1
|
Sigmund LM, Assante M, Johansson MJ, Norrby PO, Jorner K, Kabeshov M. Computational tools for the prediction of site- and regioselectivity of organic reactions. Chem Sci 2025; 16:5383-5412. [PMID: 40070469 PMCID: PMC11891785 DOI: 10.1039/d5sc00541h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
The regio- and site-selectivity of organic reactions is one of the most important aspects when it comes to synthesis planning. Due to that, massive research efforts were invested into computational models for regio- and site-selectivity prediction, and the introduction of machine learning to the chemical sciences within the past decade has added a whole new dimension to these endeavors. This review article walks through the currently available predictive tools for regio- and site-selectivity with a particular focus on machine learning models while being organized along the individual reaction classes of organic chemistry. Respective featurization techniques and model architectures are described and compared to each other; applications of the tools to critical real-world examples are highlighted. This paper aims to serve as an overview of the field's status quo for both the intended users of the tools, that is synthetic chemists, as well as for developers to find potential new research avenues.
Collapse
Affiliation(s)
- Lukas M Sigmund
- Molecular AI, Discovery Sciences, R&D, AstraZeneca Gothenburg Pepparedsleden 1 43183 Mölndal Sweden
| | - Michele Assante
- Innovation Centre in Digital Molecular Technologies, Department of Chemistry, University of Cambridge Lensfield Rd Cambridge CB2 1EW UK
- Compound Synthesis & Management, The Discovery Centre, AstraZeneca Cambridge Cambridge Biomedical Campus, 1 Francis Crick Avenue CB2 0AA Cambridge UK
| | - Magnus J Johansson
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals, R&D, AstraZeneca Gothenburg Pepparedsleden 1 43183 Mölndal Sweden
| | - Per-Ola Norrby
- Data Science & Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg Pepparedsleden 1 43183 Mölndal Sweden
| | - Kjell Jorner
- ETH Zürich, Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences Vladimir-Prelog-Weg 1 CH-8093 Zürich Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, ETH Zurich Zurich Switzerland
| | - Mikhail Kabeshov
- Molecular AI, Discovery Sciences, R&D, AstraZeneca Gothenburg Pepparedsleden 1 43183 Mölndal Sweden
| |
Collapse
|
2
|
Hu L, Gao H, Hu Y, Wu YB, Lv X, Lu G. Origins of Regioselectivity in CuH-Catalyzed Hydrofunctionalization of Alkenes. J Org Chem 2023. [PMID: 36790843 DOI: 10.1021/acs.joc.2c02296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Factors controlling the regioselectivity in alkene hydrocupration were computationally investigated using energy decomposition analysis. The results demonstrate that the Markovnikov-selective hydrocupration with electronically activated mono-substituted olefins is mostly affected by the destabilizing Pauli repulsion, which is due to the electron delocalization effect. The anti-Markovnikov-selective hydrocupration with 1,1-dialkyl-substituted terminal olefins is dominated by the repulsive electrostatic interactions, which is because of the unequal π electron distribution caused by the induction effect of alkyl substituents.
Collapse
Affiliation(s)
- Lingfei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Han Gao
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Yanlei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Yan-Bo Wu
- Key Lab for Materials of Energy Conversion and Storage of Shanxi Province and Key Lab of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiangying Lv
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
3
|
Theoretical studies on Mn-catalyzed intermolecular allylic C-H aminations of internal olefins: mechanism, chemo- and regioselectivity. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
4
|
Gao H, Hu L, Hu Y, Lv X, Wu YB, Lu G. How the electron-deficient Cp ligand facilitates Rh-catalyzed annulations with alkynes. Org Chem Front 2022. [DOI: 10.1039/d1qo01566d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The dominant factors for the CpX ligand effects (Cp* versus CpE) on the reactivity for alkyne insertion into cationic and neutral rhodacycles are identified based on energy decomposition analysis.
Collapse
Affiliation(s)
- Han Gao
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Lingfei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Yanlei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Xiangying Lv
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Yan-Bo Wu
- Key Lab for Materials of Energy Conversion and Storage of Shanxi Province and Key Lab of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
5
|
Hu L, Gao H, Hu Y, Lv X, Wu Y, Lu G. Computational insights into strain-increase allylborations for alkylidenecyclopropanes. Chem Commun (Camb) 2022; 58:7034-7037. [DOI: 10.1039/d2cc02264h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The origins of reactivity of strain-increase allylborations were computationally investigated. The low reactivity of vinylcyclopropyl boronates is due to weak electronic interactions between benzaldehyde and allylboronates. By increasing the acidity...
Collapse
|
6
|
Hu Y, Hu L, Gao H, Lv X, Wu Y, Lu G. Computational study of Cu-catalyzed 1,2-hydrocarboxylation of 1,3-dienes with CO2: Pauli repulsion-controlled regioselectivity of Cu–Bpin additions. Org Chem Front 2022. [DOI: 10.1039/d2qo00236a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism and origin of regioselectivity of Cu-catalyzed 1,2-hydrocarboxylation of 1,3-dienes with CO2 were computationally investigated. The results show that CO2 not only acts as a carboxylation reagent, but also...
Collapse
|
7
|
Hu L, Gao H, Hu Y, Lv X, Wu YB, Lu G. Origins of regio- and stereoselectivity in Cu-catalyzed alkyne difunctionalization with CO2 and organoboranes. Org Chem Front 2022. [DOI: 10.1039/d1qo01788h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The anti-to-Cu 1,2-migration of alkynyl boronates is critical for the 1,1-E-selective difunctionalization of terminal alkynes with CO2 and organoboranes.
Collapse
Affiliation(s)
- Lingfei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Han Gao
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Yanlei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Xiangying Lv
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Yan-Bo Wu
- Key Lab for Materials of Energy Conversion and Storage of Shanxi Province and Key Lab of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
8
|
Miller JL, Zhou L, Liu P, Floreancig PE. Mechanism-Based Approach to Reagent Selection for Oxidative Carbon-Hydrogen Bond Cleavage Reactions. Chemistry 2021; 28:e202103078. [PMID: 34822737 DOI: 10.1002/chem.202103078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 11/07/2022]
Abstract
Numerous hydride-abstracting agents generate the same cationic intermediate, but substrate features such as intermediate cation stability, oxidation potential, and steric environment can influence reaction rates in an oxidant-dependent manner. This manuscript provides experimental data to illustrate the role that structural features play in the kinetics of hydride abstraction reactions with commonly used quinone-, oxoammonium ion-, and carbocation- based oxidants. Computational studies of the transition state structures and energies explain these results and energy decomposition analysis calculations reveal unique sensitivities to electrostatic attraction and steric repulsions. Rigorous rate studies of select reactions validated the capacity of the calculations to predict reactivity trends. Additionally, kinetics studies demonstrate the potential for product inhibition in DDQ-mediated reactions. These studies provide a clear guide to select the optimal oxidant for structurally disparate substrates and lead to predictions of reactivity that were validated experimentally.
Collapse
Affiliation(s)
- Jenna L Miller
- Department of Chemistry, University of Pittsburgh Pittsburgh, Pennsylvania, 15260, United States
| | - Lin Zhou
- Department of Chemistry, University of Pittsburgh Pittsburgh, Pennsylvania, 15260, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh Pittsburgh, Pennsylvania, 15260, United States
| | - Paul E Floreancig
- Department of Chemistry, University of Pittsburgh Pittsburgh, Pennsylvania, 15260, United States
| |
Collapse
|