1
|
Zhang YS, Gong JS, Jiang JY, Xu ZH, Shi JS. Engineering protein translocation and unfolded protein response enhanced human PH-20 secretion in Pichia pastoris. Appl Microbiol Biotechnol 2024; 108:54. [PMID: 38175240 DOI: 10.1007/s00253-023-12878-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024]
Abstract
Hyaluronidases catalyze the degradation of hyaluronan (HA), which is finding rising applications in medicine, cosmetic, and food industries. Recombinant expression of hyaluronidases in microbial hosts has been given special attention as a sustainable way to substitute animal tissue-derived hyaluronidases. In this study, we focused on optimizing the secretion of hyaluronidase from Homo sapiens in Pichia pastoris by secretion pathway engineering. The recombinant hyaluronidase was first expressed under the control of a constitutive promoter PGCW14. Then, two endoplasmic reticulum-related secretory pathways were engineered to improve the secretion capability of the recombinant strain. Signal peptide optimization suggested redirecting the protein into co-translational translocation using the ost1-proα signal sequence improved the secretion level by 20%. Enhancing the co-translational translocation by overexpressing signal recognition particle components further enhanced the secretory capability by 48%. Then, activating the unfolded protein response by overexpressing a transcriptional factor ScHac1p led to a secreted hyaluronidase activity of 4.06 U/mL, which was 2.1-fold higher than the original strain. Finally, fed-batch fermentation elevated the production to 19.82 U/mL. The combined engineering strategy described here could be applied to enhance the secretion capability of other proteins in yeast hosts. KEY POINTS: • Improving protein secretion by enhancing co-translational translocation in P. pastoris was reported for the first time. • Overexpressing Hac1p homologous from different origins improved the rhPH-20 secretion. • A 4.9-fold increase in rhPH-20 secretion was achieved after fermentation optimization and fed-batch fermentation.
Collapse
Affiliation(s)
- Yue-Sheng Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Jia-Yu Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, People's Republic of China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China.
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, People's Republic of China.
| |
Collapse
|
2
|
Shemesh P, Fishman A. Optimal fermentation conditions for growth and recombinant protein production in Pichia pastoris: Strain selection, ploidy level and carbon source. Curr Res Food Sci 2024; 9:100840. [PMID: 39328387 PMCID: PMC11424953 DOI: 10.1016/j.crfs.2024.100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/24/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
High-cell-density fermentation is a critical aspect of industrial protein production, requiring the selection of an optimal growth medium and carbon source. Pichia pastoris, a methylotrophic yeast, has been established as a widespread recombinant protein expression system in the food and pharmaceutical industries. The primary objective of this work was to create a superior platform for producing alternative proteins thus contributing to future innovation in these sectors. This study compared three wild-type strains, with two of them also analyzed in their diploid versions, using shake flasks and bioreactors. It investigated glucose and glycerol as carbon sources using mCherry as a protein model. Glycerol emerged as the preferred carbon source, resulting in over 40% increase in biomass concentrations compared to glucose across all strains. Notably, wild-type strain Y-7556 reached an exceptional biomass concentration of 244 g DCW/L in just 48 h, the highest reported to date, highlighting the potential of high-cell-density fermentation in P. pastoris. Regarding protein expression, the diploid version of Y-11430 produced >43% of purified mCherry protein after 123 h of fermentation, compared to the haploid counterpart. Our findings underscore the advantages of diploid strains, optimized fermentation media, and carbon source selection, effectively addressing crucial gaps in the literature.
Collapse
Affiliation(s)
- Paz Shemesh
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Ayelet Fishman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
3
|
Wang Y, Li R, Zhao F, Wang S, Zhang Y, Fan D, Han S. Metabolic engineering of Komagataella phaffii for the efficient utilization of methanol. Microb Cell Fact 2024; 23:198. [PMID: 39014373 PMCID: PMC11253385 DOI: 10.1186/s12934-024-02475-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Komagataella phaffii, a type of methanotrophic yeast, can use methanol, a favorable non-sugar substrate in eco-friendly bio-manufacturing. The dissimilation pathway in K. phaffii leads to the loss of carbon atoms in the form of CO2. However, the ΔFLD strain, engineered to lack formaldehyde dehydrogenase-an essential enzyme in the dissimilation pathway-displayed growth defects when exposed to a methanol-containing medium. RESULTS Inhibiting the dissimilation pathway triggers an excessive accumulation of formaldehyde and a decline in the intracellular NAD+/NADH ratio. Here, we designed dual-enzyme complex with the alcohol oxidase1/dihydroxyacetone synthase1 (Aox1/Das1), enhancing the regeneration of the formaldehyde receptor xylulose-5-phosphate (Xu5P). This strategy mitigated the harmful effects of formaldehyde accumulation and associated toxicity to cells. Concurrently, we elevated the NAD+/NADH ratio by overexpressing isocitrate dehydrogenase in the TCA cycle, promoting intracellular redox homeostasis. The OD600 of the optimized combination of the above strategies, strain DF02-1, was 4.28 times higher than that of the control strain DF00 (ΔFLD, HIS4+) under 1% methanol. Subsequently, the heterologous expression of methanol oxidase Mox from Hansenula polymorpha in strain DF02-1 resulted in the recombinant strain DF02-4, which displayed a growth at an OD600 4.08 times higher than that the control strain DF00 in medium containing 3% methanol. CONCLUSIONS The reduction of formaldehyde accumulation, the increase of NAD+/NADH ratio, and the enhancement of methanol oxidation effectively improved the efficient utilization of a high methanol concentration by strain ΔFLD strain lacking formaldehyde dehydrogenase. The modification strategies implemented in this study collectively serve as a foundational framework for advancing the efficient utilization of methanol in K. phaffii.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ruisi Li
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Fengguang Zhao
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, China
| | - Shuai Wang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yaping Zhang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Dexun Fan
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
4
|
Gao L, Meng J, Dai W, Zhang Z, Dong H, Yuan Q, Zhang W, Liu S, Wu X. Deciphering cell wall sensors enabling the construction of robust P. pastoris for single-cell protein production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:178. [PMID: 37978550 PMCID: PMC10655344 DOI: 10.1186/s13068-023-02428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Single-cell protein (SCP) production in the methylotrophic yeast Pichia pastoris has the potential to achieve a sustainable protein supply. However, improving the methanol fermentation efficiency and reducing carbon loss has been a long-standing challenge with far-reaching scientific and practical implications. Here, comparative transcriptomics revealed that PAS_0305, a gene directly associated with cell wall thickness under methanol stress, can be used as a target for unlocking cell wall sensors. Intracellular trehalose accumulation confirmed that cell wall sensors were activated after knocking out PAS_0305, which resulted in increased cell wall permeability. Genome-wide signal perturbations were transduced through the HOG module and the CWI pathway, which was confirmed to connected by Pbs2-Mkk. As a consequence of CWI pathway activation, ΔPAS_0305 elicited a rescue response of cell wall remodeling by increasing the β-1,3-glucan content and decreasing the chitin/mannose content. Remarkably, perturbations in global stress signals led to a fine-tuning of the metabolic network of ΔPAS_0305, resulting in a superior phenotype with highest crude protein and methanol conversion rate of 67.21% and 0.46 gDCW/g. Further genome-scale metabolic models were constructed to validate the experimental results, confirming that unlocking cell wall sensors resulted in maximized flux from methanol towards SCP and effectively addressing the issue of carbon loss in methanol fermentation. This work sheds new light on the potential of manipulating cellular signaling pathways to optimize metabolic networks and achieve exceptional phenotypic characteristics, providing new strategies for constructing versatile cell factories in P. pastoris.
Collapse
Affiliation(s)
- Le Gao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Jiao Meng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Wuling Dai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Zhaokun Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Haofan Dong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Qianqian Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin, 300308, China
| | - Shuguang Liu
- Beijing Chasing future Biotechnology Co., Ltd, Beijing, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center of Synthetic Biology, No. 32, Xiqi Road, Tianjin Airport Economic Park, Tianjin, 300308, China.
| |
Collapse
|
5
|
Dai W, Dong H, Zhang Z, Wu X, Bao T, Gao L, Chen X. Enhancing the Heterologous Expression of a Thermophilic Endoglucanase and Its Cost-Effective Production in Pichia pastoris Using Multiple Strategies. Int J Mol Sci 2023; 24:15017. [PMID: 37834464 PMCID: PMC10573353 DOI: 10.3390/ijms241915017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Although Pichia pastoris was successfully used for heterologous gene expression for more than twenty years, many factors influencing protein expression remain unclear. Here, we optimized the expression of a thermophilic endoglucanase from Thermothielavioides terrestris (TtCel45A) for cost-effective production in Pichia pastoris. To achieve this, we established a multifactorial regulation strategy that involved selecting a genome-editing system, utilizing neutral loci, incorporating multiple copies of the heterologous expression cassette, and optimizing high-density fermentation for the co-production of single-cell protein (SCP). Notably, even though all neutral sites were used, there was still a slight difference in the enzymatic activity of heterologously expressed TtCel45A. Interestingly, the optimal gene copy number for the chromosomal expression of TtCel45A was found to be three, indicating limitations in translational capacity, post-translational processing, and secretion, ultimately impacting protein yields in P. pastoris. We suggest that multiple parameters might influence a kinetic competition between protein elongation and mRNA degradation. During high-density fermentation, the highest protein concentration and endoglucanase activity of TtCel45A with three copies reached 15.8 g/L and 9640 IU/mL, respectively. At the same time, the remaining SCP of P. pastoris exhibited a crude protein and amino acid content of up to 59.32% and 46.98%, respectively. These findings suggested that SCP from P. pastoris holds great promise as a sustainable and cost-effective alternative for meeting the global protein demand, while also enabling the production of thermophilic TtCel45A in a single industrial process.
Collapse
Affiliation(s)
- Wuling Dai
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
| | - Haofan Dong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center for Synthetic Biology, Tianjin 300308, China; (H.D.); (Z.Z.); (X.W.); (T.B.)
| | - Zhaokun Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center for Synthetic Biology, Tianjin 300308, China; (H.D.); (Z.Z.); (X.W.); (T.B.)
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center for Synthetic Biology, Tianjin 300308, China; (H.D.); (Z.Z.); (X.W.); (T.B.)
| | - Tongtong Bao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center for Synthetic Biology, Tianjin 300308, China; (H.D.); (Z.Z.); (X.W.); (T.B.)
| | - Le Gao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center for Synthetic Biology, Tianjin 300308, China; (H.D.); (Z.Z.); (X.W.); (T.B.)
| | - Xiaoyi Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
| |
Collapse
|