1
|
Zhang Z, Wang J, Hou L, Zhu D, Xiao HJ, Wang K. Graphene/carbohydrate polymer composites as emerging hybrid materials in tumor therapy and diagnosis. Int J Biol Macromol 2025; 287:138621. [PMID: 39667456 DOI: 10.1016/j.ijbiomac.2024.138621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Despite the introduction of various types of treatments for cancer control, cancer therapy faces several challenges such as aggressive behavior, heterogeneous characteristics, and the development of resistance. In contrast, the methods have depended on the creation and formulation of nanoparticles to impede tumor growth. Carbon nanoparticles have attracted considerable attention for cancer therapy, with graphene nanoparticles emerging as promising vehicles for delivering drugs and genes. Moreover, graphene composites can enhance immunotherapy, phototherapy, and combination therapies. Nonetheless, the biocompatibility and toxicity of graphene composites present difficulties. Consequently, this manuscript assesses the alteration of graphene nanocomposites using carbohydrate polymers. Altering graphene composites with carbohydrate polymers such as chitosan, hyaluronic acid, cellulose, and starch can enhance their efficacy in cancer treatment. Furthermore, graphene composites functionalized with carbohydrate polymers for tumor ablation induced by phototherapy. Graphene oxide and graphene quantum dots have been modified with carbohydrate polymers to enhance their therapeutic and diagnostic uses. These nanoparticles can transport gene therapy techniques like siRNA in the treatment of cancer. Despite the breakdown of these nanoparticles within the body, they maintain excellent biosafety and biocompatibility.
Collapse
Affiliation(s)
- Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei Province, China
| | - Jinxiang Wang
- Scientific Research Center, Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Lingmi Hou
- Department of Breast Surgery, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dan Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, Hubei Province, China.
| | - Hai-Juan Xiao
- Department of Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China.
| | - Kaili Wang
- Department of Hepatology, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
2
|
Ashok Kumar SS, Bashir S, Pershaanaa M, Kamarulazam F, Kuppusamy AV, Badawi N, Ramesh K, Ramesh S. A review of the role of graphene-based nanomaterials in tackling challenges posed by the COVID-19 pandemic. Microb Pathog 2024; 197:107059. [PMID: 39442812 DOI: 10.1016/j.micpath.2024.107059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/31/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
In 2020, the World Health Organization (WHO) declared a pandemic due to the emergence of the coronavirus disease (COVID-19) which had resulted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). At present, the emergence of many new variants and mutants were found to be more harmful compared to the previous strains. As a result, research scientists around the world had devoted significant efforts to understand the mechanism, causes and transmission due to COVID-19 along with the treatment to cure these diseases. However, despite achieving several findings, much more was unknown and yet to be explored. Hence, along with these developments, it is also extremely essential to design effective systems by incorporating smart materials to battle the COVID-19. Therefore, several approaches have been implemented to combat against COVID-19. Recently, the graphene-based materials have been explored for the current COVID-19 and future pandemics due to its superior physicochemical properties, providing efficient nanoplatforms for optical and electrochemical sensing and diagnostic applications with high sensitivity and selectivity. Moreover, based on the photothermal effects or reactive oxygen species formation, the carbon-based nanomaterials have shown its potentiality for targeted antiviral drug delivery and the inhibitory effects against pathogenic viruses. Therefore, this review article sheds light on the recent progress and the most promising strategies related to graphene and related materials and its applications for detection, decontamination, diagnosis, and protection against COVID-19. In addition, the key challenges and future directives are discussed in detail for fundamental design and development of technologies based on graphene-based materials along with the demand aspects of graphene-based products and lastly, our personal opinions on the appropriate approaches to improve these technologies respectively.
Collapse
Affiliation(s)
- Sachin Sharma Ashok Kumar
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; School of Engineering, Taylor's University, 1 Jalan Taylor's, 47500, Subang Jaya, Selangor, Malaysia.
| | - Shahid Bashir
- Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D, Universiti Malaya, Jalan Pantai Baharu, 59990, Kuala Lumpur, Malaysia
| | - M Pershaanaa
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Fathiah Kamarulazam
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - A V Kuppusamy
- School of Engineering and Computing, Manipal International University, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Nujud Badawi
- University of Hafr Al-Batin College of Science, Hafer Al-Batin, 39921, Saudi Arabia
| | - K Ramesh
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Department of Physical Sciences, Saveetha School of Engineering, Saveetha University (SIMATS), Chennai, India.
| | - S Ramesh
- Centre for Ionics Universiti Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Department of Physical Sciences, Saveetha School of Engineering, Saveetha University (SIMATS), Chennai, India
| |
Collapse
|
3
|
Abyar H, Nowrouzi M, Rezaei H. Comparative assessment of ion-exchange/reverse osmosis and ultrafiltration/reverse osmosis for seawater desalination: environmental, economic, and operational perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65220-65232. [PMID: 39576438 DOI: 10.1007/s11356-024-35447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/24/2024] [Indexed: 12/11/2024]
Abstract
The urgent need for economically viable and environmentally friendly desalination technologies to address global water scarcity is underscored. This study compares ion-exchange reverse osmosis (IX-RO) and ultrafiltration reverse osmosis (UF-RO) systems, examining their environmental impacts, energy efficiency, cost-effectiveness, and operational stability. The IX-RO system reduced water hardness and ion concentrations by 83%, while the UF-RO system achieved over 99% removal of total dissolved solids. Energy consumption for desalinating 1 m3 of Caspian Sea water was 1.49 kWh for IX-RO and 1.3 kWh for UF-RO. UF-RO's impact on human health, ecosystems, and resources was 1.62, 3.06, and 3.31 times greater than that of IX-RO, respectively. CO2 emissions were 192 kg CO2/m3 for UF-RO and 81.93 kg CO2/m3 for IX-RO. Over 68% of energy in both systems was from non-renewable resources, suggesting potential for utilizing Iran's solar and wave energy. The sensitivity analysis showed that citric acid had a significant environmental impact on UF-RO, while magnesium utilization had a notable impact on IX-RO. Water production costs were $0.06/m3 for IX-RO and $0.11/m3 for UF-RO. Over 20 years, the net present value was $172.8 million for IX-RO and $177.9 million for UF-RO, demonstrating their economic resilience. This study forms a basis for further research in the field.
Collapse
Affiliation(s)
- Hajar Abyar
- Department of Environmental Sciences, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49189-43464, Iran.
| | - Mohsen Nowrouzi
- Department of Science and Biotechnology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, 75169-13798, Iran
- Department of Natural Resources and Environmental Engineering, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Hassan Rezaei
- Department of Environmental Sciences, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 49189-43464, Iran
| |
Collapse
|
4
|
Georgin J, Franco DSP, Dehmani Y, Nguyen-Tri P, El Messaoudi N. Current status of advancement in remediation technologies for the toxic metal mercury in the environment: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174501. [PMID: 38971239 DOI: 10.1016/j.scitotenv.2024.174501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Currently, pollution due to heavy metals, in particular dissolved mercury, is a major concern for society and the environment. This work aims to evaluate the current scenario regarding the removal/elimination of mercury. Mercury removal through adsorption is mainly done through artificial resins and metallic-organic frameworks. In the case of the zinc organic framework, it was able to adsorb Hg2+, reaching an adsorption capacity of 802 mg g-1. As for the Hg(0) the coconut husk was found to have the lowest equilibrium time, 30 min, and the highest adsorption capacity of 956.2 mg g-1. Experimental reports and molecular simulation indicate that the adsorption of mercury and other chemical forms occurs due to electrostatic interactions, ion exchange, precipitation, complexation, chelation, and covalent bonds, according to the material nature. The reported thermodynamic results show that, in most cases, the mercury adsorption has an endothermic nature with enthalpy levels below 40 kJ mol-1. Thermal and chemical regeneration methods lead to a similar number of 5 cycles for different materials. The presence of other ions, in particular cadmium, lead, and copper, generates an antagonistic effect for mercury adsorption. Regarding the other current technologies, it was found that mercury removal is feasible through precipitation, phytoremediation, and marine microalgae; all these methods require constant chemicals or a slow rate of removal according to the conditions. Advanced oxidative processes have noteworthy removal of Hg(0); however, Fenton processes lead to mineralization, which leads to Fe2+ and Fe3+ in solution; sonochemical processes are impossible to scale up at the current technology level; and electrochemical processes consume more energy and require constant changes of the anode and cathode. Overall, it is possible to conclude that the adsorption process remains a more friendly, economical, and greener process in comparison with other processes.
Collapse
Affiliation(s)
- Jordana Georgin
- Department of Civil and Environmental. Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Dison Stracke Pfingsten Franco
- Department of Civil and Environmental. Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia.
| | - Younes Dehmani
- Laboratory of Chemistry/Biology Applied to the Environment, Faculty of Sciences, Moulay Ismaïl University, BP 11201-Zitoune, Meknes 50070, Morocco
| | - Phuong Nguyen-Tri
- Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco.
| |
Collapse
|
5
|
Dar MS, Sahu NK. Graphene quantum dot-crafted nanocomposites: shaping the future landscape of biomedical advances. DISCOVER NANO 2024; 19:79. [PMID: 38695997 PMCID: PMC11065842 DOI: 10.1186/s11671-024-04028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Graphene quantum dots (GQDs) are a newly developed class of material, known as zero-dimensional nanomaterials, with characteristics derived from both carbon dots (CDs) and graphene. GQDs exhibit several ideal properties, including the potential to absorb incident energy, high water solubility, tunable photoluminescence, good stability, high drug-loading capacity, and notable biocompatibility, which make them powerful tools for various applications in the field of biomedicine. Additionally, GQDs can be incorporated with additional materials to develop nanocomposites with exceptional qualities and enriched functionalities. Inspired by the intriguing scientific discoveries and substantial contributions of GQDs to the field of biomedicine, we present a broad overview of recent advancements in GQDs-based nanocomposites for biomedical applications. The review first outlines the latest synthesis and classification of GQDs nanocomposite and enables their use in advanced composite materials for biomedicine. Furthermore, the systematic study of the biomedical applications for GQDs-based nanocomposites of drug delivery, biosensing, photothermal, photodynamic and combination therapies are emphasized. Finally, possibilities, challenges, and paths are highlighted to encourage additional research, which will lead to new therapeutics and global healthcare improvements.
Collapse
Affiliation(s)
- Mohammad Suhaan Dar
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Niroj Kumar Sahu
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
6
|
Kong J, Wei Y, Zhou F, Shi L, Zhao S, Wan M, Zhang X. Carbon Quantum Dots: Properties, Preparation, and Applications. Molecules 2024; 29:2002. [PMID: 38731492 PMCID: PMC11085940 DOI: 10.3390/molecules29092002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Carbon quantum dots are a novel form of carbon material. They offer numerous benefits including particle size adjustability, light resistance, ease of functionalization, low toxicity, excellent biocompatibility, and high-water solubility, as well as their easy accessibility of raw materials. Carbon quantum dots have been widely used in various fields. The preparation methods employed are predominantly top-down methods such as arc discharge, laser ablation, electrochemical and chemical oxidation, as well as bottom-up methods such as templates, microwave, and hydrothermal techniques. This article provides an overview of the properties, preparation methods, raw materials for preparation, and the heteroatom doping of carbon quantum dots, and it summarizes the applications in related fields, such as optoelectronics, bioimaging, drug delivery, cancer therapy, sensors, and environmental remediation. Finally, currently encountered issues of carbon quantum dots are presented. The latest research progress in synthesis and application, as well as the challenges outlined in this review, can help and encourage future research on carbon quantum dots.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiangfeng Zhang
- School of Medicine, Henan Polytechnic University, Jiaozuo 454000, China; (Y.W.); (F.Z.); (L.S.); (S.Z.); (M.W.)
| |
Collapse
|
7
|
Mukherjee S, Mukherjee A, Bytesnikova Z, Ashrafi AM, Richtera L, Adam V. 2D graphene-based advanced nanoarchitectonics for electrochemical biosensors: Applications in cancer biomarker detection. Biosens Bioelectron 2024; 250:116050. [PMID: 38301543 DOI: 10.1016/j.bios.2024.116050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/01/2024] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
Low-cost, rapid, and easy-to-use biosensors for various cancer biomarkers are of utmost importance in detecting cancer biomarkers for early-stage metastasis control and efficient diagnosis. The molecular complexity of cancer biomarkers is overwhelming, thus, the repeatability and reproducibility of measurements by biosensors are critical factors. Electrochemical biosensors are attractive alternatives in cancer diagnosis due to their low cost, simple operation, and promising analytical figures of merit. Recently graphene-derived nanostructures have been used extensively for the fabrication of electrochemical biosensors because of their unique physicochemical properties, including the high electrical conductivity, adsorption capacity, low cost and ease of mass production, presence of oxygen-containing functional groups that facilitate the bioreceptor immobilization, increased flexibility and mechanical strength, low cellular toxicity. Indeed, these properties make them advantageous compared to other alternatives. However, some drawbacks must be overcome to extend their use, such as poor and uncontrollable deposition on the substrate due to the low dispersity of some graphene materials and irreproducibility of the results because of the differences in various batches of the produced graphene materials. This review has documented the most recently developed strategies for electrochemical sensor fabrication. It differs in the categorization method compared to published works to draw greater attention to the wide opportunities of graphene nanomaterials for biological applications. Limitations and future scopes are discussed to advance the integration of novel technologies such as artificial intelligence, the internet of medical things, and triboelectric nanogenerators to eventually increase efficacy and efficiency.
Collapse
Affiliation(s)
- Soumajit Mukherjee
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Atripan Mukherjee
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; ELI Beamlines Facility, The Extreme Light Infrastructure ERIC, Za Radnici 835, 252 41, Dolni Breznany, Czech Republic
| | - Zuzana Bytesnikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Amir M Ashrafi
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic.
| |
Collapse
|
8
|
Hassanpour A, Gauthier MA, Sun S. Ion-retention properties of graphene oxide/zinc oxide nanocomposite membranes at various pH and temperature conditions. Sci Rep 2024; 14:1443. [PMID: 38228699 PMCID: PMC10791694 DOI: 10.1038/s41598-024-51309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/01/2024] [Indexed: 01/18/2024] Open
Abstract
Laminar graphene oxide (GO) is a promising candidate material for next-generation highly water-permeable membranes. Despite extensive research, there is little information known concerning GO's ion-sieving properties at high acidic/basic pH and temperatures. In this study, the ion-blockage properties of the pristine GO and GO/zinc oxide (ZnO) nanocomposite membranes were tested using a non-pressure-driven filtration setup over a wide range of pH and temperatures. The ZnO nanoparticles within the composite membranes were synthesized via the room-temperature oxidation of zinc acetate and zinc acrylate precursors and were uniformly distributed across the composite membrane. It is observed that partially replacing the zinc acetate precursor with zinc acrylate improves the blockage performance of the composite membranes under extreme basic conditions by 42%. Moreover, photocatalytically-reduced composite membranes blocked copper sulfate ions 28% more than as-prepared composite membranes. Further, it was discovered that the composition of the membrane plays a vital role in its ion blockage performance at higher temperatures.
Collapse
Affiliation(s)
- Amir Hassanpour
- Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada.
| | - Marc A Gauthier
- Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada.
| | - Shuhui Sun
- Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada.
| |
Collapse
|
9
|
Petkidis A, Andriasyan V, Greber UF. Machine learning for cross-scale microscopy of viruses. CELL REPORTS METHODS 2023; 3:100557. [PMID: 37751685 PMCID: PMC10545915 DOI: 10.1016/j.crmeth.2023.100557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/05/2023] [Accepted: 07/20/2023] [Indexed: 09/28/2023]
Abstract
Despite advances in virological sciences and antiviral research, viruses continue to emerge, circulate, and threaten public health. We still lack a comprehensive understanding of how cells and individuals remain susceptible to infectious agents. This deficiency is in part due to the complexity of viruses, including the cell states controlling virus-host interactions. Microscopy samples distinct cellular infection stages in a multi-parametric, time-resolved manner at molecular resolution and is increasingly enhanced by machine learning and deep learning. Here we discuss how state-of-the-art artificial intelligence (AI) augments light and electron microscopy and advances virological research of cells. We describe current procedures for image denoising, object segmentation, tracking, classification, and super-resolution and showcase examples of how AI has improved the acquisition and analyses of microscopy data. The power of AI-enhanced microscopy will continue to help unravel virus infection mechanisms, develop antiviral agents, and improve viral vectors.
Collapse
Affiliation(s)
- Anthony Petkidis
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Vardan Andriasyan
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
10
|
Kim JP, Go CY, Kang J, Choi Y, Kim JY, Kim J, Kwon O, Kim KC, Kim DW. Nanoporous multilayer graphene oxide membrane for forward osmosis metal ion recovery from spent Li-ion batteries. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
11
|
Karmakar S, Taqy S, Droopad R, Trivedi RK, Chakraborty B, Haque A. Highly Stable Electrochemical Supercapacitor Performance of Self-Assembled Ferromagnetic Q-Carbon. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8305-8318. [PMID: 36735879 DOI: 10.1021/acsami.2c20202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Novel phase Q-carbon thin films exhibit some intriguing features and have been explored for various potential applications. Herein, we report the growth of different Q-carbon structures (i.e., filaments, clusters, and microdots) by varying the laser energy density from 0.5 to 1.0 J/cm2 during pulsed laser annealing of amorphous diamond-like carbon films with different sp3-sp2 carbon compositions. These unique nano- and microstructures of Q-carbon demonstrate exceptionally stable electrochemical performance by cyclic voltammetry, galvanostatic charging-discharging, and electrochemical impedance spectroscopy for energy applications. The temperature-dependent magnetic studies (magnetization vs magnetic field and temperature) reveal the ferromagnetic nature of the Q-carbon microdots. The saturation magnetization and coercive field values decrease from 132 to 14 emu/cc and 155 to 92 Oe by increasing the temperature from 2 to 300 K, respectively. The electrochemical performances of Q-carbon filament, cluster, and microdot thin-film supercapacitors were investigated by two-electrode configurations, and the highest areal specific capacitance of ∼156 mF/cm2 was observed at a current density of 0.15 mA/cm2 in the Q-carbon microdot thin film. The Q-carbon microdot electrodes demonstrate an exceptional capacitance retention performance of ∼97.2% and Coulombic efficiency of ∼96.5% after 3000 cycles due to their expectational reversibility in the charging-discharging process. The kinetic feature of the ion diffusion associated with the charge storage property is also investigated, and small changes in equivalent series resistance of ∼9.5% and contact resistance of ∼9.1% confirm outstanding stability with active charge kinetics during the stability test. A high areal power density of ∼5.84 W/cm2 was obtained at an areal energy density of ∼0.058 W h/cm2 for the Q-carbon microdot structure. The theoretical quantum capacitance was obtained at ∼400 mF/cm2 by density functional theory calculation, which gives an idea about the overall capacitance value. The obtained areal specific capacitance, power density, and impressive long-term cyclic stability of Q-carbon thin-film microdot electrodes endorse substantial promise in high-performance supercapacitor applications.
Collapse
Affiliation(s)
- Subrata Karmakar
- Electrical Engineering, Ingram School of Engineering, Texas State University, San Marcos, Texas78666, United States
| | - Saif Taqy
- Electrical Engineering, Ingram School of Engineering, Texas State University, San Marcos, Texas78666, United States
| | - Ravi Droopad
- Electrical Engineering, Ingram School of Engineering, Texas State University, San Marcos, Texas78666, United States
- Materials Science, Engineering & Commercialization Program, Texas State University, San Marcos, Texas78666, United States
| | - Ravi Kumar Trivedi
- High Pressure & Synchroton Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai400085, India
| | - Brahmananda Chakraborty
- High Pressure & Synchroton Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai400094, India
| | - Ariful Haque
- Electrical Engineering, Ingram School of Engineering, Texas State University, San Marcos, Texas78666, United States
- Materials Science, Engineering & Commercialization Program, Texas State University, San Marcos, Texas78666, United States
| |
Collapse
|
12
|
A Novel Approach to Water Softening Based on Graphene Oxide-Activated Open Cell Foams. Mol Vis 2023. [DOI: 10.3390/c9010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
This work focuses on exploring a new configuration for the reduction of water hardness based on the surface modification of polyurethane (PU) open cell foams by the deposition of thin graphene oxide (GO) washcoat layers. GO was deposited by the dip–squeeze coating procedure and consolidated by thermal treatment. The final washcoat load was controlled by performing consecutive depositions, after three of which, a GO inventory up to 27 wt% was obtained onto PU foams of 60 pores per inch (PPI). The GO-coated PU foams were assembled into a filter, and the performance of the system was tested by continuously feeding water with hardness in the 190–270 mgCa2+,eq·L−1 range. Remarkable results were demonstrated in terms of total adsorbing capacity, which was evaluated by measuring the outlet total hardness by titration and exhibited values up to 63 mgCa2+,eq·gGO−1 at a specific filtered water volume of 650 mLH2O·gGO−1, outperforming the actual state-of-the-art adsorbing capacity of similar GO-based materials.
Collapse
|
13
|
Ghosh S, Othmani A, Malloum A, Ke Christ O, Onyeaka H, AlKafaas SS, Nnaji ND, Bornman C, Al-Sharify ZT, Ahmadi S, Dehghani MH, Mubarak NM, Tyagi I, Karri RR, Koduru JR, Suhas. Removal of mercury from industrial effluents by adsorption and advanced oxidation processes: A comprehensive review. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Kamran U, Rhee KY, Lee SY, Park SJ. Innovative progress in graphene derivative-based composite hybrid membranes for the removal of contaminants in wastewater: A review. CHEMOSPHERE 2022; 306:135590. [PMID: 35803370 DOI: 10.1016/j.chemosphere.2022.135590] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/04/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Graphene derivatives (graphene oxide) are proved as an innovative carbon materials that are getting more attraction in membrane separation technology because of its unique properties and capability to attain layer-to-layer stacking, existence of high oxygen-based functional groups, and generation of nanochannels that successively enhance the selective pollutants removal performance. The review focused on the recent innovations in the development of graphene derivative-based composite hybrid membranes (GDHMs) for the removal of multiple contaminants from wastewater treatment. To design GDHMs, it was observed that at first GO layers undergo chemical treatments with either different polymers, plasma, or sulfonyl. After that, the chemically treated GO layers were decorated with various active functional materials (either with nanoparticles, magnetite, or nanorods, etc.). By preparing GDHMs, properties such as permeability, porosity, hydrophilicity, water flux, stability, feasibility, mechanical strength, regeneration ability, and antifouling tendency were excessively improved as compared to pristine GO membranes. Different types of novel GDHMs were able to remove toxic dyes (77-100%), heavy metals/ions (66-100%), phenols (40-100%), and pharmaceuticals (74-100%) from wastewater with high efficiency. Some of GDHMs were capable to show dual contaminant removal efficacy and antibacterial activity. In this study, it was observed that the most involved mechanisms for pollutants removal are size exclusion, transport, electrostatic interactions, adsorption, and donnan exclusion. In addition to this, interaction mechanism during membrane separation technology has also been elaborated by density functional theory. At last, in this review the discussion related to challenges, limitations, and future outlook for the applications of GDHMs has also been provided.
Collapse
Affiliation(s)
- Urooj Kamran
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea; Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin, 445-701, South Korea
| | - Kyong Yop Rhee
- Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin, 445-701, South Korea.
| | - Seul-Yi Lee
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea.
| | - Soo-Jin Park
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea.
| |
Collapse
|
15
|
Tan S, Zhang D, Nguyen MT, Shutthanandan V, Varga T, Rousseau R, Johnson GE, Glezakou VA, Prabhakaran V. Tuning the Charge and Hydrophobicity of Graphene Oxide Membranes by Functionalization with Ionic Liquids at Epoxide Sites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19031-19042. [PMID: 35420797 DOI: 10.1021/acsami.2c02366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Functionalization of graphene oxide (GO) membranes is generally achieved using carboxyl groups as binding sites for ligands. Herein, by taking advantage of the ability of imidazolium-based ionic liquids (ILs) to undergo an epoxide ring-opening reaction, a new approach of GO modification was established, in which ILs were bonded to the abundant epoxides on GO without sacrificing the carboxyl groups. Computational methods confirmed this unique configuration of ILs on GO, which enabled the dispersion of IL/GO flakes in water for facile casting into laminate membranes. Compared with neat GO, the ILs in IL/GO membranes served as spacers that substantially reduced the multi-valent cation mobility, simultaneously facilitated ion desolvation, and increased the water flux across the membrane. Our studies found that the higher separation efficiency of IL/GO membranes may be attributed to the synergistic modification of the hydrophobicity and surface charge. Specifically, the protonated nitrogen of the imidazolium cations altered the surface charge of GO, thereby generating electrostatic repulsion that enhanced the selectivity of cation rejection. On the other hand, the increased length of the alkyl chains bound to the imidazolium rings was found to increase the hydrophobicity of GO, which, in turn, aided the fine-tuning of the water desolvation/transport dynamics at the GO/IL interface to achieve a high water flux. Additionally, the water retention was reduced on the hydrophobic planes, which inhibited GO swelling during aqueous separations. Molecular dynamics simulations revealed increased water diffusivity when ILs were intercalated within GO layers. We establish that without requiring a high energy input, functionalization of GO membranes with ILs may be a promising approach to achieve efficient ion separation and critical material recovery.
Collapse
Affiliation(s)
- Shuai Tan
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Difan Zhang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Manh-Thuong Nguyen
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Vaithiyalingam Shutthanandan
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Tamas Varga
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Roger Rousseau
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Grant E Johnson
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Vassiliki-Alexandra Glezakou
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Venkateshkumar Prabhakaran
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
16
|
Yadav S, Ibrar I, Samal AK, Altaee A, Déon S, Zhou J, Ghaffour N. Preparation of fouling resistant and highly perm-selective novel PSf/GO-vanillin nanofiltration membrane for efficient water purification. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126744. [PMID: 34333408 DOI: 10.1016/j.jhazmat.2021.126744] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/18/2021] [Accepted: 07/23/2021] [Indexed: 05/26/2023]
Abstract
To meet the rising global demand for water, it is necessary to develop membranes capable of efficiently purifying contaminated water sources. Herein, we report a series of novel polysulfone (PSf)/GO-vanillin nanofiltration membranes highly permeable, selective, and fouling resistant. The membranes are composed of two-dimensional (2D) graphite oxide (GO) layers embedded with vanillin as porogen and PSf as the base polymer. There is a growing interest in addressing the synergistic effect of GO and vanillin on improving the permeability and antifouling characteristics of membranes. Various spectroscopic and microscopic techniques were used to perform detailed physicochemical and morphological analyses. The optimized PSf16/GO0.15-vanillin0.8 membrane demonstrated 92.5% and 25.4% rejection rate for 2000 ppm magnesium sulphate (MgSO4) and sodium chloride (NaCl) solutions respectively. Antifouling results showed over 99% rejection for BSA and 93.57% flux recovery ratio (FRR). Experimental work evaluated the antifouling characteristics of prepared membranes to treat landfill leachate wastewater. The results showed 84-90% rejection for magnesium (Mg+2) and calcium (Ca+2) with 90.32 FRR. The study experimentally demonstrated that adding GO and vanillin to the polymeric matrix significantly improves fouling resistance and membrane performance. Future research will focus on molecular sieving for industrial separations and other niche applications using mixed matrix membranes.
Collapse
Affiliation(s)
- Sudesh Yadav
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Ibrar Ibrar
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Akshaya K Samal
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Ramanagara, Bangalore 562112, India
| | - Ali Altaee
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia.
| | - Sébastien Déon
- Institut UTINAM (UMR CNRS 6213), Université de Bourgogne-Franche-Comté, 16 Route de Gray, 25030 Besançon Cedex, France
| | - John Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW 2007, Australia
| | - Noreddine Ghaffour
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering (BESE), 23955-6900 Thuwal, Saudi Arabia
| |
Collapse
|
17
|
Almarzooqi K, Ashrafi M, Kanthan T, Elkamel A, Pope MA. Graphene Oxide Membranes for High Salinity, Produced Water Separation by Pervaporation. MEMBRANES 2021; 11:475. [PMID: 34206908 PMCID: PMC8305078 DOI: 10.3390/membranes11070475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022]
Abstract
Oil and gas industries produce a huge amount of wastewater known as produced water which contains diverse contaminants including salts, dissolved organics, dispersed oils, and solids making separation and purification challenging. The chemical and thermal stability of graphene oxide (GO) membranes make them promising for use in membrane pervaporation, which may provide a more economical route to purifying this water for disposal or re-use compared to other membrane-based separation techniques. In this study, we investigate the performance and stability of GO membranes cast onto polyethersulfone (PES) supports in the separation of simulated produced water containing high salinity brackish water (30 g/L NaCl) contaminated with phenol, cresol, naphthenic acid, and an oil-in-water emulsion. The GO/PES membranes achieve water flux as high as 47.8 L m-2 h-1 for NaCl solutions for membranes operated at 60 °C, while being able to reject 99.9% of the salt and upwards of 56% of the soluble organic components. The flux for membranes tested in pure water, salt, and simulated produced water was found to decrease over 72 h of testing but only to 50-60% of the initial flux in the worst-case scenario. This drop was concurrent with an increase in contact angle and C/O ratio indicating that the GO may become partially reduced during the separation process. Additionally, a closer look at the membrane crosslinker (Zn2+) was investigated and found to hydrolyze over time to Zn(OH)2 with much of it being washed away during the long-term pervaporation.
Collapse
Affiliation(s)
| | | | | | | | - Michael A. Pope
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (K.A.); (M.A.); (T.K.); (A.E.)
| |
Collapse
|