1
|
Berlin CB, Roenfanz HF, Salwen M, Nehete S, Kozlowski MC. Total Syntheses of Clausenawallines A and E. Org Lett 2024; 26:5243-5247. [PMID: 38869077 PMCID: PMC11934963 DOI: 10.1021/acs.orglett.4c01352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The first total syntheses of glycoborinine, clausenawalline A, and clausenawalline E were achieved. The key step employed a vanadium-catalyzed oxidative coupling of two hydroxycarbazole monomers. High-throughput experimentation was used to identify conditions favoring selective heterocoupling of these monomers that possess similar redox potentials. A combination of a vanadium catalyst and 4-acetamido-TEMPO gives rise to greatly enhanced cross selectivity relative to the vanadium catalyst alone. Conditions to selectively form homodimer clausenawalline A or heterodimer clausenawalline E as the major product were found.
Collapse
Affiliation(s)
| | | | | | | | - Marisa C. Kozlowski
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
2
|
Carson MC, Kozlowski MC. Recent advances in oxidative phenol coupling for the total synthesis of natural products. Nat Prod Rep 2024; 41:208-227. [PMID: 37294301 PMCID: PMC10709532 DOI: 10.1039/d3np00009e] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Covering: 2008 to 2023This review will describe oxidative phenol coupling as applied in the total synthesis of natural products. This review covers catalytic and electrochemical methods with a brief comparison to stoichiometric and enzymatic systems assessing their practicality, atom economy, and other measures. Natural products forged by C-C and C-O oxidative phenol couplings as well as from alkenyl phenol couplings will be addressed. Additionally, exploration into catalytic oxidative coupling of phenols and other related species (carbazoles, indoles, aryl ethers, etc.) will be surveyed. Future directions of this particular area of research will also be assessed.
Collapse
Affiliation(s)
- Matthew C Carson
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.
| | - Marisa C Kozlowski
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.
| |
Collapse
|
3
|
Khalid MI, Salem MSH, Takizawa S. Synthesis and Structural and Optical Behavior of Dehydrohelicene-Containing Polycyclic Compounds. Molecules 2024; 29:296. [PMID: 38257209 PMCID: PMC10819569 DOI: 10.3390/molecules29020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Dehydrohelicene-based molecules stand out as highly promising scaffolds and captivating chiroptical materials, characterized by their unique chirality. Their quasi-helical π-conjugated molecular architecture, featuring successively ortho-annulated aromatic rings, endows them with remarkable thermal stability and optical properties. Over the past decade, diverse approaches have emerged for synthesizing these scaffolds, reinvigorating this field, with anticipated increased attention in the coming years. This review provides a comprehensive overview of the historical evolution of dehydrohelicene chemistry since the pioneering work of Zander and Franke in 1969 and highlights recent advancements in the synthesis of various molecules incorporating dehydrohelicene motifs. We elucidate the intriguing structural features and optical merits of these molecules, occasionally drawing comparisons with their helicene or circulene analogs to underscore the significance of the bond between the helical termini.
Collapse
Affiliation(s)
- Md. Imrul Khalid
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi 567-0047, Osaka, Japan; (M.I.K.); (M.S.H.S.)
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Mohamed S. H. Salem
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi 567-0047, Osaka, Japan; (M.I.K.); (M.S.H.S.)
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Shinobu Takizawa
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi 567-0047, Osaka, Japan; (M.I.K.); (M.S.H.S.)
| |
Collapse
|
4
|
Kee Cheng J, Tan B. Chiral Phosphoric Acid-Catalyzed Enantioselective Synthesis of Axially Chiral Compounds Involving Indole Derivatives. CHEM REC 2023; 23:e202300147. [PMID: 37358342 DOI: 10.1002/tcr.202300147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/02/2023] [Indexed: 06/27/2023]
Abstract
Indoles are one of the most ubiquitous subclass of N-heterocycles and are increasingly incorporated to design new axially chiral scaffolds. The rich profile of reactivity and N-H functionality allow chemical derivatization for enhanced medicinal, material and catalytic properties. Although asymmetric C-C coupling of two arenes gives the most direct access of axially chiral biaryl scaffolds, this chemistry has been the remit of metal catalysis and works efficiently on limited substrates. Our group has devoted special interest in devising novel organocatalytic arylation reactions to fabricate biaryl atropisomers. In this realm, indoles and derivatives have been reliably used as the arylation partners in combination with azoarenes, nitrosonapthalenes and quinone derivatives. Their efficient interaction with chiral phosphoric acid catalyst as well as the tunability of electronics and sterics have enabled excellent control of stereo-, chemo- and regioselectivity to furnish diverse scaffolds. In addition, indoles could act as nucleophiles in desymmetrization of 1,2,4-triazole-3,5-diones. This account provides a succinct illustration of these developments.
Collapse
Affiliation(s)
- Jun Kee Cheng
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bin Tan
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
5
|
Kasama K, Koike Y, Dai H, Yakura T. Bismuth(III)-Catalyzed Oxidative Cross-Coupling of 3-Hydroxycarbazoles with Arenols under an Oxygen Atmosphere. Org Lett 2023; 25:6501-6505. [PMID: 37638653 DOI: 10.1021/acs.orglett.3c02211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
A Bi(OTf)3-catalyzed oxidative cross-coupling reaction of 3-hydroxycarbazoles with arenols was developed under mild conditions. Both substrates were used in a 1:1 molar ratio in the presence of a catalytic amount of Bi(OTf)3. The reaction was carried out under an oxygen atmosphere at 30 °C to afford C1-symmetric hydroxybiaryls in good yields (up to 94%) with high chemo- and regioselectivity.
Collapse
Affiliation(s)
- Kengo Kasama
- Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Yuta Koike
- Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Haoyang Dai
- Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| | - Takayuki Yakura
- Faculty of Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
6
|
Xu X, Wang H, Tan CH, Ye X. Applications of Vanadium, Niobium, and Tantalum Complexes in Organic and Inorganic Synthesis. ACS ORGANIC & INORGANIC AU 2022; 3:74-91. [PMID: 37035284 PMCID: PMC10080730 DOI: 10.1021/acsorginorgau.2c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022]
Abstract
Organometallic catalysis is a powerful strategy in chemical synthesis, especially with the cheap and low toxic metals based on green chemistry principle. Thus, the selection of the metal is particularly important to plan relevant and applicable processes. The group VB metals have been the subject of exciting and significant advances in both organic and inorganic synthesis. In this Review, we have summarized some reports from recent decades, which are about the development of group VB metals utilized in various types of reactions, such as oxidation, reduction, alkylation, dealkylation, polymerization, aromatization, protein synthesis, and practical water splitting.
Collapse
Affiliation(s)
- Xinru Xu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| | - Choon-Hong Tan
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xinyi Ye
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, P. R. China
| |
Collapse
|
7
|
Khalid MI, Salem MSH, Sako M, Kondo M, Sasai H, Takizawa S. Electrochemical synthesis of heterodehydro[7]helicenes. Commun Chem 2022; 5:166. [PMID: 36697698 PMCID: PMC9814689 DOI: 10.1038/s42004-022-00780-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/15/2022] [Indexed: 12/07/2022] Open
Abstract
Dehydrohelicenes are some of the most attractive chiroptical materials with unique helical chirality. However, to our knowledge, there are no prior reports on their direct construction by asymmetric methods. In this work, sequential synthesis of aza-oxa-dehydro[7]helicenes via the electrochemical oxidative hetero-coupling of 3-hydoxycarbazoles and 2-naphthols followed by dehydrative cyclization and intramolecular C-C bond formation has been realized. In addition, an efficient enantioselective synthesis through chiral vanadium-catalyzed hetero-coupling and electrochemical oxidative transformations afforded heterodehydro[7]helicene without any racemization. The obtained dehydro[7]helicenes showed intense blue-colored circularly polarized luminescence (|glum| ≈ 2.5 × 10-3 at 433 nm). Thermodynamic and kinetic studies of the racemization barrier of heterodehydro[7]helicenes indicated significant chiral stability with ΔG‡> 140 kJ mol-1.
Collapse
Affiliation(s)
- Md. Imrul Khalid
- grid.136593.b0000 0004 0373 3971SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka, 567-0047 Japan
| | - Mohamed S. H. Salem
- grid.136593.b0000 0004 0373 3971SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka, 567-0047 Japan ,grid.33003.330000 0000 9889 5690Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522 Egypt
| | - Makoto Sako
- grid.136593.b0000 0004 0373 3971Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka, Suita-shi, Osaka, 565-0871 Japan
| | - Masaru Kondo
- grid.410773.60000 0000 9949 0476Department of Materials Science and Engineering, Graduate School of Science and Engineering, Ibaraki University, Naka-narusawa, Hitachi, Ibaraki, 316-8511 Japan
| | - Hiroaki Sasai
- grid.136593.b0000 0004 0373 3971SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka, 567-0047 Japan ,grid.136593.b0000 0004 0373 3971Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka, Suita-shi, Osaka, 565-0871 Japan
| | - Shinobu Takizawa
- grid.136593.b0000 0004 0373 3971SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka, 567-0047 Japan
| |
Collapse
|
8
|
Fliegel L, Christoffers J. Synthesis of Annulated Benzofuran Derivatives from α-(Iodophenyl)-β-oxoesters. Org Lett 2022. [DOI: 10.1021/acs.orglett.2c03472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Lukas Fliegel
- Institut für Chemie, Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Jens Christoffers
- Institut für Chemie, Universität Oldenburg, D-26111 Oldenburg, Germany
| |
Collapse
|
9
|
Li H, Yang Q, Xu L, Wei J, Tang Y, Cai Y. Cu(I)/Chiral Vanadium Complex Cooperatively Catalyzed Asymmetric Sulfonation/Rearrangement of Alkenylfurans. Org Lett 2022; 24:8202-8207. [DOI: 10.1021/acs.orglett.2c03304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hongxiang Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Qian Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Lei Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Jie Wei
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yurong Tang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yunfei Cai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
10
|
Kumar A, Sasai H, Takizawa S. Atroposelective Synthesis of C-C Axially Chiral Compounds via Mono- and Dinuclear Vanadium Catalysis. Acc Chem Res 2022; 55:2949-2965. [PMID: 36206455 DOI: 10.1021/acs.accounts.2c00545] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Axially chiral compounds with rotationally constrained σ-bonds that exhibit atropisomerism are lucrative synthetic targets because of their ubiquity in functional materials and natural products. The metal complex-catalyzed enantioselective fabrication of axially chiral scaffolds has been widely investigated, and thus far, considerable progress has been made. Over the past two decades, we have developed a highly efficient strategy for constructing axially chiral biarenol derivatives using chiral mono- and dinuclear vanadium complexes. These complexes are readily prepared from vanadium(IV) salts and Schiff base ligands (generated from the condensation of (S)-tert-leucine and di- or monoformyl-(R)-1,1'-bi-2-naphthol (BINOL) derivatives) under O2 and act as highly active catalysts for highly stereoselective C-C bond formation. In particular, the vanadium complex-catalyzed enantioselective oxidative coupling of 2-naphthols 1 under oxygen or in air, which is a green oxidant, affords the desired axially chiral molecules in high yields and high stereoselectivity (up to quantitative yield and 97% ee), along with water as the sole coproduct. This coupling reaction tolerated various functional groups (such as halogens, alkoxys, and boryls) and avoided overoxidation of coupling products.The key feature of dinuclear vanadium(V) catalysts such as (Ra,S,S)-5a is an outstanding mode of the homocoupling reaction, in which a single molecule of the catalyst activates two molecules of the starting material (e.g., 2-naphthols) simultaneously. With this "dual activation" mechanism, the oxidative coupling promoted by the dinuclear catalyst proceeds in an intramolecular manner. The homocoupling rate using 5 mol % of the dinuclear vanadium(V) complex (Ra,S,S)-5a was measured to be 111 times faster than that of the mononuclear vanadium(IV) complex (S)-4a bearing a half motif of the dinuclear vanadium complex.In the case of the heterocoupling reaction utilizing two different kinds of arenol derivatives, only a starting arenol having lower oxidation potential seems to be activated by the mononuclear vanadium complex. The reaction rate of the heterocoupling using either mono- or dinuclear vanadium complexes showed no difference to give the coupling product in high yields but with a different enantioselective manner; chiral mononuclear vanadium(V) complexes showed better enantioselectivites than that of the dinuclear vanadium(V) complexes. A competing heterocoupling study and a linear correlation between the ee of the mononucaler vanadium catalyst and ee of the heterocoupling suggested that the heterocoupling involves an intermolecular radical-anion coupling pathway.In this Account, we summarize the recent advances in vanadium-catalyzed coupling reactions that produced important chiral molecules, such as biresorcinols, polycyclic biphenols, oxa[9]helicenes, bihydroxycarbazoles, and C1-symmetrical biarenols, and their coupling reaction mechanisms. By pursuing vanadium catalysis, we believe numerous additional transformations as well as a renewed interest in catalytic and chemo-, regio-, and enantioselective aryl-aryl bond constructions will be manifested.
Collapse
Affiliation(s)
- Ankit Kumar
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Hiroaki Sasai
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Shinobu Takizawa
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| |
Collapse
|
11
|
Sugawara M, Sawamura M, Akakabe M, Ramadoss B, Sohtome Y, Sodeoka M. Pd-catalyzed Aerobic Cross-Dehydrogenative Coupling of Catechols with 2-Oxindoles and Benzofuranones: Reactivity Difference Between Monomer and Dimer. Chem Asian J 2022; 17:e202200807. [PMID: 36062560 PMCID: PMC9825984 DOI: 10.1002/asia.202200807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/05/2022] [Indexed: 01/11/2023]
Abstract
Persistent radicals, which are generated from 2-oxindole or benzofuranone dimers, are useful tools for designing the radical-based cross-coupling reaction to provide molecules containing a quaternary carbon. The persistent radical is accessible from both the dimer and monomer; however, the reactivity difference between these substrates for the oxidative cross-coupling reaction is not fully understood, most likely because of the mechanistic complexity. Here, we present details of an aerobic cross-dehydrogenative coupling (CDC) reaction using various monomers and catechols. UV-Vis analysis and mechanistic control experiments showed that the monomer is less reactive than the dimer under aerobic conditions. Our Pd(II)-BINAP-μ-hydroxo complex significantly improved the reactivity of the monomers for the aerobic CDC reaction with catechols, yielding results comparable to those of the corresponding dimer. The procedure, which enables the generation of the persistent radical in situ, is particularly useful when employing the monomer that is not readily converted to the corresponding dimer.
Collapse
Affiliation(s)
- Masumi Sugawara
- Synthetic Organic Chemistry LaboratoryRIKEN Cluster for Pioneering Research2-1 HirosawaWakoSaitamaJapan
| | - Miki Sawamura
- Synthetic Organic Chemistry LaboratoryRIKEN Cluster for Pioneering Research2-1 HirosawaWakoSaitamaJapan,Tokyo Medical and Dental UniversityTokyo113-8510Japan
| | - Mai Akakabe
- Synthetic Organic Chemistry LaboratoryRIKEN Cluster for Pioneering Research2-1 HirosawaWakoSaitamaJapan,Catalysis and Integrated Research Group RIKEN Center for Sustainable Resource Science
| | - Boobalan Ramadoss
- Catalysis and Integrated Research Group RIKEN Center for Sustainable Resource Science
| | - Yoshihiro Sohtome
- Synthetic Organic Chemistry LaboratoryRIKEN Cluster for Pioneering Research2-1 HirosawaWakoSaitamaJapan,Catalysis and Integrated Research Group RIKEN Center for Sustainable Resource Science
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry LaboratoryRIKEN Cluster for Pioneering Research2-1 HirosawaWakoSaitamaJapan,Catalysis and Integrated Research Group RIKEN Center for Sustainable Resource Science,Tokyo Medical and Dental UniversityTokyo113-8510Japan
| |
Collapse
|
12
|
Patra D, Pal A, Nath S, Kundu R, Drew MGB, Ghosh T. Insights into the transformation of VO 2+ motif to VO 3+, V 2O 34+ and VO 2+ motifs and their interconversion along with a detailed mechanistic study of their anti-cancer activity in SiHa cervical cancer cells. J Inorg Biochem 2022; 234:111900. [PMID: 35717882 DOI: 10.1016/j.jinorgbio.2022.111900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 11/29/2022]
Abstract
The basic criteria for the formation of complexes with VO3+, V2O34+ and VO2+ motifs from the VO2+ motif and their interconversion were explored utilizing two multidentate O,N-donor hydrazone ligands namely, E-2-Hydroxy-N'-(4-oxopentan-2-ylidine)benzohydrazide (H3L1) and E-2-Hydroxy-N'-(4-oxo-4-phenylbutan-2-ylidine)benzohydrazide (H3L2), derived from the condensation of 2-hydroxybenzoylhydrazide with acetylacetone and benzoylacetone respectively. Under aerobic condition, the possibility of forming complexes with different motifs in different solvents with varying pH was examined theoretically by computational methods with results that were verified experimentally. This study reveals that under aerobic condition, complexes with VO3+ (1,2) and V2O34+ (3, 4) motifs were formed in protic CH3OH and neutral CHCl3 solvent respectively while the formation of complexes (5-14) with VO2+ motif required protic CH3OH solvent and higher pH (≥ 7). Interconversion of VO3+, V2O34+ and VO2+ motifs are associated with specific acid-base equilibria, substantiated by 51V NMR titrations. Complexes containing these three motifs exhibited promising in vitro anticancer activity in SiHa cervical cancer cells without affecting healthy cells; among them complexes (5-14) with VO2+ motif are more potent. A detailed systematic mechanistic study was carried out, utilizing the two most potent complexes 5 and 6 (IC50 = 13, 6 μM respectively), which indicates that cytotoxicity and anti-proliferative activity of these complexes are manifested through oxidative stress induced apoptotic pathways (caspase mediated).
Collapse
Affiliation(s)
- Debashis Patra
- Post Graduate Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, India
| | - Asmita Pal
- Department of Botany, University of Calcutta, 35 Ballyguange Circular Road, Kolkata 700019, India
| | - Sonali Nath
- Department of Botany, University of Calcutta, 35 Ballyguange Circular Road, Kolkata 700019, India
| | - Rita Kundu
- Department of Botany, University of Calcutta, 35 Ballyguange Circular Road, Kolkata 700019, India
| | - Michael G B Drew
- Department of Chemistry, The University of Reading, PO Box 224, Whiteknights, Reading, RG6 6AD, UK
| | - Tapas Ghosh
- Post Graduate Department of Chemistry, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, India.
| |
Collapse
|
13
|
Abstract
Phenols and their derivatives are the elementary building blocks for several classes of complex molecules that play essential roles in biological systems. Nature has devised methods to selectively couple phenolic compounds, and many efforts have been undertaken by chemists to mimic such coupling processes. A range of mechanisms can be involved and with well-studied catalysts, reaction outcomes in phenol-phenol oxidative coupling reactions can be predicted with a good level of fidelity. However, reactions with catalysts that have not been studied or that do not behave similarly to known catalysts can be hard to predict and control. This Perspective provides an overview of catalytic methods for the oxidative coupling of phenols, focusing on the last 10 years, and summarizes current challenges.
Collapse
Affiliation(s)
- Jingze Wu
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Marisa C Kozlowski
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
14
|
Poulard L, Kasemthaveechok S, Coehlo M, Kumar RA, Frédéric L, Sumsalee P, d'Anfray T, Wu S, Wang J, Matulaitis T, Crassous J, Zysman-Colman E, Favereau L, Pieters G. Circularly polarized-thermally activated delayed fluorescent materials based on chiral bicarbazole donors. Chem Commun (Camb) 2022; 58:6554-6557. [PMID: 35583152 DOI: 10.1039/d2cc00998f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We describe herein a molecular design to generate circularly polarized thermally activated delayed fluorescence emitters in which chiral bicarbazole donors are connected to acceptor units via a rigid 8-membered cycle and how the nature of the donor and acceptor units affect the photophysical and chiroptical properties.
Collapse
Affiliation(s)
- Laurélie Poulard
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| | | | - Max Coehlo
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| | - Ramar Arun Kumar
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France. .,SRM Research Institute, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, 603203 Chennai, Tamilnadu, India
| | - Lucas Frédéric
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| | - Patthira Sumsalee
- Univ Rennes, CNRS, ISCR-UMR 6226, ScanMAT-UMS 2001, F-35000 Rennes, France.
| | - Timothée d'Anfray
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, Fife, KY16 9ST, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, Fife, KY16 9ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, Fife, KY16 9ST, UK
| | - Jeanne Crassous
- Univ Rennes, CNRS, ISCR-UMR 6226, ScanMAT-UMS 2001, F-35000 Rennes, France.
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, Fife, KY16 9ST, UK
| | - Ludovic Favereau
- Univ Rennes, CNRS, ISCR-UMR 6226, ScanMAT-UMS 2001, F-35000 Rennes, France.
| | - Grégory Pieters
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
15
|
Kasama K, Hinami Y, Mizuno K, Horino S, Nishio T, Yuki C, Kanomata K, Moustafa GAI, Gröger H, Akai S. Lipase-Catalyzed Kinetic Resolution of <i>C</i><sub>1</sub>-Symmetric Heterocyclic Biaryls. Chem Pharm Bull (Tokyo) 2022; 70:391-399. [DOI: 10.1248/cpb.c22-00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kengo Kasama
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Yuya Hinami
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Karin Mizuno
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Satoshi Horino
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Tomoya Nishio
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Chiharu Yuki
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Kyohei Kanomata
- Graduate School of Pharmaceutical Sciences, Osaka University
| | | | - Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University
| | - Shuji Akai
- Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
16
|
Kamble GT, Salem MSH, Abe T, Park H, Sako M, Takizawa S, Sasai H. Chiral Vanadium(V)-catalyzed Oxidative Coupling of 4-Hydroxycarbazoles. CHEM LETT 2021. [DOI: 10.1246/cl.210367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ganesh T. Kamble
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Mohamed S. H. Salem
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Tsukasa Abe
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Hanseok Park
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Makoto Sako
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Shinobu Takizawa
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Hiroaki Sasai
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
17
|
Kasama K, Kanomata K, Hinami Y, Mizuno K, Uetake Y, Amaya T, Sako M, Takizawa S, Sasai H, Akai S. Chemo- and regioselective cross-dehydrogenative coupling reaction of 3-hydroxycarbazoles with arenols catalyzed by a mesoporous silica-supported oxovanadium. RSC Adv 2021; 11:35342-35350. [PMID: 35493149 PMCID: PMC9042799 DOI: 10.1039/d1ra07723f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Cross-dehydrogenative coupling between 3-hydroxycarbazoles and 2-naphthols has been achieved by using a mesoporous silica-supported oxovanadium catalyst. Cross-dehydrogenative coupling between 3-hydroxycarbazoles and 2-naphthols has been achieved by using a mesoporous silica-supported oxovanadium catalyst.![]()
Collapse
Affiliation(s)
- Kengo Kasama
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kyohei Kanomata
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuya Hinami
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Karin Mizuno
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuta Uetake
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI) Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toru Amaya
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Graduate School of Science, Nagoya City University, Nagoya, Aichi 467-8501, Japan
| | - Makoto Sako
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Shinobu Takizawa
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Hiroaki Sasai
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Shuji Akai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|