1
|
Miao T, Cheng X, Zhang G, Wang Y, He Z, Wang Z, Zhang W. Self-recovery of chiral microphase separation in an achiral diblock copolymer system. Chem Sci 2023; 14:1673-1678. [PMID: 36819871 PMCID: PMC9930918 DOI: 10.1039/d2sc05975d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/09/2023] [Indexed: 01/11/2023] Open
Abstract
Macroscopic regulation of chiral supramolecular nanostructures in liquid-crystalline block copolymers is of great significance in photonics and nanotechnology. Although fabricating helical phase structures via chiral doping and microphase separation has been widely reported, the chiral memory and self-recovery capacity of asymmetric phase structures are the major challenge and still deeply rely on the presence of chiral additives. Herein, we demonstrate the first controllable chiral microphase separation in an achiral amphiphilic block copolymer consisting of poly(ethylene oxide) and azobenzene (Azo) groups. Chirality can be transferred to the fabricated helical nanostructures by doping with chiral additives (tartaric acid, TA). After the removal of the chiral additives and then performing cross-linking, the formed helical nanostructures will completely dispense with the chiral source. The supramolecular chirality and the micron-scale phase structure can be maintained under UV irradiation and heating-cooling treatment, enabling a reversible "on-off" chiroptical switch feature. This work is expected to avoid the tedious synthesis and expensive raw materials and shows a great application prospect in chiral separation and so on.
Collapse
Affiliation(s)
- Tengfei Miao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 Jiangsu China .,Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huaian 223300 Jiangsu China
| | - Xiaoxiao Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 Jiangsu China
| | - Gong Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 Jiangsu China
| | - Yuqing Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 Jiangsu China
| | - Zixiang He
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 Jiangsu China
| | - Zhao Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 Jiangsu China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 Jiangsu China .,School of Chemical and Environmental Engineering, Anhui Polytechnic University Wuhu 241000 P. R. China
| |
Collapse
|
2
|
Zhang Y, Yu W, Li H, Zheng W, Cheng Y. Induced CPL-Active Materials Based on Chiral Supramolecular Co-Assemblies. Chemistry 2023; 29:e202204039. [PMID: 36691189 DOI: 10.1002/chem.202204039] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/25/2023]
Abstract
Circularly polarized luminescence (CPL) has attracted much interest due to its potential applications on chiral photonic techniques and optoelectronic materials science. As known, dissymmetry factor (gem ) of CPL is one essential factor for evaluating the features of CPL-active materials. Much attention has focused on how to increase the gem value, which is one of the most important issues for CPL practical applications. Recently, more and more works have demonstrated that chiral supramolecular could provide the significant strategy to improve the gem value through the orderly helical superstructure of chiral building blocks. Normally, this kind of chiral supramolecular assembly process can be accompanied by chirality transfer and induction mechanism, which can promote the amplification effect on the induced CPL of achiral dyes. In this review, we fully summarized recent advances on the induced CPL-active materials of chiral supramolecular co-assemblies, their applications in circularly polarized organic light-emitting diodes (CP-OLEDs) and current challenges.
Collapse
Affiliation(s)
- Yuxia Zhang
- Nanjing University, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing, 210023, P. R. China.,Nanjing University of Posts and Telecommunications, Key Laboratory for Organic Electronics &, Information Displays (KLOEID) and, Institute of Advanced Materials, National Synergistic Innovation Center for, Advanced Materials (SICAM), Nanjing, 210023, P. R. China
| | - Wenting Yu
- Nanjing University, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing, 210023, P. R. China
| | - Hang Li
- Nanjing University, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing, 210023, P. R. China
| | - Wenhua Zheng
- Nanjing University, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing, 210023, P. R. China
| | - Yixiang Cheng
- Nanjing University, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing, 210023, P. R. China
| |
Collapse
|
3
|
Hu X, Li J, Zhang H, Yu Q, Wang Y, Li X, Long L, Jiang W, Wang Z. Discovery of dual inhibitors of topoisomerase I and Cyclooxygenase-2 for colon cancer therapy. Eur J Med Chem 2022; 240:114560. [DOI: 10.1016/j.ejmech.2022.114560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
|
4
|
He E, Tu K, Cheng J, Wang Y, Lu H, Zhang L, Cheng Z. Synthesis and Phase Behavior of (Semifluorinated Alkane)‐based Side‐Chain Liquid Crystalline Copolymers. Macromol Rapid Commun 2022; 43:e2200266. [DOI: 10.1002/marc.202200266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/16/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Enjie He
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Kai Tu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Jiannan Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Yuxue Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Huanjun Lu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application School of Physical Science and Technology Suzhou University of Science and Technology Suzhou 215009 China
| | - Lifen Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Zhenping Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| |
Collapse
|