1
|
Zou Y, Ohkura K, Ortiz-Anaya I, Kimura R, Bianco A, Nishina Y. Graphene Oxide as a Self-Carbocatalyst to Facilitate the Ring-Opening Polymerization of Glycidol for Efficient Polyglycerol Grafting. Chemistry 2025; 31:e202404400. [PMID: 39714895 DOI: 10.1002/chem.202404400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Grafting carbon-based nanomaterials (CNMs) with polyglycerol (PG) improves their application potentials in biomedicine and electronics. Although "grafting from" method offers advantages over "grafting to" one in terms of operability and versatility, little is known about the reaction process of glycidol with the surface groups onto CNMs. By using graphene oxide (GO) as a multi-functional model material, we examined the reactivity of the surface groups on GO toward glycidol molecules via a set of model reactions. We reveal that carboxyl groups spontaneously react with the epoxide ring with no need of catalyst, while GO catalyzes the reactions of hydroxyl groups with the epoxide of glycidol. In addition, the hydroxyl group of glycidol can open the epoxide in the basal plane of GO. The subsequent polymerization of PG is supposed to propagate at the primary and/or the secondary hydroxyl groups, generating a ramified PG macromolecule with random branch-on-branch topology. In addition, ketones, benzyl esters and aromatic ethers are found not to react with glycidol even in the presence of GO, while the aldehydes are easily oxidized into carboxyl groups under ambient condition, behaving then as the carboxyl groups. Our findings pose the foundation for understanding the polymerization mechanism of PG on CNMs.
Collapse
Affiliation(s)
- Yajuan Zou
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Kentaro Ohkura
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Israel Ortiz-Anaya
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Ryota Kimura
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Alberto Bianco
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Yuta Nishina
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| |
Collapse
|
2
|
Głowacki MJ, Niedziałkowski P, Ryl J, Prześniak-Welenc M, Sawczak M, Prusik K, Ficek M, Janik M, Pyrchla K, Olewniczak M, Bojarski K, Czub J, Bogdanowicz R. Enhancing colloidal stability of nanodiamond via surface modification with dendritic molecules for optical sensing in physiological environments. J Colloid Interface Sci 2024; 675:236-250. [PMID: 38970910 DOI: 10.1016/j.jcis.2024.06.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
Pre-treatment of diamond surface in low-temperature plasma for oxygenation and in acids for carboxylation was hypothesized to promote the branching density of the hyperbranched glycidol polymer. This was expected to increase the homogeneity of the branching level and suppress interactions with proteins. As a result, composite nanodiamonds with reduced hydrodynamic diameters that are maintained in physiological environments were anticipated. Surfaces of 140-nm-sized nanodiamonds were functionalized with oxygen and carboxyl groups for grafting of hyperbranched dendritic polyglycerol via anionic ring-opening polymerization of glycidol. The modification was verified with Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy. Dynamic light scattering investigated colloidal stability in pH-diverse (2-12) solutions, concentrated phosphate-buffered saline, and cell culture media. Thermogravimetric analysis of nanodiamonds-protein incubations examined non-specific binding. Fluorescence emission was tested across pH conditions. Molecular dynamics simulations modeled interparticle interactions in ionic solutions. The hyperbranched polyglycerol grafting increased colloidal stability of nanodiamonds across diverse pH, high ionic media like 10 × concentrated phosphate-buffered saline, and physiological media like serum and cell culture medium. The hyperbranched polyglycerol suppressed non-specific protein adsorption while maintaining intensive fluorescence of nanodiamonds regardless of pH. Molecular modelling indicated reduced interparticle interactions in ionic solutions correlating with the improved colloidal stability.
Collapse
Affiliation(s)
- Maciej J Głowacki
- Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Metrology and Optoelectronics, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Paweł Niedziałkowski
- University of Gdańsk, Faculty of Chemistry, Department of Analytical Chemistry, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Jacek Ryl
- Gdańsk University of Technology, Faculty of Applied Physics and Mathematics, Institute of Nanotechnology and Materials Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Marta Prześniak-Welenc
- Gdańsk University of Technology, Faculty of Applied Physics and Mathematics, Institute of Nanotechnology and Materials Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mirosław Sawczak
- Polish Academy of Sciences, The Szewalski Institute of Fluid-Flow Machinery, The Centre for Plasma and Laser Engineering, Fiszera 14, 80-231 Gdańsk, Poland
| | - Klaudia Prusik
- Gdańsk University of Technology, Faculty of Applied Physics and Mathematics, Institute of Nanotechnology and Materials Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Mateusz Ficek
- Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Metrology and Optoelectronics, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Monika Janik
- Warsaw University of Technology, Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw, Poland
| | - Krzysztof Pyrchla
- Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Metrology and Optoelectronics, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Michał Olewniczak
- Gdańsk University of Technology, Faculty of Chemistry, Department of Physical Chemistry, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Krzysztof Bojarski
- Gdańsk University of Technology, Faculty of Chemistry, Department of Physical Chemistry, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Jacek Czub
- Gdańsk University of Technology, Faculty of Chemistry, Department of Physical Chemistry, Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Robert Bogdanowicz
- Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Metrology and Optoelectronics, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
3
|
Linson N, Jacob J, Kuriakose S. Iron Oxide-Doped Carbon Nanoparticles Stabilised with Functionally Modified Hyperbranched Polyglycerol for Cd 2+ Sensing and Photodynamic Antibacterial Therapeutic Applications. J Fluoresc 2024:10.1007/s10895-024-03769-8. [PMID: 38902497 DOI: 10.1007/s10895-024-03769-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024]
Abstract
Nanoscale materials are being developed from individual particles to multi-component assemblies, with carbon nanomaterials being particularly useful in bioimaging, sensing, and optoelectronics due to their unique optical properties, enhanced by surface passivation and chemical doping. Noble metals are commonly used in conjunction with carbon-based nanomaterials for the synthesis of nanohybrids. Carbon-based materials can function as photosensitizers and effective carriers in photodynamic therapy, enabling the use of combined treatment approaches. The hydrophobicity and agglomeration tendency of carbon nanoparticles pose a drawback. This study is an attempt to overcome these limitations, which involved the synthesis of iron oxide-doped carbon nanoparticles through the carbonisation of citric acid and hexamethylene tetramine, followed by doping them with iron oxide. The as synthesized iron oxide-doped carbon nanoparticles were stabilised with fluorescently modified hyperbranched polyglycerol. The efficacy of these nanoparticles in photodynamic antibacterial therapy and Cd (II) ion sensing was investigated. The selectivity of stabilised nanoparticles against Cd2+ ion is presented in the current study. The current study also compares the antibacterial efficacy of undoped, iron oxide-doped and stabilised nanoparticle systems. The possible toxic effects of the synthesised nanosystems were investigated in order to assess their suitability for biomedical applications and establish their safety profile.
Collapse
Affiliation(s)
- Nihita Linson
- Research and Postgraduate Department of Chemistry, St. Thomas College Palai, Mahatma Gandhi University, Kottayam, 686574, Kerala, India
| | - Jissy Jacob
- Research and Postgraduate Department of Chemistry, St. Thomas College Palai, Mahatma Gandhi University, Kottayam, 686574, Kerala, India
| | - Sunny Kuriakose
- Research and Postgraduate Department of Chemistry, St. Thomas College Palai, Mahatma Gandhi University, Kottayam, 686574, Kerala, India.
| |
Collapse
|
4
|
Pagnacco C, Kravicz MH, Sica FS, Fontanini V, González de San Román E, Lund R, Re F, Barroso-Bujans F. In Vitro Biocompatibility and Endothelial Permeability of Branched Polyglycidols Generated by Ring-Opening Polymerization of Glycidol with B(C 6F 5) 3 under Dry and Wet Conditions. Biomacromolecules 2024; 25:3583-3595. [PMID: 38703359 PMCID: PMC11170947 DOI: 10.1021/acs.biomac.4c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Polyglycidol or polyglycerol (PG), a polyether widely used in biomedical applications, has not been extensively studied in its branched cyclic form (bcPG), despite extensive research on hyperbranched PG (HPG). This study explores the biomedical promise of bcPG, particularly its ability to cross the blood-brain barrier (BBB). We evaluate in vitro biocompatibility, endothelial permeability, and formation of branched linear PG (blPG) as topological impurities in the presence of water. Small angle X-ray scattering in solution revealed a fractal dimension of approximately two for bcPG and the mixture bc+blPG, suggesting random branching. Comparisons of cytotoxicity and endothelial permeability between bcPG, bc+blPG, and HPG in a BBB model using hCMEC/D3 cells showed different biocompatibility profiles and higher endothelial permeability for HPG. bcPG showed a tendency to accumulate around cell nuclei, in contrast to the behavior of HPG. This study contributes to the understanding of the influence of polymer topology on biological behavior.
Collapse
Affiliation(s)
- Carlo
Andrea Pagnacco
- Donostia
International Physics Center (DIPC), Paseo Manuel Lardizábal 4, Donostia−San Sebastián, 20018, Spain
- Centro
de Física de Materiales, CSIC-UPV/EHU, Paseo Manuel Lardizábal 5, Donostia−San Sebastián, 20018, Spain
| | - Marcelo H. Kravicz
- School
of Medicine and Surgery, University of Milano-Bicocca, Milano, 20854, Italy
| | | | - Veronica Fontanini
- School
of Medicine and Surgery, University of Milano-Bicocca, Milano, 20854, Italy
- Department
of Life Sciences, University of Trieste, Trieste, 34127, Italy
| | - Estibaliz González de San Román
- POLYMAT,
Joxe Mari Korta Center, University of the
Basque Country UPV/EHU, Avda. Tolosa 72, Donostia−San Sebastián, 20018, Spain
| | - Reidar Lund
- Department
of Chemistry, University of Oslo, Postboks 1033, Blindern, Oslo, 0315, Norway
- Hylleraas
Centre for Quantum Molecular Sciences, University
of Oslo, Postboks 1033,
Blindern, Oslo, 0315, Norway
| | - Francesca Re
- School
of Medicine and Surgery, University of Milano-Bicocca, Milano, 20854, Italy
| | - Fabienne Barroso-Bujans
- Donostia
International Physics Center (DIPC), Paseo Manuel Lardizábal 4, Donostia−San Sebastián, 20018, Spain
- Centro
de Física de Materiales, CSIC-UPV/EHU, Paseo Manuel Lardizábal 5, Donostia−San Sebastián, 20018, Spain
- IKERBASQUE
- Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
| |
Collapse
|
5
|
Rikiyama K, Maehara N, Abe H, Nishimura Y, Yukawa H, Kaminaga K, Igarashi R, Osada K. Quantification of Poly(ethylene glycol) Crowding on Nanodiamonds toward Quantum Biosensor for Improved Prevention Effects on Protein Adsorption and Lung Accumulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9471-9480. [PMID: 38649324 DOI: 10.1021/acs.langmuir.3c03988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Nanometer-sized diamonds (NDs) containing nitrogen vacancy centers have garnered significant attention as potential quantum sensors for reading various types of physicochemical information in vitro and in vivo. However, NDs intrinsically aggregate when placed in biological environments, hampering their sensing capacities. To address this issue, the grafting of hydrophilic polymers onto the surface of NDs has been demonstrated considering their excellent ability to prevent protein adsorption. To this end, crowding of the grafted chains plays a crucial role because it is directly associated with the antiadsorption effect of proteins; however, its quantitative evaluation has not been reported previously. In this study, we graft poly(ethylene glycol) (PEG) with various molecular weights onto NDs, determine their crowding using a gas adsorption technique, and disclose the cross-correlation between the pH in the grafting reaction, crowding density, molecular weight, and the prevention effect on protein adsorption. PEG-grafted NDs exhibit a pronounced effect on the prevention of lung accumulation after intravenous injection in mice. PEG crowding was compared to that calculated by using a diameter determined by dynamic light scattering (DLS) assuming a sphere.
Collapse
Affiliation(s)
- Kazuaki Rikiyama
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Nanami Maehara
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo, Tokyo 112-8681, Japan
| | - Hiroshi Abe
- Foundational Quantum Technology Research Directorate, National Institutes for Quantum Science and Technology (QST), 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Yushi Nishimura
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Hiroshi Yukawa
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inageku, Chiba 263-8522, Japan
| | - Kiichi Kaminaga
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ryuji Igarashi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kensuke Osada
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
6
|
Ma X, Gao M, Zhang X, Wang Y, Li G. Polymer-Derived Carbon Nanofiber and Its Photocurrent-Switching Responses of Carbon Nanofiber/Cu Nanocomposite in Wide Ranges of Excited Light Wavelength. Polymers (Basel) 2023; 15:3528. [PMID: 37688154 PMCID: PMC10489919 DOI: 10.3390/polym15173528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Transformation into electric or photoelectric functional composite from non-conjugated polymers is a great challenge due to the presence of a large number of locative states. In this paper, carbon nanofiber was synthesized via hydrothermal carbonization utilizing carboxymethyl cellulose as a precursor, and the carbon nanofiber/Cu nanocomposite was constructed for defect passivation. The results indicated that the resulting nanocomposites exhibited good absorbance in visible light range and NIR (near-infrared). The photoconductive responses to typical weak visible light (650 nm et al.) and NIR (808, 980, and 1064 nm) were studied based on Au gap electrodes on flexible polymer substrates. The results exhibited that the nanocomposite's solid thick film showed photocurrent-switching behaviors to visible light and NIR, the switch-ratio was depending on the wavelengths and power of incident lights. The positive and negative photoconductance responses phenomenon was observed in different compositions and changing excited wavelengths. Their photophysical mechanisms were discussed. This illustrated that the nanocomposites easily produce free electrons and holes via low power of incident light. Free electrons and holes could be utilized for different purposes in multi-disciplinary fields. It would be a potential application in broadband flexible photodetectors, artificial vision, simulating retina, and bio-imaging from visible light to NIR. This is a low-cost and green approach to obtain nanocomposite exhibiting good photocurrent response from the visible range to NIR.
Collapse
Affiliation(s)
- Xingfa Ma
- Center of Advanced Functional Materials, School of Environmental and Material Engineering, Yantai University, Yantai 264005, China; (M.G.); (X.Z.)
| | - Mingjun Gao
- Center of Advanced Functional Materials, School of Environmental and Material Engineering, Yantai University, Yantai 264005, China; (M.G.); (X.Z.)
| | - Xintao Zhang
- Center of Advanced Functional Materials, School of Environmental and Material Engineering, Yantai University, Yantai 264005, China; (M.G.); (X.Z.)
| | - You Wang
- National Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China; (Y.W.); (G.L.)
| | - Guang Li
- National Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China; (Y.W.); (G.L.)
| |
Collapse
|
7
|
Rafiee Z, Bodaghi A, Omidi S. Fabrication of a photo- and pH-sensitive micelle by self-assembly of azobenzene polyglycerol for anticancer drug delivery. MONATSHEFTE FUR CHEMIE 2023. [DOI: 10.1007/s00706-023-03036-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Perumal G, Pappuru S, Doble M, Chakraborty D, Shajahan S, Abu Haija M. Controlled Synthesis of Dendrite-like Polyglycerols Using Aluminum Complex for Biomedical Applications. ACS OMEGA 2023; 8:2377-2388. [PMID: 36687077 PMCID: PMC9851026 DOI: 10.1021/acsomega.2c06761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
This work describes a one-pot synthesis of dendrite-like hyperbranched polyglycerols (HPGs) via a ring-opening multibranching polymerization (ROMBP) process using a bis(5,7-dichloro-2-methyl-8-quinolinolato)methyl aluminum complex (1) as a catalyst and 1,1,1-tris(hydroxymethyl)propane/trimethylol propane (TMP) as an initiator. Single-crystal X-ray diffraction (XRD) analysis was used to elucidate the molecular structure of complex 1. Inverse-gated (IG)13C NMR analysis of HPGs showed degree of branching between 0.50 and 0.57. Gel permeation chromatography (GPC) analysis of the HPG polymers provided low, medium, and high-molecular weight (M n) polymers ranging from 14 to 73 kDa and molecular weight distributions (M w/M n) between 1.16 and 1.35. The obtained HPGs exhibited high wettability with water contact angle between 18 and 21° and T g ranging between -39 and -55 °C. Notably, ancillary ligand-supported aluminum complexes as catalysts for HPG polymerization reactions have not been reported to date. The obtained HPG polymers in the presence of the aluminum complex (1) can be used for various biomedical applications. Here, nanocomposite electrospun fibers were fabricated with synthesized HPG polymer. The nanofibers were subjected to cell culture experiments to evaluate cytocompatibility behavior with L929 and MG63 cells. The cytocompatibility studies of HPG polymer and nanocomposite scaffold showed high cell viability and spreading. The study results concluded, synthesized HPG polymers and composite nanofibers can be used for various biomedical applications.
Collapse
Affiliation(s)
- Govindaraj Perumal
- Department
of Conservative Dentistry and Endodontics, Saveetha Dental College & Hospital, Saveetha Institute of Medical
and Technical Sciences (SIMATS), Chennai600 077, India
| | - Sreenath Pappuru
- Faculty
of Chemical Engineering and the Grand Technion Energy Program, Technion-Israel Institute of Technology, Haifa320003, Israel
| | - Mukesh Doble
- Department
of Conservative Dentistry and Endodontics, Saveetha Dental College & Hospital, Saveetha Institute of Medical
and Technical Sciences (SIMATS), Chennai600 077, India
| | - Debashis Chakraborty
- Department
of Chemistry, Indian Institute of Technology
Madras, Chennai600 036, India
| | - Shanavas Shajahan
- Department
of Chemistry, Khalifa University of Science
and Technology, Abu Dhabi127788, United
Arab Emirates
| | - Mohammad Abu Haija
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, Abu Dhabi127788, United Arab Emirates
| |
Collapse
|
9
|
Xie J, Qi S, Ran Q, Dong L. The Preparation of a Novel Hyperbranched Antifouling Material and Application in the Protection of Marine Concrete. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8402. [PMID: 36499901 PMCID: PMC9741258 DOI: 10.3390/ma15238402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Marine fouling on concrete has become one of the severest problems that damage the surface and even cause internal corrosion of marine concrete. Dissimilarly to the previous abuse of toxic antifoulants, developing hydrophobic waterborne antifouling materials could be regarded as one of the most environment-friendly and potential directions to protect marine concrete. However, the insufficient hydrophobicity, antifouling, and mechanical properties limit their application. Herein, we reported a series of hybrid coatings combining hyperbranched polyglycerol (HPG) decorated waterborne fluoro silicone polyurethane (H) and HPG-grafted graphene oxide (G-HPG) that improve the hydrophobicity, antifouling, and mechanical properties. The hybrid materials were modified by the hyperbranched polyglycerol synthesized based on the anionic-ring-opening reaction between glycerol and ethylene glycol or polyethylene glycol. Remarkably, the hydrophobicity (115.19°) and antifouling properties (BSA absorption of 2.33 μg/cm2 and P. tricornutum attachment of 1.289 × 104 CFU/cm2) of the materials could be developed by the modification of HPG with higher generation numbers and backbone molecular weights. Moreover, the mechanical properties negligibly decreased (tensile strength decreased from 11.29 MPa to 10.49 MPa, same pencil hardness and adhesion grade as H of 2H and grade 2). The results revealed that the HPG of higher generation numbers and backbone molecular weights could benefit materials with enhanced antifouling properties and hydrophobicity. The method of hyperbranched modification can be regarded as potentially effective in developing the durability and antifouling properties of marine antifouling materials.
Collapse
Affiliation(s)
- Junhao Xie
- School of Material Science and Engineering, Southeast University, Nanjing 211189, China
| | - Shuai Qi
- State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Research Institute of Building Science, Nanjing 211103, China
| | - Qianping Ran
- School of Material Science and Engineering, Southeast University, Nanjing 211189, China
| | - Lei Dong
- School of Material Science and Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
10
|
The convergence of in silico approach and nanomedicine for efficient cancer treatment; in vitro investigations on curcumin loaded multifunctional graphene oxide nanocomposite structure. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|