1
|
Saghdani N, El Abbouchi A, El Brahmi N, Idir A, Rachedi KO, Berredjem M, Haloui R, Elkhattabi S, Mouse HA, Ben Hadda T, Bousmina M, Zyad A, El Kazzouli S. Design, synthesis, in-vitro, in-silico, DFT and POM studies of a novel family of sulfonamides as potent anti-triple-negative breast cancer agents. Comput Biol Chem 2024; 113:108214. [PMID: 39305691 DOI: 10.1016/j.compbiolchem.2024.108214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 12/15/2024]
Abstract
In this study, a new family of ethacrynic acid-sulfonamides and indazole-sulfonamides was synthesized and tested in vitro against MDA-MB-468 triple-negative breast cancer cells and PBMCs human peripheral blood mononuclear cells, using the MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. The aim of this research is to discover novel compounds with potential therapeutic effects on breast cancer. The antiproliferative activity of these compounds showed a significant dose-dependent activity, with IC50 values ranging between 2.83 and 7.52 µM. The lead compounds 8 and 9 displayed similar IC50 values to paclitaxel with 2.83, 3.84 and 2.72 µM, respectively. This highlights the novelty and potential of these compounds as alternatives to current treatments. The binding properties of 8, 9, and paclitaxel with the active sites of the PARP1(Poly(ADP-ribose) polymérase 1) and EGFR (Epidermal growth factor receptor) proteins were analyzed by molecular docking methods showing, for PARP1 protein, binding affinities of -9.8 Kcal /mol, -10 Kcal /mol, and -9.4 Kcal /mol, respectively. While their binding affinities for EGFR protein are -7.5 Kcal/mol, -7.2 Kcal/mol and -6.9 Kcal/mol, respectively. Moreover, drug-likeness and ADMET (Absorption-distribution-metabolism-excretion-toxicity) analyses demonstrated that both molecules are orally bioavailable and have good pharmacokinetic and non-toxic profiles. DFT (Density functional theory) was also carried out on both compounds 8 and 9 additionally to POM (Petra/Osiris/Molinspiration) studies on all compounds. The outcomes of this study suggest that compounds 8 and 9 are promising candidates for further development as therapeutic agents against triple-negative breast cancer.
Collapse
Affiliation(s)
| | | | | | - Abderrazak Idir
- Agro-Industrial and Medical Biotechnology Laboratory, Team of Experimental Oncology and Natural Substances, Faculty of Sciences and Technology, Sultan Moulay Slimane University, Beni-Mellal, Morocco; Science and Technology Team, Higher School of Education and Training, Chouaîb Doukkali University, El Jadida, Morocco
| | - Khadija Otmane Rachedi
- Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Faculty of Sciences, Department of Chemistry, Badji-Mokhtar - Annaba University, Box 12, Annaba 23000, Algeria
| | - Malika Berredjem
- Laboratory of Applied Organic Chemistry, Synthesis of Biomolecules and Molecular Modelling Group, Faculty of Sciences, Department of Chemistry, Badji-Mokhtar - Annaba University, Box 12, Annaba 23000, Algeria
| | - Rachid Haloui
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, BP Box 72, Fez, Morocco
| | - Souad Elkhattabi
- Laboratory of Engineering, Systems and Applications, National School of Applied Sciences, Sidi Mohamed Ben Abdellah-Fez University, BP Box 72, Fez, Morocco
| | - Hassan Ait Mouse
- Agro-Industrial and Medical Biotechnology Laboratory, Team of Experimental Oncology and Natural Substances, Faculty of Sciences and Technology, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | | | | | - Abdelmajid Zyad
- Agro-Industrial and Medical Biotechnology Laboratory, Team of Experimental Oncology and Natural Substances, Faculty of Sciences and Technology, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | | |
Collapse
|
2
|
Al-Farraj ES, Younis AM, El-Reash GMIA. Synthesis, characterization, biological potency, and molecular docking of Co 2+, Ni 2+ and Cu 2+ complexes of a benzoyl isothiocyanate based ligand. Sci Rep 2024; 14:10032. [PMID: 38693156 PMCID: PMC11063136 DOI: 10.1038/s41598-024-58108-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/25/2024] [Indexed: 05/03/2024] Open
Abstract
The primary objective of the present study was to produce metal complexes of H4DAP ligand (N,N'-((pyridine-2,6-diylbis(azanediyl))bis(carbonothioyl))dibenzamide) derived from 2,6-diaminopyridine and benzoyl isothiocyanate with either ML or M2L stoichiometry. There are three distinct coordination complexes obtained with the formulas [Co(H2DAP)]·H2O, [Ni2(H2DAP)Cl2(H2O)2]·H2O, and [Cu(H4DAP)Cl2]·3H2O. The confirmation of the structures of all derivatives was achieved through the utilization of several analytical techniques, including FT-IR, UV-Vis, NMR, GC-MS, PXRD, SEM, TEM analysis, and QM calculations. Aiming to analyze various noncovalent interactions, topological methods such as QTAIM, NCI, ELF, and LOL were performed. Furthermore, the capacity of metal-ligand binding was examined by fluorescence emission spectroscopy. An in vitro investigation showed that the viability of MDA-MB-231 and HepG-2 cells was lower when exposed to the manufactured Cu2+ complex, in comparison to the normal cis-platin medication. The compounds were further evaluated for their in vitro antibacterial activity. The Ni2+ complex has shown promising activity against all tested pathogens, comparable to the reference drugs Gentamycin and Ketoconazole. Furthermore, a computational docking investigation was conducted to further examine the orientation, interaction, and conformation of the recently created compounds on the active site of the Bcl-2 protein.
Collapse
Affiliation(s)
- Eida S Al-Farraj
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
| | - Adel M Younis
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
3
|
El Mahdaoui A, Radi S, Draoui Y, El Massaoudi M, Ouahhoud S, Asehraou A, Bentouhami NE, Saalaoui E, Benabbes R, Robeyns K, Garcia Y. Synthesis, Crystal Structures, Genotoxicity, and Antifungal and Antibacterial Studies of Ni(II) and Cd(II) Pyrazole Amide Coordination Complexes. Molecules 2024; 29:1186. [PMID: 38474698 DOI: 10.3390/molecules29051186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/25/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
In this study, we synthesized two coordination complexes based on pyrazole-based ligands, namely 1,5-dimethyl-N-phenyl-1H-pyrazole-3-carboxamide (L1) and 1,5-dimethyl-N-propyl-1H-pyrazole-3-carboxamide (L2), with the aim to investigate bio-inorganic properties. Their crystal structures revealed a mononuclear complex [Ni(L1)2](ClO4)2 (C1) and a dinuclear complex [Cd2(L2)2]Cl4 (C2). Very competitive antifungal and anti-Fusarium activities were found compared to the reference standard cycloheximide. Additionally, L1 and L2 present very weak genotoxicity in contrast to the observed increase in genotoxicity for the coordination complexes C1 and C2.
Collapse
Affiliation(s)
- Amal El Mahdaoui
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohammed I, Oujda 60000, Morocco
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohammed I, Oujda 60000, Morocco
| | - Youssef Draoui
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohammed I, Oujda 60000, Morocco
| | - Mohamed El Massaoudi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohammed I, Oujda 60000, Morocco
| | - Sabir Ouahhoud
- Laboratory of Bioresource Biotechnology Ethnopharmacology and Health, Faculty of Sciences, University Mohammed I, Oujda 60000, Morocco
- Faculty of Medicine and Pharmacy, University Sultan Moulay Slimane, Beni Mellal 23000, Morocco
| | - Abdeslam Asehraou
- Laboratory of Bioresource Biotechnology Ethnopharmacology and Health, Faculty of Sciences, University Mohammed I, Oujda 60000, Morocco
| | - Nour Eddine Bentouhami
- Laboratory of Bioresource Biotechnology Ethnopharmacology and Health, Faculty of Sciences, University Mohammed I, Oujda 60000, Morocco
| | - Ennouamane Saalaoui
- Laboratory of Bioresource Biotechnology Ethnopharmacology and Health, Faculty of Sciences, University Mohammed I, Oujda 60000, Morocco
| | - Redouane Benabbes
- Laboratory of Bioresource Biotechnology Ethnopharmacology and Health, Faculty of Sciences, University Mohammed I, Oujda 60000, Morocco
| | - Koen Robeyns
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université Catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université Catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
4
|
Capel Berdiell I, Michaels E, Munro OQ, Halcrow MA. A Survey of the Angular Distortion Landscape in the Coordination Geometries of High-Spin Iron(II) 2,6-Bis(pyrazolyl)pyridine Complexes. Inorg Chem 2024; 63:2732-2744. [PMID: 38258555 PMCID: PMC10848207 DOI: 10.1021/acs.inorgchem.3c04138] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
Reaction of 2,4,6-trifluoropyridine with sodium 3,4-dimethoxybenzenethiolate and 2 equiv of sodium pyrazolate in tetrahydrofuran at room temperature affords 4-(3,4-dimethoxyphenylsulfanyl)-2,6-di(pyrazol-1-yl)pyridine (L), in 30% yield. The iron(II) complexes [FeL2][BF4]2 (1a) and [FeL2][ClO4]2 (1b) are high-spin with a highly distorted six-coordinate geometry. This structural deviation from ideal D2d symmetry is common in high-spin [Fe(bpp)2]2+ (bpp = di{pyrazol-1-yl}pyridine) derivatives, which are important in spin-crossover materials research. The magnitude of the distortion in 1a and 1b is the largest yet discovered for a mononuclear complex. Gas-phase DFT calculations at the ω-B97X-D/6-311G** level of theory identified four minimum or local minimum structural pathways across the distortion landscape, all of which are observed experimentally in different complexes. Small distortions from D2d symmetry are energetically favorable in complexes with electron-donating ligand substituents, including sulfanyl groups, which also have smaller energy penalties associated with the lowest energy distortion pathway. Natural population analysis showed that these differences reflect greater changes to the Fe-N{pyridyl} σ-bonding as the distortion proceeds, in the presence of more electron-rich pyridyl donors. The results imply that [Fe(bpp)2]2+ derivatives with electron-donating pyridyl substituents are more likely to undergo cooperative spin transitions in the solid state. The high-spin salt [Fe(bpp)2][CF3SO3]2, which also has a strong angular distortion, is also briefly described and included in the analysis.
Collapse
Affiliation(s)
| | - Evridiki Michaels
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Orde Q. Munro
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Malcolm A. Halcrow
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| |
Collapse
|
5
|
Draoui Y, Radi S, El Massaoudi M, Bahjou Y, Ouahhoud S, Mamri S, Ferbinteanu M, Benabbes R, Wolff M, Robeyns K, Garcia Y. Coordination Complexes Built from a Ditopic Triazole-Pyrazole Ligand with Antibacterial and Antifungal Performances. Molecules 2023; 28:6801. [PMID: 37836644 PMCID: PMC10574422 DOI: 10.3390/molecules28196801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/23/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Four mononuclear complexes (H3O){[NiL3](ClO4)3} (1), [CoL3](ClO4)2·2H2O (2), [CdL2Cl2] (3) and [CuL3](NO3)2 (4) have been prepared employing a newly synthesized 1,2,4-triazole ligand: 3-(3,5-dimethyl-1H-pyrazol-1-yl)-1H-1,2,4-triazole (L). The structures of the complexes, which crystallized in P63/m (1), P-1 (2), P1 (3), and P21/c (4), are reviewed within the context of the cooperative effect of the hydrogen bonding network and counter anions on the supramolecular formations. Moreover, within the framework of biological activity examination, these compounds showed favorable antibacterial performances compared to those of various species of bacteria, including both Gram-positive and Gram-negative strains. Significant antifungal inhibitory activity towards Fusarium oxysporum f. sp. albedinis fungi was recorded for 3 and 4 over the ligand L.
Collapse
Affiliation(s)
- Youssef Draoui
- LCAE, Department of Chemistry, Faculty of Science, University Mohamed I, P.O. Box 524, Oujda 60 000, Morocco (M.E.M.)
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Science, University Mohamed I, P.O. Box 524, Oujda 60 000, Morocco (M.E.M.)
| | - Mohamed El Massaoudi
- LCAE, Department of Chemistry, Faculty of Science, University Mohamed I, P.O. Box 524, Oujda 60 000, Morocco (M.E.M.)
| | - Yousra Bahjou
- LCAE, Department of Chemistry, Faculty of Science, University Mohamed I, P.O. Box 524, Oujda 60 000, Morocco (M.E.M.)
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université Catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium;
| | - Sabir Ouahhoud
- Laboratory of Biochemistry and Biotechnology, Department of Biology, Faculty of Science, University Mohamed I, P.O. Box 524, Oujda 60 000, Morocco
| | - Samira Mamri
- Laboratory of Biochemistry and Biotechnology, Department of Biology, Faculty of Science, University Mohamed I, P.O. Box 524, Oujda 60 000, Morocco
| | - Marilena Ferbinteanu
- Inorganic Chemistry Department, Faculty of Chemistry, University of Bucharest, Panduri Road, No. 90, 050663 Bucharest, Romania
| | - Redouane Benabbes
- Laboratory of Biochemistry and Biotechnology, Department of Biology, Faculty of Science, University Mohamed I, P.O. Box 524, Oujda 60 000, Morocco
| | - Mariusz Wolff
- Institute of Chemical Catalysis, Faculty of Chemistry, Universität Wien, Währinger Straße 38-42, 1090 Wien, Austria;
| | - Koen Robeyns
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université Catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium;
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université Catholique de Louvain, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium;
| |
Collapse
|
6
|
Draoui Y, Radi S, Tanan A, Oulmidi A, Miras HN, Benabbes R, Ouahhoudo S, Mamri S, Rotaru A, Garcia Y. Novel family of bis-pyrazole coordination complexes as potent antibacterial and antifungal agents. RSC Adv 2022; 12:17755-17764. [PMID: 35765319 PMCID: PMC9198996 DOI: 10.1039/d2ra03414j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/30/2022] Open
Abstract
A new pyrazole ligand, N,N-bis(2(1′,5,5′-trimethyl-1H,1′H-[3,3′-bipyrazol]-1-yl)ethyl)propan-1-amine (L) was synthesized and characterized by 1H-NMR, 13C-NMR, FT-IR and HRMS. The coordination ability of the ligand has been employed for the construction of a new family of coordination complexes, namely: [Cu2LCl4] (1), [ML(CH3OH)(H2O)](ClO4)2 (MII = Ni (2), Co (3)) and [FeL(NCS)2] (4). The series of complexes were characterized using single-crystal X-ray diffraction, HRMS, FT-IR and UV-visible spectroscopy. Moreover, the iron(ii) analogue was investigated by 57Fe Mössbauer spectroscopy and SQUID magnetometry. Single-crystal X-ray structures of the prepared complexes are debated within the framework of the cooperative effect of the hydrogen bonding network and counter anions on the supramolecular formations observed. Furthermore, within the context of biological activity surveys, these compounds were reviewed against different types of bacteria to validate their efficiency, including both Gram-positive as well as Gram-negative bacteria. Enhanced behaviour towards Fusarium oxysporum f. sp. albedinis fungi, were detected for 1 and 4. A new pyrazole ligand L and four coordination complexes were synthesized and characterized by different spectroscopic methods. These were found to be promising antibacterial and antifungal agents.![]()
Collapse
Affiliation(s)
- Youssef Draoui
- LCAE, Department of Chemistry, Faculty of Science, University Mohamed I P.O. Box 524 Oujda 60 000 Morocco
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Science, University Mohamed I P.O. Box 524 Oujda 60 000 Morocco
| | - Amine Tanan
- LCAE, Department of Chemistry, Faculty of Science, University Mohamed I P.O. Box 524 Oujda 60 000 Morocco
| | - Afaf Oulmidi
- LCAE, Department of Chemistry, Faculty of Science, University Mohamed I P.O. Box 524 Oujda 60 000 Morocco .,Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université Catholique de Louvain Belgium +32-10472330
| | - Haralampos N Miras
- School of Chemistry, Joseph Black Building, University of Glasgow Glasgow G12 8QQ UK
| | - Redouane Benabbes
- Laboratory of Biochemistry and Biotechnology, Department of Biology, Faculty of Science, University Mohamed I P.O. Box 524 Oujda 60 000 Morocco
| | - Sabir Ouahhoudo
- Laboratory of Biochemistry and Biotechnology, Department of Biology, Faculty of Science, University Mohamed I P.O. Box 524 Oujda 60 000 Morocco
| | - Samira Mamri
- Laboratory of Biochemistry and Biotechnology, Department of Biology, Faculty of Science, University Mohamed I P.O. Box 524 Oujda 60 000 Morocco
| | - Aurelian Rotaru
- Department of Electrical Engineering and Computer Science & Research Center MANSiD, "Stefan Cel Mare" University University Street, No. 13 Suceava 720229 Romania
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université Catholique de Louvain Belgium +32-10472330
| |
Collapse
|