1
|
Gül FH, Deveci HA, Deveci A, Akyıldırım O, Yola ML. Hydrazine imprinted electrochemical sensor based on cobalt-barium stannate nanoparticles incorporated-functionalized MWCNTs nanocomposite for hydrazine determination in tap water samples. Mikrochim Acta 2025; 192:124. [PMID: 39891799 PMCID: PMC11787222 DOI: 10.1007/s00604-025-06982-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/13/2025] [Indexed: 02/03/2025]
Abstract
A hydrazine (HYD) detection method is presented based on molecularly imprinting polymers (MIPs) and cobalt-barium stannate nanoparticles incorporated-functionalized MWCNTs (CBSNPs/f-MWCNTs) nanocomposite. Firstly, co-precipitation and sonication techniques were applied to the preparations of CBSNPs and CBSNPs/f-MWCNTs nanocomposite, respectively. Since waste generation occurs at a minimum level in these techniques, an environmentally friendly nanocomposite was prepared. After the glassy carbon electrode modification with CBSNPs and CBSNPs/f-MWCNTs nanocomposite, HYD imprinted electrodes were fabricated using cyclic voltammetry (CV) with a dispersion containing 100.0 mM pyrrole (Py) monomer and 25.0 mM HYD molecule. The resulting electrochemical sensor demonstrated a detection span of 1.0 × 10-9 M to 1.0 × 10-8 M HYD and achieved a detection limit (LOD) of 3.0 × 10-10 M. Furthermore, the developed electrochemical sensor was used for actual tap water samples, and the obtained values close to 100.00% in recovery experiments showed the high accuracy of the developed sensor in real sample analysis. Finally, the selectivity, stability, and reproducibility of the created electrochemical sensor were investigated, and the developed sensor has been demonstrated to have high stability for at least 7 weeks, high reproducibility with a relative standard deviation (RSD) value of 0.14%, and high selectivity in real samples.
Collapse
Affiliation(s)
- Fatma Hazan Gül
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Mersin University, Mersin, 33343, Turkey
| | - Hacı Ahmet Deveci
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gaziantep University, Gaziantep, 27000, Turkey
| | - Ayla Deveci
- Department of Property Protection and Security, Vocational School of Technical Sciences, Kilis7 Aralık University, Kilis, 79000, Turkey
| | - Onur Akyıldırım
- Department of Chemical Engineering, Faculty of Engineering and Architecture, Kafkas University, Kars, 36000, Turkey
| | - Mehmet Lütfi Yola
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep, 27000, Turkey.
| |
Collapse
|
2
|
Wang J, Niu K, Hou J, Zhuang Z, Zhu J, Jing X, Wang N, Xia B, Lei L. Advanced Integration of Glutathione-Functionalized Optical Fiber SPR Sensor for Ultra-Sensitive Detection of Lead Ions. MATERIALS (BASEL, SWITZERLAND) 2023; 17:98. [PMID: 38203952 PMCID: PMC10780099 DOI: 10.3390/ma17010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
It is crucial to detect Pb2+ accurately and rapidly. This work proposes an ultra-sensitive optical fiber surface plasmon resonance (SPR) sensor functionalized with glutathione (GSH) for label-free detection of the ultra-low Pb2+ concentration, in which the refractive index (RI) sensitivity of the multimode-singlemode-multimode (MSM) hetero-core fiber is largely enhanced by the gold nanoparticles (AuNPs)/Au film coupling SPR effect. The GSH is modified on the fiber as the sensing probe to capture and identify Pb2+ specifically. Its working principle is that the Pb2+ chemically reacts with deprotonated carboxyl groups in GSH through ligand bonding, resulting in the formation of stable and specific chelates, inducing the variation of the local RI on the sensor surface, which in turn leads to the SPR wavelength shift in the transmission spectrum. Attributing to the AuNPs, both the Au substrates can be fully functionalized with the GSH molecules as the probes, which largely increases the number of active sites for Pb2+ trapping. Combined with the SPR effect, the sensor achieves a sensitivity of 2.32 × 1011 nm/M and a limit of detection (LOD) of 0.43 pM. It also demonstrates exceptional specificity, stability, and reproducibility, making it suitable for various applications in water pollution, biomedicine, and food safety.
Collapse
Affiliation(s)
- Jiale Wang
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China; (J.W.); (K.N.); (J.H.); (Z.Z.); (J.Z.); (X.J.)
| | - Kunpeng Niu
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China; (J.W.); (K.N.); (J.H.); (Z.Z.); (J.Z.); (X.J.)
| | - Jianguo Hou
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China; (J.W.); (K.N.); (J.H.); (Z.Z.); (J.Z.); (X.J.)
| | - Ziyang Zhuang
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China; (J.W.); (K.N.); (J.H.); (Z.Z.); (J.Z.); (X.J.)
| | - Jiayi Zhu
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China; (J.W.); (K.N.); (J.H.); (Z.Z.); (J.Z.); (X.J.)
| | - Xinyue Jing
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China; (J.W.); (K.N.); (J.H.); (Z.Z.); (J.Z.); (X.J.)
| | - Ning Wang
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China; (J.W.); (K.N.); (J.H.); (Z.Z.); (J.Z.); (X.J.)
| | - Binyun Xia
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China; (J.W.); (K.N.); (J.H.); (Z.Z.); (J.Z.); (X.J.)
| | - Lei Lei
- Zhongshan Institute of Modern Industrial Technology of SCUT, South China University of Technology, Zhongshan 528400, China;
| |
Collapse
|
3
|
Ait Lahcen A, Lamaoui A, Amine A. Exploring the potential of molecularly imprinted polymers and metal/metal oxide nanoparticles in sensors: recent advancements and prospects. Mikrochim Acta 2023; 190:497. [PMID: 38040934 DOI: 10.1007/s00604-023-06030-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/04/2023] [Indexed: 12/03/2023]
Abstract
Metal/metal oxide nanoparticles have gained increasing attention in recent years due to their outstanding features, including optical and catalytic properties, as well as their excellent conductivity. The implementation of metal/metal oxide nanoparticles, combined with molecularly imprinted polymers (MIPs) has paved the way for a new generation of building blocks to engineer and enhance the fascinating features of advanced sensors. This review critically evaluates the impact of combining metal/metal oxide nanoparticles with MIPs in sensors. It covers synthesis strategies, advantages of coupling these materials with MIPs, and addresses questions about the selectivity of these hybrid materials. In the end, the current challenges and future perspectives of this field are discussed, with a particular focus on the potential applications of these hybrid composites in the sensor field. This review highlights the exciting opportunities of using metal/metal oxide nanoparticles along with MIPs for the development of next-generation sensors.
Collapse
Affiliation(s)
| | - Abderrahman Lamaoui
- Process Engineering and Environment Lab, Chemical Analysis & Biosensors Group, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia, Morocco
| | - Aziz Amine
- Process Engineering and Environment Lab, Chemical Analysis & Biosensors Group, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia, Morocco.
| |
Collapse
|
4
|
Tajik S, Sharifi F, Aflatoonian B, Mohammadi SZ. An Efficient Electrochemical Sensor Based on NiCo 2O 4 Nanoplates and Ionic Liquid for Determination of Favipiravir in the Presence of Acetaminophen. BIOSENSORS 2023; 13:814. [PMID: 37622900 PMCID: PMC10452330 DOI: 10.3390/bios13080814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Based on the modification of carbon paste electrode with NiCo2O4 nanoplates and 1-hexyl-3-methylimidazolium tetrafluoroborate, a new electrochemical sensing platform for the sensing of favipiravir (a drug with potential therapeutic efficacy in treating COVID-19 patients) in the presence of acetaminophen was prepared. For determining the electrochemical behavior of favipiravir, cyclic voltammetry, differential pulse voltammetry, and chronoamperometry have been utilized. When compared to the unmodified carbon paste electrode, the results of the cyclic voltammetry showed that the proposed NiCo2O4 nanoplates/1-hexyl-3-methylimidazolium tetrafluoroborate/carbon paste electrode had excellent catalytic activity for the oxidation of the favipiravir in phosphate buffer solution (pH = 7.0). This was due to the synergistic influence of 1-hexyl-3-methylimidazolium tetrafluoroborate (ionic liquid) and NiCo2O4 nanoplates. In the optimized conditions of favipiravir measurement, NiCo2O4 nanoplates/1-hexyl-3-methylimidazolium tetrafluoroborate/carbon paste electrode had several benefits, such as a wide dynamic linear between 0.004 and 115.0 µM, a high sensitivity of 0.1672 µA/µM, and a small limit of detection of 1.0 nM. Furthermore, the NiCo2O4 nanoplates/1-hexyl-3-methylimidazolium tetrafluoroborate/carbon paste electrode sensor presented a good capability to investigate the favipiravir and acetaminophen levels in real samples with satisfactory recoveries.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman P.O. Box 76169-13555, Iran; (F.S.); (B.A.)
| | - Fatemeh Sharifi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman P.O. Box 76169-13555, Iran; (F.S.); (B.A.)
| | - Behnaz Aflatoonian
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman P.O. Box 76169-13555, Iran; (F.S.); (B.A.)
| | - Sayed Zia Mohammadi
- Department of Chemistry, Payame Noor University, Tehran P.O. Box 19395-3697, Iran;
| |
Collapse
|
5
|
Negahdary M, Akira Ameku W, Gomes Santos B, dos Santos Lima I, Gomes de Oliveira T, Carvalho França M, Angnes L. Recent electrochemical sensors and biosensors for toxic agents based on screen-printed electrodes equipped with nanomaterials. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
A Novel Aptamer-Imprinted Polymer-Based Electrochemical Biosensor for the Detection of Lead in Aquatic Products. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010196. [PMID: 36615388 PMCID: PMC9822230 DOI: 10.3390/molecules28010196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Lead contamination in aquatic products is one of the main hazard factors. The aptasensor is a promising detection method for lead ion (Pb(II)) because of its selectivity, but it is easily affected by pH. The combination of ion-imprinted polymers(IIP) with aptamers may improve their stability in different pH conditions. This paper developed a novel electrochemical biosensor for Pb(II) detection by using aptamer-imprinted polymer as a recognition element. The glassy carbon electrode was modified with gold nanoparticles and aptamers. After the aptamer was induced by Pb(II) to form a G-quadruplex conformation, a chitosan-graphene oxide was electrodeposited and cross-linked with glutaraldehyde to form an imprint layer, improving the stability of the biosensor. Under the optimal experimental conditions, the current signal change (∆I) showed a linear correlation of the content of Pb(II) in the range of 0.1-2.0 μg/mL with a detection limit of 0.0796 μg/mL (S/N = 3). The biosensor also exhibited high selectivity for the determination of Pb(II) in the presence of other interfering metal ion. At the same time, the stability of the imprinted layer made the sensor applicable to the detection environment with a pH of 6.4-8.0. Moreover, the sensor was successfully applied to the detection of Pb(II) in mantis shrimp.
Collapse
|
7
|
Setiyanto H, Purwaningsih DR, Saraswaty V, Mufti N, Zulfikar MA. Highly selective electrochemical sensing based on electropolymerized ion imprinted polyaniline (IIPANI) on a bismuth modified carbon paste electrode (CPE-Bi) for monitoring Nickel(ii) in river water. RSC Adv 2022; 12:29554-29561. [PMID: 36320738 PMCID: PMC9574646 DOI: 10.1039/d2ra05196f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
Electrochemical sensors based on ion-imprinting polymers have emerged as an effective analytical tool for heavy metal tracking. This study describes a simple and facile technique for manufacturing a highly selective and sensitive electrode using an ion imprinting polymer on a bismuth-modified carbon paste electrode. The developed sensor applied aniline as a functional monomer and was used for tracking Ni(ii) ions. The proposed sensor was thoroughly characterized by scanning electron microscopy, cyclic voltammetry, and differential pulse striping anodic voltammetry. The analytical evaluation showed that the proposed sensor has a linear dynamic range (R 2 = 0.999) for the Ni(ii) concentration range of 0.01 to 1 μM and a limit of detection value of 0.00482 μM. The proposed sensor showed excellent performance when tested for tracking Ni(ii) ions in the presence of interfering ions (Cd(ii), Co(ii), Cu(ii), and Zn(ii) ions) at a 1000-fold higher concentration. When the proposed sensor was tested for tracking Ni(ii) concentration in an actual river sample, our modified sensor showed similar results compared to the atomic absorption spectroscopy evaluation (p > 0.05, n = 3). In summary, our proposed sensor is promising for monitoring Ni(ii) ions in the aquatic environment.
Collapse
Affiliation(s)
- Henry Setiyanto
- Analytical Chemistry Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesha 10 Bandung Indonesia
| | - Dwi Ratih Purwaningsih
- Analytical Chemistry Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesha 10 Bandung Indonesia
| | - Vienna Saraswaty
- Research Center for Environmental and Clean Technology, Research and Innovation Agency Republic of Indonesia Kawasan Puspiptek Building 820 Tangerang Banten Indonesia
- Collaborative Research Center for Zero Waste and Sustainability, Widya Mandala Catholic University Jl. Kalijudan 37 Surabaya 60114 Indonesia
| | - Nandang Mufti
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang Jl. Semarang 5 Malang 65145 Indonesia
| | - Muhammad Ali Zulfikar
- Analytical Chemistry Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung Jl. Ganesha 10 Bandung Indonesia
| |
Collapse
|
8
|
Ben Jaballah M, Ambily Rajendran A, Prieto-Simón B, Dridi C. Development of a sustainable nanosensor using green Cu nanoparticles for simultaneous determination of antibiotics in drinking water. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2014-2025. [PMID: 35545944 DOI: 10.1039/d2ay00419d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, a novel, cost-effective, and eco-friendly electrochemical (EC) nanosensor was fabricated for the simultaneous detection of daptomycin (DAP) and meropenem (MEROP). EC methods have been developed for the determination of antibiotics. In this context, green synthesized copper nanoparticles (CuNPs) using Moringa oleifera plant extract were used as electrode modifiers. The incorporation of CuNPs was proposed to enhance the sensitivity and allow the simultaneous quantification of both antibiotics in water. Transmission electron microscopy (TEM), dynamic light scattering (DLS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, UV-visible spectroscopy, and field emission scanning electron microscopy with energy dispersive X-ray spectroscopy (FESEM-EDX) were employed to characterize CuNPs. Physical adsorption of 20.0 nm (±2.2 nm) spherical CuNPs on the surface of screen-printed carbon electrodes (SPCEs) induced a remarkable electrocatalytic effect. Indeed, the detection of both antibiotics exhibited a limit of detection (LOD) of 0.01 g L-1. The response to various interfering species was assessed. Finally, the quantification of DAP and MEROP in drinking water was demonstrated, confirming the potential of the developed sensor for environmental monitoring applications.
Collapse
Affiliation(s)
- Menyar Ben Jaballah
- NANOMISENE Laboratory, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology CRMN of Sousse Technopole, B.P. 334, Sahloul, Sousse, 4054, Tunisia.
- High School of Sciences and Technology of Hammam Sousse, University of Sousse, Tunisia
| | - Anand Ambily Rajendran
- Department of Electronic Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Beatriz Prieto-Simón
- Department of Electronic Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain
| | - Chérif Dridi
- NANOMISENE Laboratory, LR16CRMN01, Centre for Research on Microelectronics and Nanotechnology CRMN of Sousse Technopole, B.P. 334, Sahloul, Sousse, 4054, Tunisia.
| |
Collapse
|
9
|
Tyszczuk-Rotko K, Kozak J, Czech B. Screen-Printed Voltammetric Sensors-Tools for Environmental Water Monitoring of Painkillers. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22072437. [PMID: 35408052 PMCID: PMC9003516 DOI: 10.3390/s22072437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 05/03/2023]
Abstract
The dynamic production and usage of pharmaceuticals, mainly painkillers, indicates the growing problem of environmental contamination. Therefore, the monitoring of pharmaceutical concentrations in environmental samples, mostly aquatic, is necessary. This article focuses on applying screen-printed voltammetric sensors for the voltammetric determination of painkillers residues, including non-steroidal anti-inflammatory drugs, paracetamol, and tramadol in environmental water samples. The main advantages of these electrodes are simplicity, reliability, portability, small instrumental setups comprising the three electrodes, and modest cost. Moreover, the electroconductivity, catalytic activity, and surface area can be easily improved by modifying the electrode surface with carbon nanomaterials, polymer films, or electrochemical activation.
Collapse
|