and cell waste elimination. Biocompatibility was investigated against NIH 3 T3 fibroblasts cells, and the results showed that the cells grew well. The in vitro release of curcumin from the hydrogel was examined in PBS at pH of 7.4. The hydrogel can be a perfect candidate for controlled drug release, and wound-dressing due to self-healing property, antibacterial activity, adhesion, and biocompatibility.
Collapse
Affiliation(s)
- Moslem Sadeghi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan, 45137-66731, Iran
| | - Younes Habibi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan, 45137-66731, Iran
| | - Tohid Bohlool
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan, 45137-66731, Iran
| | - Zahra Mohamadnia
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan, 45137-66731, Iran.
| | - Nasser Nikfarjam
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan, 45137-66731, Iran; Department of Chemical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, United States.
| | - Mastaneh Norouzi
- Department of Chemistry, Faculty of Science, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| |
Collapse
|
3
|
Sadighian H, Mohamadnia Z, Ahmadi E. Nanomagnetic Cyclodextrin decorated with ionic liquid as green and reversible Demulsifier for breaking of crude oil emulsions. Carbohydr Polym 2024; 327:121697. [PMID: 38171665 DOI: 10.1016/j.carbpol.2023.121697] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
Application of the chemical demulsifiers is the best choice for breaking the water in crude oil (W/O) emulsions in the petroleum industry. Here, novel, environmentally friendly, efficient, and easily reusable Fe3O4 nanomagnetic compounds based on imidazolium-decorated cyclodextrin were successfully synthesized and applied to demulsify the water in crude oil (W/O) emulsions. At first, Fe3O4 nanoparticles were decorated with β-cyclodextrin (β-CD) to prepare Fe3O4@β-CD@IL magnetic nanoparticles. Then, imidazole (Im) was separately reacted with 1-bromohexane and 1-bromodecane to prepare [Im-C6][Br] and [Im-C10][Br] ionic liquids, respectively. The prepared imidazolium-based ionic liquids were reacted with N-propyltriethoxysilane to synthesize [ImSi-C6][Br] and [ImSi-C10][Br]. Finally, [ImSi-Cn][Br] was immobilized on Fe3O4@β-CD to obtain nanomagnetic demulsifiers. Structure of the synthesized compounds was confirmed using different methods such as FT-IR, NMR, and elemental analysis. TGA, VSM, and FESEM methods were used to investigate the thermal stability, magnetic properties, and the morphology, respectively. Fe3O4@βCD and Fe3O4@βCD@[ImSi-C10][Br] nanoparticles respectively showed the particle size in the range of 40-70 nm and 50-80 nm. After grafting the imidazolium-based ionic liquid on the surface of support, the magnetization number reduced from 25.6 emu/g for Fe3O4@β-CD to 24.9 emu/g for Fe3O4@β-CD@[ImSi-C10][Br]. Synthesized material employed to break the (10:90 and 30:70 Vol%) W/O emulsions at the concentration range of 1000-5000 ppm. The maximum demulsification efficiency (DE%) of 92 % was obtained using a Fe3O4@β-CD@[ImSi-C10][Br] at 5000 ppm for (30:70 Vol%) W/O emulsion within 24 h. Interfacial tension (IFT) values decreased with increasing the DE%. The Fe3O4@βCD@[ImSi-C10][Br] demulsifier was reused five times with acceptable yields. The cooperation of imidazolium and β-CD in the green nanomagnetic demulsifiers led to the efficient demulsification of the W/O emulsions. The preparation of different ionic liquids or changing the counter anions are our potential future directions for this research. Demulsification at high demulsifier concentration can be considered a limitation of the nanomagnetic cyclodextrin decorated with ionic liquid. But due to the low amount of ionic liquid immobilized in the synthesized demulsifier, the cost of the final demulsifier is lower that other demulsifiers with full ionic liquid backbones, which increases its potential for industrial applications.
Collapse
Affiliation(s)
- Hamed Sadighian
- Department of Chemistry, Faculty of Science, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| | - Zahra Mohamadnia
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran.
| | - Ebrahim Ahmadi
- Department of Chemistry, Faculty of Science, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| |
Collapse
|
4
|
Hu Y, Zeng Q, Hu Y, He J, Wang H, Deng C, Li D. MXene/zinc ion embedded agar/sodium alginate hydrogel for rapid and efficient sterilization with photothermal and chemical synergetic therapy. Talanta 2024; 266:125101. [PMID: 37651907 DOI: 10.1016/j.talanta.2023.125101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/02/2023]
Abstract
Bacterial infections can significantly impair wound healing. Therefore, it is essential to develop wound dressings with high antimicrobial activity. Hydrogels are often used as wound dressings due to their excellent physicochemical properties. Herein, by cross linking sodium alginate (SA), agar (AG) with Ti3C2Tx MXene and Zinc ions (Zn2+), a biosafe composite hydrogel (MSG-Zn2+) was developed for fast and efficient sterilization treatment. The excellent photothermal properties of Ti3C2Tx MXene and the chemical antimicrobial activity of Zn2+ enable synergistic photothermal therapy (PTT)/chemical therapy in NIR biowindow with reduced power density and improved antimicrobial efficiency. More importantly, the incorporation of Zn2+ can enhance the effective contact between the hydrogel and bacteria, benefiting both photothermal and chemical antibacteria. In vitro antibacterial experiments showed that MSG-Zn2+ has a broad-spectrum antibacterial effect against Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli). Cellular experiments showed that the hydrogel had excellent biocompatibility and the released Zn2+ stimulated cell migration. In addition, the prepared MSG-Zn2+ hydrogel has other advantages such as hydrophilic, high swelling, simple and low cost preparation, which meets the requirements of an economical wound dressing. This proposed work shows that this composite hydrogel MSG-Zn2+ has great potential for practical antimicrobial wound dressing applications.
Collapse
Affiliation(s)
- Yuwei Hu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Qin Zeng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Yifan Hu
- College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, PR China
| | - Jinyun He
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Heye Wang
- Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210000, PR China
| | - Chunyan Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| | - Dai Li
- Phase I Clinical Trial Center, Xiangya Hospital, Central South University, Changsha, 410008, PR China.
| |
Collapse
|
5
|
Alipour S, Pourjavadi A, Hosseini SH. Magnetite embedded κ-carrageenan-based double network nanocomposite hydrogel with two-way shape memory properties for flexible electronics and magnetic actuators. Carbohydr Polym 2023; 310:120610. [PMID: 36925232 DOI: 10.1016/j.carbpol.2023.120610] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Shape memory hydrogels attract increasing attention as flexible strain sensors due to their shape recovery property that can improve the lifetime of the sensor. Herein, we have designed a magnetic shape memory hydrogel based on Fe3O4 nanoparticles, carrageenan, and poly (acrylamide-co-acrylic acid) with self-adhesive and conductive properties. The resulting double network hydrogel showed promising actuator and strain sensor applications. Electrical conductivity was observed in this hydrogel without using additional ions. The presence of magnetite nanoparticles increased the tensile strength and temporary shape fixity ratio to around 6.5 MPa and 94.3 %, respectively. The excellent cantilever and catheter-like behavior of the hydrogels were illustrated through magnetic routing by an external magnet. Also, these hydrogels demonstrated suitable performance in the 500 cycles strain sensing tests before and after their initial shape recovery.
Collapse
Affiliation(s)
- Sakineh Alipour
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Ali Pourjavadi
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran.
| | - Seyed Hassan Hosseini
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran
| |
Collapse
|
6
|
Xiao S, Zhao Y, Jin S, He Z, Duan G, Gu H, Xu H, Cao X, Ma C, Wu J. Regenerable bacterial killing–releasing ultrathin smart hydrogel surfaces modified with zwitterionic polymer brushes. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Building long-lasting antimicrobial and clean surfaces is one of the most effective strategies to inhibit bacterial infection, but obtaining an ideal smart surface with highly efficient, controllable, and regenerative properties still encounters many challenges. Herein, we fabricate an ultrathin brush–hydrogel hybrid coating (PSBMA-P(HEAA-co-METAC)) by integrating antifouling polyzwitterionic (PSBMA) brushes and antimicrobial polycationic (P(HEAA-co-METAC)) hydrogels. The smart bacterial killing–releasing properties can be achieved independently by the opposite volume and conformation changes between the swelling (shrinking) of P(HEAA-co-METAC) hydrogel layer and the shrinking (swelling) of PSBMA brushes. The friction test reveals that both METAC and SBMA components support great lubrication. By tuning the initial organosilane (BrTMOS:KH570) ratios, the prepared PSBMA-P(HEAA-co-METAC) coating exhibits different antibacterial abilities from single “capturing–killing” to versatile “capturing–killing–releasing.” Most importantly, 99% of the bacterial-releasing rate can be easily achieved via 0.5 M NaCl treatment. This smart surface not only possesses long-lasting antibacterial performance, only ∼1.09 × 105 cell·cm−2 bacterial residue even after 72 h exposure to bacteria solutions, but also can be regenerated and triggered between water and salt solution multiple times. This work provides a new way to fabricate antibacterial smart hydrogel coatings with bacterial “killing–releasing” functions and shows great potential for biomedical applications.
Collapse
Affiliation(s)
- Shengwei Xiao
- Department of Chemistry, Zhejiang University , Hangzhou 310027 , China
- School of Pharmaceutical and Materials Engineering, Taizhou University , Taizhou 318000 , Zhejiang , China
| | - Yuyu Zhao
- School of Pharmaceutical and Materials Engineering, Taizhou University , Taizhou 318000 , Zhejiang , China
| | - Shuqi Jin
- School of Pharmaceutical and Materials Engineering, Taizhou University , Taizhou 318000 , Zhejiang , China
| | - Zhicai He
- School of Pharmaceutical and Materials Engineering, Taizhou University , Taizhou 318000 , Zhejiang , China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University , Nanjing , 210037 , China
| | - Haining Gu
- Zhejiang Benli Technology Co., LTD , Taizhou 318000 , Zhejiang , China
| | - Hongshun Xu
- Zhejiang Benli Technology Co., LTD , Taizhou 318000 , Zhejiang , China
| | - Xingyu Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
| | - Chunxin Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
| | - Jun Wu
- Department of Chemistry, Zhejiang University , Hangzhou 310027 , China
| |
Collapse
|
7
|
Ahmadian Z, Gheybi H, Adeli M. Efficient wound healing by antibacterial property: Advances and trends of hydrogels, hydrogel-metal NP composites and photothermal therapy platforms. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Xu J, Abetz V. Synthesis of a Degradable Hydrogel Based on a Graft Copolymer with Unexpected Thermoresponsiveness. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jingcong Xu
- Institute of Physical Chemistry Universität Hamburg Grindelallee 117 Hamburg 20146 Germany
| | - Volker Abetz
- Institute of Physical Chemistry Universität Hamburg Grindelallee 117 Hamburg 20146 Germany
- Institute of Membrane Research Helmholtz‐Zentrum Hereon Max‐Planck‐Straße 1 Geesthacht 21502 Germany
| |
Collapse
|