1
|
Shinde SD, Chamoli A, Uppalapati SS, Sharma J, Kumar V, Mandoli A, Kumar D. Adamantane-Quinoxalone Hybrids: Precision Chemotypes and Their Molecular Mechanisms in Acute Myeloid Leukemia. J Med Chem 2025; 68:7693-7706. [PMID: 40164542 DOI: 10.1021/acs.jmedchem.5c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Acute myeloid leukemia (AML) is an aggressive blood cancer with a poor prognosis, especially when diagnosed late. Around 10-15% of cases involve the specific chromosomal abnormality t(8;21), which drives uncontrolled myeloid cell proliferation and contributes to disease onset. Despite advances in AML research and treatment protocols, outcomes for t(8;21) AML remain stagnant, as patients receive standard, nonspecific chemotherapies. This one-size-fits-all approach targets both cancerous and healthy cells, leading to unwanted toxicity and highlighting the urgent need for targeted therapies. In this study, we present a precision chemotype based on a quinoxalone-tethered adamantane framework developed via a metal- and light-free protocol. The compound selectively inhibits t(8;21) AML cell proliferation and induces cell death by disrupting growth and metabolic pathways, as demonstrated through bioassays, RNA sequencing, and proteomic analysis. Notably, it spares other leukemic and solid cancer cells, underscoring its specificity and potential as a targeted therapy for t(8;21) AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Adamantane/chemistry
- Adamantane/pharmacology
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/chemical synthesis
- Cell Proliferation/drug effects
- Quinoxalines/chemistry
- Quinoxalines/pharmacology
- Cell Line, Tumor
- Structure-Activity Relationship
- Drug Screening Assays, Antitumor
Collapse
Affiliation(s)
- Sangita Dattatray Shinde
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)─Ahmedabad, Palaj, Gandhinagar 382355 Gujarat, India
| | - Ambika Chamoli
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)─Ahmedabad, Palaj, Gandhinagar 382355 Gujarat, India
| | - Sai Swetha Uppalapati
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)─Ahmedabad, Palaj, Gandhinagar 382355 Gujarat, India
| | - Jaidev Sharma
- Department for Computational Biology, Indraprastha Institute of Information Technology, New Delhi 110020, India
| | - Vibhor Kumar
- Department for Computational Biology, Indraprastha Institute of Information Technology, New Delhi 110020, India
| | - Amit Mandoli
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)─Ahmedabad, Palaj, Gandhinagar 382355 Gujarat, India
| | - Dinesh Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER)─Ahmedabad, Palaj, Gandhinagar 382355 Gujarat, India
| |
Collapse
|
2
|
Savekar AT, Vitnor SM, Karande VB, Waghmode SB. Transition-metal-free regioselective synthesis of spiro-oxazolidines through [3 + 2] annulation reactions of azadienes with haloalcohols. RSC Adv 2025; 15:10634-10638. [PMID: 40190646 PMCID: PMC11970363 DOI: 10.1039/d5ra01423a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Accepted: 03/14/2025] [Indexed: 04/09/2025] Open
Abstract
The transition-metal-free regioselective [3 + 2] annulation of azadienes with haloalcohols for the preparation of highly functionalized spiro-oxazolidines is experimentally simple and proceeds under mild conditions. The metal-free protocols have more significance than the metal-catalyzed ones when the toxicity associated with the metal catalyst is considered. This transformation features a broad substrate scope, good yields, and excellent regioselectivity. Moreover, large-scale synthesis and representative transformations of spiro-oxazolidines were carried out to provide additional evidence on the practicality of this approach.
Collapse
Affiliation(s)
- Amol T Savekar
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune) Ganeshkhind Pune-411007 India
| | - Sonali M Vitnor
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune) Ganeshkhind Pune-411007 India
| | - Vishal B Karande
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune) Ganeshkhind Pune-411007 India
| | - Suresh B Waghmode
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune) Ganeshkhind Pune-411007 India
| |
Collapse
|
3
|
Deva L, Stanitska M, Skhirtladze L, Ali A, Baryshnikov G, Volyniuk D, Kutsiy S, Obushak M, Cekaviciute M, Stakhira P, Grazulevicius JV. Efficient Microwave Irradiation-Assisted Synthesis of Benzodioxinoquinoxaline and Its Donor-Variegated Derivatives Enabling Long-Lived Emission and Efficient Bipolar Charge Carrier Transport. ACS MATERIALS AU 2024; 4:628-642. [PMID: 39554858 PMCID: PMC11565285 DOI: 10.1021/acsmaterialsau.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 11/19/2024]
Abstract
To enhance the usually low-charge carrier mobilities of highly twisted donor-acceptor-type compounds that exhibit thermally activated delayed fluorescence, we designed a rodlike acceptor benzodioxinoquinoxaline. This acceptor and two donor-acceptor-donor derivatives were synthesized via microwave Buchwald-Hartwig cross-coupling reactions with yields of up to 91%. The compounds exhibit three different types of photoluminescence, which is well-explained by quantum chemical calculations. Benzodioxinoquinoxaline shows blue fluorescence, with a very short lifetime of 0.64 ns. Its derivatives exhibit either green solid-state-enhanced thermally activated delayed fluorescence (SSE-TADF) or room-temperature phosphorescence (RTP) with lifetimes approaching 7 ms. When molecularly dispersed in a polymeric host, the compounds show a photoluminescence quantum yield close to 60%. The derivatives containing acridine or phenoxazine moieties exhibit bipolar charge transport. At an electric field of 5.8 × 105 V/cm, hole and electron mobilities of the phenoxazine-containing compound reach 3.2 × 10-4 and 1.5 × 10-4 cm2 V-1 s-1, respectively. Among the studied SSE-TADF-based organic light-emitting diodes, the device containing this compound shows the highest external quantum efficiency of 12.3% due to the good charge-transporting and SSE-TADF parameters of the emitter.
Collapse
Affiliation(s)
- Liliia Deva
- Department
of Electronic Engineering, Institute of Telecommunications, Radioelectronics
and Electronic Engineering, Lviv Polytechnic
National University, Stepan Bandera st. 12, Lviv 79013, Ukraine
- Kaunas
University of Technology, Baršausko 59, Kaunas 51423, Lithuania
| | - Mariia Stanitska
- Kaunas
University of Technology, Baršausko 59, Kaunas 51423, Lithuania
- Ivan
Franko National University of Lviv, Kyryla i Mefodiya 6, Lviv 79000, Ukraine
| | - Levani Skhirtladze
- Kaunas
University of Technology, Baršausko 59, Kaunas 51423, Lithuania
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping SE-60174, Sweden
| | - Amjad Ali
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping SE-60174, Sweden
| | - Glib Baryshnikov
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping SE-60174, Sweden
| | - Dmytro Volyniuk
- Kaunas
University of Technology, Baršausko 59, Kaunas 51423, Lithuania
| | - Stepan Kutsiy
- Department
of Electronic Engineering, Institute of Telecommunications, Radioelectronics
and Electronic Engineering, Lviv Polytechnic
National University, Stepan Bandera st. 12, Lviv 79013, Ukraine
| | - Mykola Obushak
- Ivan
Franko National University of Lviv, Kyryla i Mefodiya 6, Lviv 79000, Ukraine
| | | | - Pavlo Stakhira
- Department
of Electronic Engineering, Institute of Telecommunications, Radioelectronics
and Electronic Engineering, Lviv Polytechnic
National University, Stepan Bandera st. 12, Lviv 79013, Ukraine
| | | |
Collapse
|
4
|
Borah B, Chowhan LR. Photoredox-Catalyzed Cross-Coupling of In Situ Generated Quinoxalinones with Indoles for the Synthesis of Tertiary Alcohols. J Org Chem 2024; 89:14740-14754. [PMID: 39374938 DOI: 10.1021/acs.joc.4c01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
A visible light-driven photoredox-catalyzed direct C(sp2)-H functionalization of N-H free indoles with quinoxalinones generated in situ from 2,2-dihydroxy-1H-indene-1,3(2H)-dione and phenylene-1,2-diamines has been reported with the aid of Na2-Eosin Y as the photocatalyst and the Hünig base as the sacrificial electron and proton donor. The reaction provides easy access to a variety of quaternary-centered C-3 selective indole-substituted tertiary alcohols in good yields. Mechanistic studies demonstrated the realization of photoredox-catalyzed in situ quinoxalinone formation and their proton-coupled single electron reduction to the corresponding ketyl radicals followed by cross-coupling with indoles. The potential applications of the synthesized tertiary alcohols in photoacid-catalyzed carbon-carbon and carbon-sulfur bond-forming reactions feature the key findings of the present work.
Collapse
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat, Sector-30, Gandhinagar 382030, India
- Department of Chemistry, Royal School of Applied & Pure Sciences, The Assam Royal Global University, Guwahati, Assam 781035, India
| | - L Raju Chowhan
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat, Sector-30, Gandhinagar 382030, India
- School of Physical Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| |
Collapse
|
5
|
Ho TH, Mai BK, To TA, Nguyen TV. A 1,2-Aryl Migration Reaction in Visible-Light-Mediated Synthesis of Quinoxaline Derivatives: Mechanistic Studies. Org Lett 2024; 26:8842-8847. [PMID: 39365979 DOI: 10.1021/acs.orglett.4c03293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
The synthesis of quinoxaline derivatives holds critical importance in various fields ranging from pharmaceuticals to material science. In this study, we introduce a practical light-mediated method for the efficient synthesis of quinoxaline derivatives. This approach enabled the sequential two-step, one-pot synthesis of 1,2-dihydro-2,2-diaryl-substituted quinoxalines from quinones, alkynes, and diamines. By adjusting the stoichiometric ratios and reaction conditions, the method was shifted to yield 2,3-diaryl-substituted quinoxalines exclusively, demonstrating remarkable versatility and efficiency. This switch in reaction outcomes was revealed to involve an oxidative 1,2-aryl migration through a combination of thorough experimental and computational mechanistic studies.
Collapse
Affiliation(s)
- Tuan Hoang Ho
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Tuong Anh To
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Thanh Vinh Nguyen
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Xu A, Ren L, Huang J, Zhu Y, Wang G, Li C, Sun Y, Song L, You H, Chen FE. Highly enantioselective synthesis of both enantiomers of tetrahydroquinoxaline derivatives via Ir-catalyzed asymmetric hydrogenation. Chem Sci 2024:d4sc04222k. [PMID: 39246375 PMCID: PMC11376201 DOI: 10.1039/d4sc04222k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
A novel Ir-catalyzed asymmetric hydrogenation protocol for the synthesis of chiral tetrahydroquinoxaline (THQ) derivatives has been developed. By simply adjusting the reaction solvent, both enantiomers of mono-substituted chiral THQs could be selectively obtained in high yields with excellent enantioselectivities (toluene/dioxane: up to 93% yield and 98% ee (R); EtOH: up to 83% yield and 93% ee (S)). For 2,3-disubstituted chiral THQs, the cis-hydrogenation products were obtained with up to 95% yield, 20 : 1 dr, and 94% ee. Remarkably, this methodology was also applicable under continuous flow conditions, yielding gram-scale products with comparable yields and enantioselectivities (dioxane: 91% yield and 93% ee (R); EtOH: 90% yield and 87% ee (S)). Unlike previously reported Ir-catalyzed asymmetric hydrogenation protocols, this system exhibited a significant improvement as it required no additional additives. Furthermore, comprehensive mechanistic studies including deuterium-labeling experiments, control experiments, kinetic studies, and density functional theory (DFT) calculations were conducted to reveal the underlying mechanism of enantioselectivities for both enantiomers.
Collapse
Affiliation(s)
- Ana Xu
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Lanxing Ren
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
- School of Chemistry and Chemical Engineering, Hunan Province Key Laboratory for the Design and Application of Actinide Complexes, University of South China Hengyang City Hunan Province 421001 P.R. China
| | - Junrong Huang
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Yuxiang Zhu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University Shenzhen 518107 China
| | - Gang Wang
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Chaoyi Li
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Yongqiang Sun
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Lijuan Song
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Hengzhi You
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Fen-Er Chen
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University Shanghai 200433 China
| |
Collapse
|
7
|
Teng P, Li Y, Fang R, Zhu Y, Dai P, Zhang W. Design, Synthesis, Antifungal Activity, and 3D-QSAR Study of Novel Quinoxaline-2-Oxyacetate Hydrazide. Molecules 2024; 29:2501. [PMID: 38893377 PMCID: PMC11173898 DOI: 10.3390/molecules29112501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Plant pathogenic fungi pose a major threat to global food security, ecosystem services, and human livelihoods. Effective and broad-spectrum fungicides are needed to combat these pathogens. In this study, a novel antifungal 2-oxyacetate hydrazide quinoxaline scaffold as a simple analogue was designed and synthesized. Their antifungal activities were evaluated against Botrytis cinerea (B. cinerea), Altemaria solani (A. solani), Gibberella zeae (G. zeae), Rhizoctonia solani (R. solani), Colletotrichum orbiculare (C. orbiculare), and Alternaria alternata (A. alternata). These results demonstrated that most compounds exhibited remarkable inhibitory activities and possessed better efficacy than ridylbacterin, such as compound 15 (EC50 = 0.87 μg/mL against G. zeae, EC50 = 1.01 μg/mL against C. orbiculare) and compound 1 (EC50 = 1.54 μg/mL against A. alternata, EC50 = 0.20 μg/mL against R. solani). The 3D-QSAR analysis of quinoxaline-2-oxyacetate hydrazide derivatives has provided new insights into the design and optimization of novel antifungal drug molecules based on quinoxaline.
Collapse
Affiliation(s)
| | | | | | | | | | - Weihua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; (P.T.); (Y.L.); (R.F.); (Y.Z.); (P.D.)
| |
Collapse
|
8
|
Le DL, Nguyen LA, Vo NB, Nguyen TTT, Ngo QA, Retailleau P, Nguyen TB. Sodium sulfide-promoted regiodefined redox condensation of o-nitroanilines with aryl ketones to benzo[ a]phenazines and quinoxalines. Org Biomol Chem 2024; 22:1167-1171. [PMID: 38226902 DOI: 10.1039/d3ob02028b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Inexpensive sodium sulfide trihydrate was found to promote unprecedented 6e-regio-predefined redox condensation of o-nitroanilines with α-tetralones to benzo[a]phenazines. The method was also successfully extended to acetophenones and higher homologs as reducing partners to provide 2-phenylquinoxalines. Compared to traditional approaches toward benzo[a]phenazine and quinoxaline cores starting with o-phenylenediamines, the present strategy could afford these heterocycles with well-defined regiochemistry based on the structure of starting o-nitroanilines.
Collapse
Affiliation(s)
- Duc Long Le
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
| | - Le Anh Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
| | - Ngoc Binh Vo
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
| | - Thi Thu Tram Nguyen
- Department of Chemistry, Faculty of Basic Science, Can Tho University of Medicine and Pharmacy, Vietnam
| | - Quoc Anh Ngo
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av de la Terrasse, 91198 Gif-sur-Yvette, France.
| | - Thanh Binh Nguyen
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1, av de la Terrasse, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
9
|
Rani P, Prakash M, Samanta S. Organobase-catalyzed Mannich reaction of cyclic N-sulfonyl imines and 1,2-diketones: a sustainable approach to 4-(3-arylquinoxalin-2-ylmethyl)sufamidates. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
10
|
Lv Y, Lai J, Pu W, Wang J, Han W, Wang A, Zhang M, Wang X. Metal-Free Highly Regioselective 1,4-Sulfonyliodination of 1,3-Enynes. J Org Chem 2023; 88:2034-2045. [PMID: 36749192 DOI: 10.1021/acs.joc.2c02257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herein, a novel, practical, and green synthetic method using readily available 1,3-enynes with sulfonyl hydrazides and I2 through tert-butyl hydroperoxide (TBHP)-mediated 1,4-sulfonyliodination has been developed for synthesizing various tetrasubstituted allenyl iodides under metal-free conditions. Notably, the proposed method exhibits a broad substrate scope, operational simplicity, tolerance to air, high functional-group tolerance, satisfactory yields, and excellent regioselectivity as well as involves the use of cost-effective reagents such as green oxidants.
Collapse
Affiliation(s)
- Yunhe Lv
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Junrong Lai
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Weiya Pu
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Jin Wang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Wanru Han
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Axue Wang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Mengyue Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Xue Wang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| |
Collapse
|
11
|
Borah B, Patat M, Singh V, Sivaprakash M, Prasad MS, Chowhan LR. Visible-light-induced organophotocatalytic and singlet oxygen-initiated domino construction of 1,4-dihydropyridines, C-3 functionalized spiro[indoline-3,4'-pyridines] and C-11 functionalized spiro[indeno-[1,2- b]quinoxaline-11,4'-pyridines]. Org Biomol Chem 2023; 21:1518-1530. [PMID: 36695344 DOI: 10.1039/d3ob00043e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A highly efficient pot, atom, and step economical method for the construction of pharmacologically potent structurally functionalized 1,4-dihydropyridines, quaternary centered C-3 functionalized spiro[indoline-3,4'-pyridines], and C-11 functionalized spiro[indeno[1,2-b]quinoxaline-11,4'-pyridines] via rose bengal photoredox catalysis under blue LED irradiation in an aqueous medium at room temperature has been developed. The products were isolated in excellent yields within a short reaction time for a variety of functional groups under transition metal- and ligand-free energy-efficient conditions in a green solvent system with high reaction mass efficiency and process mass intensity, which are the key advantages of the current work.
Collapse
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat, Gandhinagar-382030, India.
| | - Mihir Patat
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat, Gandhinagar-382030, India.
| | - Vipin Singh
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat, Gandhinagar-382030, India.
| | - Murugesan Sivaprakash
- Asymmetric Synthesis and Catalysis Laboratory, Department of Chemistry, Central University of Tamil Nadu (CUTN), Tiruvarur-610 005, India
| | - Madavi S Prasad
- Asymmetric Synthesis and Catalysis Laboratory, Department of Chemistry, Central University of Tamil Nadu (CUTN), Tiruvarur-610 005, India
| | - L Raju Chowhan
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat, Gandhinagar-382030, India.
| |
Collapse
|
12
|
Borah B, Swain S, Patat M, Kumar B, Prajapat KK, Biswas R, Vasantha R, Chowhan LR. Brønsted acid catalyzed mechanochemical domino multicomponent reactions by employing liquid assisted grindstone chemistry. Sci Rep 2023; 13:1386. [PMID: 36697475 PMCID: PMC9876939 DOI: 10.1038/s41598-023-27948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Here, we have demonstrated a metal-free energy-efficient mechanochemical approach for expedient access to a diverse set of 2-amino-3-cyano-aryl/heteroaryl-4H-chromenes, tetrahydrospiro[chromene-3,4'-indoline], 2,2'-aryl/heteroarylmethylene-bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) as well as tetrahydro-1H-xanthen-1-one by employing the reactivity of 5,5-dimethylcyclohexane-1,3-dione/cyclohexane-1,3-dione with TsOH⋅H2O as Brønsted acid catalyst under water-assisted grinding conditions at ambient temperature. The ability to accomplish multiple C-C, C=C, C-O, and C-N bonds from readily available starting materials via a domino multicomponent strategy in the absence of metal-catalyst as well as volatile organic solvents with an immediate reduction in the cost of the transformation without necessitates complex operational procedures, features the significant highlights of this approach. The excellent yield of the products, broad functional group tolerances, easy set-up, column-free, scalable synthesis with ultralow catalyst loading, short reaction time, waste-free, ligand-free, and toxic-free, are other notable advantages of this approach. The greenness and sustainability of the protocol were also established by demonstrating several green metrics parameters.
Collapse
Affiliation(s)
- Biplob Borah
- grid.448759.30000 0004 1764 7951School of Applied Material Sciences, Centre for Applied Chemistry, Sector-30, Central University of Gujarat, Gandhinagar, 382030 India
| | - Sidhartha Swain
- grid.448759.30000 0004 1764 7951School of Applied Material Sciences, Centre for Applied Chemistry, Sector-30, Central University of Gujarat, Gandhinagar, 382030 India
| | - Mihir Patat
- grid.448759.30000 0004 1764 7951School of Applied Material Sciences, Centre for Applied Chemistry, Sector-30, Central University of Gujarat, Gandhinagar, 382030 India
| | - Bhupender Kumar
- grid.448759.30000 0004 1764 7951School of Applied Material Sciences, Centre for Applied Chemistry, Sector-30, Central University of Gujarat, Gandhinagar, 382030 India
| | - Ketan Kumar Prajapat
- grid.448759.30000 0004 1764 7951School of Applied Material Sciences, Centre for Applied Chemistry, Sector-30, Central University of Gujarat, Gandhinagar, 382030 India
| | - Rathindranath Biswas
- grid.428366.d0000 0004 1773 9952Department of Chemistry, Central University of Punjab, Bathinda, 151401 India
| | - R. Vasantha
- grid.448759.30000 0004 1764 7951School of Applied Material Sciences, Centre for Applied Chemistry, Sector-30, Central University of Gujarat, Gandhinagar, 382030 India
| | - L. Raju Chowhan
- grid.448759.30000 0004 1764 7951School of Applied Material Sciences, Centre for Applied Chemistry, Sector-30, Central University of Gujarat, Gandhinagar, 382030 India
| |
Collapse
|
13
|
Lu MZ, Goh J, Maraswami M, Jia Z, Tian JS, Loh TP. Recent Advances in Alkenyl sp 2 C-H and C-F Bond Functionalizations: Scope, Mechanism, and Applications. Chem Rev 2022; 122:17479-17646. [PMID: 36240299 DOI: 10.1021/acs.chemrev.2c00032] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alkenes and their derivatives are featured widely in a variety of natural products, pharmaceuticals, and advanced materials. Significant efforts have been made toward the development of new and practical methods to access this important class of compounds by selectively activating the alkenyl C(sp2)-H bonds in recent years. In this comprehensive review, we describe the state-of-the-art strategies for the direct functionalization of alkenyl sp2 C-H and C-F bonds until June 2022. Moreover, metal-free, photoredox, and electrochemical strategies are also covered. For clarity, this review has been divided into two parts; the first part focuses on currently available alkenyl sp2 C-H functionalization methods using different alkene derivatives as the starting materials, and the second part describes the alkenyl sp2 C-F bond functionalization using easily accessible gem-difluoroalkenes as the starting material. This review includes the scope, limitations, mechanistic studies, stereoselective control (using directing groups as well as metal-migration strategies), and their applications to complex molecule synthesis where appropriate. Overall, this comprehensive review aims to document the considerable advancements, current status, and emerging work by critically summarizing the contributions of researchers working in this fascinating area and is expected to stimulate novel, innovative, and broadly applicable strategies for alkenyl sp2 C-H and C-F bond functionalizations in the coming years.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jeffrey Goh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Manikantha Maraswami
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
14
|
Borah B, Swain S, Patat M, Chowhan LR. Recent advances and prospects in the organocatalytic synthesis of quinazolinones. Front Chem 2022; 10:991026. [PMID: 36186594 PMCID: PMC9515322 DOI: 10.3389/fchem.2022.991026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022] Open
Abstract
Quinazolinone, a bicyclic compound, comprises a pyrimidine ring fused at 4´ and 8´ positions with a benzene ring and constitutes a substantial class of nitrogen-containing heterocyclic compounds on account of their frequent existence in the key fragments of many natural alkaloids and pharmaceutically active components. Consequently, tremendous efforts have been subjected to the elegant construction of these compounds and have recently received immense interest in synthetic and medicinal chemistry. The domain of synthetic organic chemistry has grown significantly over the past few decades for the construction of highly functionalized therapeutically potential complex molecular structures with the aid of small organic molecules by replacing transition-metal catalysis. The rapid access to this heterocycle by means of organocatalytic strategy has provided new alternatives from the viewpoint of synthetic and green chemistry. In this review article, we have demonstrated a clear presentation of the recent organocatalytic synthesis of quinazolinones of potential therapeutic interests and covered the literature from 2015 to date. In addition to these, a clear presentation and understanding of the mechanistic aspects, features, and limitations of the developed reaction methodologies have been highlighted.
Collapse
|
15
|
Borah B, Patat M, Swain S, Chowhan LR. Recent Advances and Prospects in the Transition‐Metal‐Free Synthesis of 1,4‐Dihydropyridines. ChemistrySelect 2022. [DOI: 10.1002/slct.202202484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences Centre for Applied Chemistry Central University of Gujarat, Sector-30 Gandhinagar India- 382030
| | - Mihir Patat
- School of Applied Material Sciences Centre for Applied Chemistry Central University of Gujarat, Sector-30 Gandhinagar India- 382030
| | - Sidhartha Swain
- School of Applied Material Sciences Centre for Applied Chemistry Central University of Gujarat, Sector-30 Gandhinagar India- 382030
| | - L. Raju Chowhan
- School of Applied Material Sciences Centre for Applied Chemistry Central University of Gujarat, Sector-30 Gandhinagar India- 382030
| |
Collapse
|
16
|
Nguyen LA, Nguyen TTT, Ngo QA, Nguyen TB. Sulfur‐Catalyzed Oxidative Condensation of Aryl Alkyl Ketones with o‐Phenylenediamines: Access to Quinoxalines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Quoc Anh Ngo
- Vietnam Academy of Science and Technology VIET NAM
| | | |
Collapse
|
17
|
|
18
|
Borah B, Chowhan LR. Ultrasound-assisted transition-metal-free catalysis: a sustainable route towards the synthesis of bioactive heterocycles. RSC Adv 2022; 12:14022-14051. [PMID: 35558846 PMCID: PMC9092113 DOI: 10.1039/d2ra02063g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022] Open
Abstract
Heterocycles of synthetic and natural origin are a well-established class of compounds representing a broad range of organic molecules that constitute over 60% of drugs and agrochemicals in the market or research pipeline. Considering the vast abundance of these structural motifs, the development of chemical processes providing easy access to novel complex target molecules by introducing environmentally benign conditions with the main focus on improving the cost-effectiveness of the chemical transformation is highly demanding and challenging. Accordingly, sonochemistry appears to be an excellent alternative and a highly feasible environmentally benign energy input that has recently received considerable and steadily increasing interest in organic synthesis. However, the involvement of transition-metal-catalyst(s) in a chemical process often triggers an unintended impact on the greenness or sustainability of the transformation. Consequently, enormous efforts have been devoted to developing metal-free routes for assembling various heterocycles of medicinal interest, particularly under ultrasound irradiation. The present review article aims to demonstrate a brief overview of the current progress accomplished in the ultrasound-assisted synthesis of pharmaceutically relevant diverse heterocycles using transition-metal-free catalysis.
Collapse
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| | - L Raju Chowhan
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Gandhinagar-382030 India
| |
Collapse
|
19
|
Borah B, Bora J, Ramesh P, Chowhan LR. Sonochemistry in an organocatalytic domino reaction: an expedient multicomponent access to structurally functionalized dihydropyrano[3,2- b]pyrans, spiro-pyrano[3,2- b]pyrans, and spiro-indenoquinoxaline-pyranopyrans under ambient conditions. RSC Adv 2022; 12:12843-12857. [PMID: 35496344 PMCID: PMC9048984 DOI: 10.1039/d2ra01917e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
A highly convenient and sustainable one-pot approach for the diversely-oriented synthesis of a variety of medicinally privileged amino-substituted 4,8-dihydropyrano[3,2-b]pyran-3-carbonitriles, and spiro[indoline-3,4'-pyrano[3,2-b]pyran]-3-carbonitrile/carboxylate derivatives on the basis of a domino three-component reaction of readily available carbonyl compounds including aryl aldehydes or isatins, active methylene compounds, and kojic acid as a Michael donor using secondary amine catalyst l-proline under ultrasound irradiation in aqueous ethanolic solution at ambient temperature has been developed. This methodology can involve the assembly of C-C, C[double bond, length as m-dash]C, C-O, C-N bonds via a one-pot operation, and following this protocol, a series of novel amino-substituted spiro[indeno[1,2-b]quinoxaline-11,4-pyrano[3,2-b]pyran]-3-carbonitrile/carboxylates have been synthesized. The practical utility of this method was found to be very efficient for scale-up reaction and other useful transformations. The methodology provides significant advantages including mild reaction conditions, energy-efficiency, short reaction time, fast reaction, simple work-up procedure, broad functional group tolerances, utilization of reusable catalyst, green solvent system, being metal-free, ligand-free, waste-free, inexpensive, etc. Excellent chemical yields have been achieved without using column chromatography. To address the issues of green and more sustainable chemistry, several metrics including Atom Economy (AE), Reaction Mass Efficiency (RME), Atom efficiency, E-factor, Process Mass Intensity (PMI), and Carbon Efficiency (CE) have been quantified for the present methodology that indicates the greenness of the present protocol.
Collapse
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Sector-30 Gandhinagar-382030 Gujarat India
| | - Jahnu Bora
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Sector-30 Gandhinagar-382030 Gujarat India
| | - Pambala Ramesh
- CSIR-Indian Institute of Chemical Technology Hyderabad-50007 India
| | - L Raju Chowhan
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Sector-30 Gandhinagar-382030 Gujarat India
| |
Collapse
|
20
|
Borah B, Dwivedi KD, Kumar B, Chowhan LR. Recent advances in the microwave- and ultrasound-assisted green synthesis of coumarin-heterocycles. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103654] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
21
|
Direct C‐2 arylation of quinoxaline with arylhydrazine salts as arylation reagents. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|