1
|
Jiang R, Nilam M, Piselli C, Winterhalter M, Guo DS, Yu SY, Hennig A, Nau WM. Vesicle-Encapsulated Chemosensing Ensembles Allow Monitoring of Transmembrane Uptake Coupled with Enzymatic Reactions. Angew Chem Int Ed Engl 2025; 64:e202425157. [PMID: 39785152 DOI: 10.1002/anie.202425157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Compartmentalized models with coupled catalytic networks are considered as "protocells" in the context of research related to the origin of life. To model the kinetics of a simple cellular uptake-metabolism process, we use a compartmentalized protocell system that combines liposome-encapsulated intravesicular reporter pairs with co-encapsulated enzymes to monitor the membrane transport of a substrate (analyte uptake) and its subsequent enzymatic reaction inside the vesicles (metabolism to the product). The intravesicular chemosensing ensembles consist of the macrocycles cucurbit[7]uril or p-sulfonatocalix[4]arene and matching fluorescent dyes to set up suitable reporter pairs. When these macrocycle/dye reporter pairs are co-encapsulated with enzymes (trypsin, protein kinase A, or butyrylcholinesterase), it is possible to monitor first the transport of different substrates (polylysine, protamine, H-LRRWSLG-OH, or butyrylcholine) through added pores (outer membrane proteins F and C), with synthetic carriers (amphiphilic calixarenes), or by direct permeation (only for butyrylcholine). The subsequent enzymatic conversions of the substrates after they have entered the corresponding protocells can be monitored as consecutive reactions. The new type of in vitro assays can be applied to different enzymes and analytes, affording a comprehensive chemosensing system of high chemical complexity.
Collapse
Affiliation(s)
- Ruixue Jiang
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Mohamed Nilam
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Claudio Piselli
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Mathias Winterhalter
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Sin-Yi Yu
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Andreas Hennig
- Center for Cellular Nanoanalytics (CellNanOs), Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| | - Werner M Nau
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| |
Collapse
|
2
|
Marcos PM, Berberan-Santos MN. Recent Advances in Calixarene-Based Fluorescent Sensors for Biological Applications. SENSORS (BASEL, SWITZERLAND) 2024; 24:7181. [PMID: 39598958 PMCID: PMC11597938 DOI: 10.3390/s24227181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024]
Abstract
Due to their structural features, macrocyclic compounds such as calixarenes, conjugated with a variety of fluorophores have led to the development of fluorescent probes for numerous applications. This review covers the recent advances (from 2009 to date) made in calixarene-based fluorescent sensors and their biological applications. In addition to the fluorescence mechanisms used to signal the analyte binding, this article focuses mainly on the detection of biological relevant ions, on the selective sensing of biomolecules, such as amino acids, enzymes, drugs and other organic compounds, and on intracellular imaging. Calixarene-containing fluorescent nanoparticles and nanoaggregates for imaging and drug delivery are also described. Finally, this review presents some conclusions and future perspectives in this field.
Collapse
Affiliation(s)
- Paula M. Marcos
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Edifício C8, 1749-016 Lisboa, Portugal
- Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Mário N. Berberan-Santos
- IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| |
Collapse
|
3
|
Alnajjar MA, Hennig A. Fluorescence Turn-ON Displacement Assays with Cucurbit[7]uril-Thiophenylpyridinium Complexes as Host-Dye Reporter Pairs. Org Lett 2024; 26:9126-9131. [PMID: 39401389 DOI: 10.1021/acs.orglett.4c03469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The N-methyl-4-thiophenylpyridinium cation (ThioPy) is a high affinity (Kd ca. 5 nM), fast-exchanging fluorescent probe for cucurbit[7]uril (CB7). The CB7/ThioPy complex shows a unique fluorescence turn-ON response upon displacement by an analyte in sensing application. This enabled the development of a real-time fluorescence assay with the MRFA peptide for the protease thermolysin, which is also suitable for the cancer biomarker cathepsin B. Moreover, liposome encapsulation of CB7/ThioPy in large unilamellar vesicles (LUVs) provided mechanistic insight into intravesicular dye displacement reactions.
Collapse
Affiliation(s)
- Mohammad A Alnajjar
- Center for Cellular Nanoanalytics (CellNanOs) and Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, 49069 Osnabrück, Germany
| | - Andreas Hennig
- Center for Cellular Nanoanalytics (CellNanOs) and Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, 49069 Osnabrück, Germany
| |
Collapse
|
4
|
Selinger AJ, Krämer J, Poarch E, Hore D, Biedermann F, Hof F. Mixed host co-assembled systems for broad-scope analyte sensing. Chem Sci 2024; 15:12388-12397. [PMID: 39118638 PMCID: PMC11304549 DOI: 10.1039/d4sc02788d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/29/2024] [Indexed: 08/10/2024] Open
Abstract
Here we report a systems chemistry oriented approach for developing information-rich mixed host chemosensors. We show that co-assembling macrocyclic hosts from different classes, DimerDye sulfonatocalix[4]arenes and cucurbit[n]urils, effectively increases the scope of analyte binding interactions and therefore, sensory outputs. This simple dynamic strategy exploits cross-reactive noncovalent host-host complexation interactions while integrating a reporter dye, thereby producing emergent photophysical responses when an analyte interacts with either host. We first demonstrate the advantages of mixed host co-assembled chemosensors through an increased detection range of hydrophobic, cationic, neutral, and anionic drugs. We then implement mixed host sensors in an array-based platform for the differentiation of illicit drugs, including cannabinoids, benzodiazepine analogs, opiates, anesthetics, amphetamine, and common adulterating substances. Finally, the potential of this approach is applied to profiling real-world multi-component illicit street drug samples, proving to be more effective than classical sensor arrays.
Collapse
Affiliation(s)
- Allison J Selinger
- Department of Chemistry, University of Victoria Victoria BC V8P 5C2 Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria Victoria BC V8W 2Y2 Canada
| | - Joana Krämer
- Department of Chemistry, University of Victoria Victoria BC V8P 5C2 Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria Victoria BC V8W 2Y2 Canada
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Kaiserstraße 12 76131 Karlsruhe Germany
| | - Eric Poarch
- Canadian Institute for Substance Use Research, University of Victoria Victoria BC V8W 2Y2 Canada
| | - Dennis Hore
- Department of Chemistry, University of Victoria Victoria BC V8P 5C2 Canada
- Canadian Institute for Substance Use Research, University of Victoria Victoria BC V8W 2Y2 Canada
| | - Frank Biedermann
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Kaiserstraße 12 76131 Karlsruhe Germany
| | - Fraser Hof
- Department of Chemistry, University of Victoria Victoria BC V8P 5C2 Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria Victoria BC V8W 2Y2 Canada
| |
Collapse
|
5
|
Basu S, Hendler-Neumark A, Bisker G. Rationally Designed Functionalization of Single-Walled Carbon Nanotubes for Real-Time Monitoring of Cholinesterase Activity and Inhibition in Plasma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309481. [PMID: 38358018 DOI: 10.1002/smll.202309481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/25/2024] [Indexed: 02/16/2024]
Abstract
Enzymes play a pivotal role in regulating numerous bodily functions. Thus, there is a growing need for developing sensors enabling real-time monitoring of enzymatic activity and inhibition. The activity and inhibition of cholinesterase (CHE) enzymes in blood plasma are fluorometrically monitored using near-infrared (NIR) fluorescent single-walled carbon nanotubes (SWCNTs) as probes, strategically functionalized with myristoylcholine (MC)- the substrate of CHE. A significant decrease in the fluorescence intensity of MC-suspended SWCNTs upon interaction with CHE is observed, attributed to the hydrolysis of the MC corona phase of the SWCNTs by CHE. Complementary measurements for quantifying choline, the product of MC hydrolysis, reveal a correlation between the fluorescence intensity decrease and the amount of released choline, rendering the SWCNTs optical sensors with real-time feedback in the NIR biologically transparent spectral range. Moreover, when synthetic and naturally abundant inhibitors inhibit the CHE enzymes present in blood plasma, no significant modulations of the MC-SWCNT fluorescence are observed, allowing effective detection of CHE inhibition. The rationally designed SWCNT sensors platform for monitoring of enzymatic activity and inhibition in clinically relevant samples is envisioned to not only advance the field of clinical diagnostics but also deepen further understanding of enzyme-related processes in complex biological fluids.
Collapse
Affiliation(s)
- Srestha Basu
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Adi Hendler-Neumark
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, 6997801, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
- Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
6
|
Basu S, Hendler-Neumark A, Bisker G. Monitoring Enzyme Activity Using Near-Infrared Fluorescent Single-Walled Carbon Nanotubes. ACS Sens 2024; 9:2237-2253. [PMID: 38669585 PMCID: PMC11129355 DOI: 10.1021/acssensors.4c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Enzymes serve as pivotal biological catalysts that accelerate essential chemical reactions, thereby influencing a variety of physiological processes. Consequently, the monitoring of enzyme activity and inhibition not only yields crucial insights into health and disease conditions but also forms the basis of research in drug discovery, toxicology, and the understanding of disease mechanisms. In this context, near-infrared (NIR) fluorescent single-walled carbon nanotubes (SWCNTs) have emerged as effective tools for tracking enzyme activity and inhibition through diverse strategies. This perspective explores the physicochemical attributes of SWCNTs that render them well-suited for such monitoring. Additionally, we delve into the various strategies developed so far for successfully monitoring enzyme activity and inhibition, emphasizing the distinctive features of each principle. Furthermore, we contrast the benefits of SWCNT-based NIR probes with conventional gold standards in monitoring enzyme activity. Lastly, we highlight the current challenges faced in this field and suggest potential solutions to propel it forward. This perspective aims to contribute to the ongoing progress in biodiagnostics and seeks to engage the wider community in developing and applying enzymatic assays using SWCNTs.
Collapse
Affiliation(s)
- Srestha Basu
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adi Hendler-Neumark
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel
Aviv University, Tel Aviv 6997801, Israel
- Center
for Light-Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
7
|
Atkinson KM, Smith BD. Fluorescent ratiometric supramolecular tandem assays for phosphatase and phytase enzymes. Org Biomol Chem 2024; 22:1714-1720. [PMID: 38318943 PMCID: PMC10911839 DOI: 10.1039/d3ob02014b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/28/2024] [Indexed: 02/07/2024]
Abstract
Ratiometric fluorescent assays have a built-in correction factor which enhances assay accuracy and reliability. We have developed fluorescent ratiometric supramolecular tandem assays for phosphatase and phytase enzymes using a mixture of three molecular components. One of the molecules is a tetra-cationic fluorescence quencher called CalixPyr which can bind and quench the polyanionic pyrene fluorophore, CMP, that emits at 430 nm. Polyphosphates can disrupt the CMP/CalixPyr complex and alter the fluorescence intensity (responsive signal). CalixPyr has no effect on the fluorescence emission of cationic pentamethine cyanine fluorophore, cCy5, which emits at 665 nm and acts as a non-responsive reference signal. The continuous ratiometric fluorescent assay for alkaline phosphatase monitored hydrolytic consumption of adenosine triphosphate (ATP). The continuous ratiometric fluorescent assay for phytase activity monitored hydrolytic consumption of phytate. With further development this latter assay may be useful for high throughput assessment of phytase activity in individual batches of fortified animal feed. It is likely that the three-molecule mixture (CMP, CalixPyr, cCy5) can become a general assay platform for other enzymes that catalyse addition/removal of phosphate groups from appropriate molecular substrates.
Collapse
Affiliation(s)
- Kirk M Atkinson
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, IN 46556, USA.
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, IN 46556, USA.
| |
Collapse
|
8
|
Jiang R, Nilam M, Hennig A, Nau WM. Dual-Color Real-Time Chemosensing of a Compartmentalized Reaction Network Involving Enzyme-Induced Membrane Permeation of Peptides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306922. [PMID: 37703578 DOI: 10.1002/adma.202306922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/04/2023] [Indexed: 09/15/2023]
Abstract
The design of synthetic systems with interrelated reaction sequences that model incipient biological complexity is limited by physicochemical tools that allow the direct monitoring of the individual processes in real-time. To mimic a simple digestion-resorption sequence, the authors have designed compartmentalized liposomal systems that incorporate extra- and intravesicular chemosensing ensembles. The extravesicular reporter pair consists of cucurbit[7]uril and methylene blue to monitor the enzymatic cleavage of short enkephalin-related peptides by thermolysin through a switch-off fluorescence response ("digestion"). Because the substrate is membrane-impermeable, but the dipeptide product is permeable, uptake of the latter into the pre-formed liposomes occurs as a follow-up process. The intravesicular chemosensing ensemble consists of i) cucurbit[8]uril, 2-anilinonaphthalene-6-sulfonic acid, and methyl viologen or ii) cucurbit[7]uril and berberine to monitor the uptake ("resorption") of the enzymatic products through the liposomal membranes by i) a switch-on or ii) a switch-off fluorescence response. The dyes are designed to allow selective optical excitation and read-out of the extra- and intravesicular dyes, which allow for dual-color chemosensing and, therefore, kinetic discrimination of the two sequential reactions.
Collapse
Affiliation(s)
- Ruixue Jiang
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Mohamed Nilam
- Center for Cellular Nanoanalytics (CellNanOs), Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| | - Andreas Hennig
- Center for Cellular Nanoanalytics (CellNanOs), Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| | - Werner M Nau
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| |
Collapse
|
9
|
Park MG, Kim SY, Lee CJ. DMSO-tolerant ornithine decarboxylase (ODC) tandem assay optimised for high-throughput screening. J Enzyme Inhib Med Chem 2023; 38:309-318. [DOI: 10.1080/14756366.2022.2150186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Mingu Gordon Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Suyeon Yellena Kim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea
| | - C. Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea
| |
Collapse
|
10
|
Li M, Yu H, Li Y, Li X, Huang S, Liu X, Weng G, Xu L, Hou T, Guo DS, Wang Y. Rational design of supramolecular self-assembly sensor for living cell imaging of HDAC1 and its application in high-throughput screening. Biosens Bioelectron 2023; 242:115716. [PMID: 37820557 DOI: 10.1016/j.bios.2023.115716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
Supramolecular chemistry offers new insights in bioimaging, but specific tracking of enzyme in living cells via supramolecular host-guest reporter pair remains challenging, largely due to the interference caused by the complex cellular environment on the binding between analytes and hosts. Here, by exploiting the principle of supramolecular tandem assay (STA) and the classic host-guest reporter pair (p-sulfonatocalix[4]arene (SC4A) and lucigenin (LCG)) and rationally designing artificial peptide library to screen sequence with high affinity of the target enzyme, we developed a "turn-on" fluorescent sensing system for intracellular imaging of histone deacetylase 1 (HDAC1), which is a potential therapeutic target for various diseases, including cancer, neurological, and cardiovascular diseases. Based on computational simulations and experimental validations, we verified that the deacetylated peptide by HDAC1 competed LCG, freeing it from the SC4A causing fluorescence increase. Enzyme kinetics experiments were further conducted to prove that this assay could detect HDAC1 specifically with high sensitivity (the LOD value is 0.015 μg/mL, ten times lower than the published method). This system was further applied for high-throughput screening of HDAC1 inhibitors over a natural compound library containing 147 compounds, resulting in the identification of a novel HDAC1 down-regulator (Ginsenoside RK3). Our results demonstrated the sensitivity and robustness of the assay system towards HDAC1. It should serve as a valuable tool for biochemical studies and drug screening.
Collapse
Affiliation(s)
- Min Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huijuan Yu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yiran Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shiqing Huang
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road 487372, Singapore
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road 487372, Singapore
| | - Gaoqi Weng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Future Health Laboratory Innovation Center of Yangtze River Delta Zhejiang University, Jiaxing 314100, China.
| |
Collapse
|
11
|
Miskolczy Z, Megyesi M, Biczók L. Role of kinetic stabilization in the inclusion of the pharmaceutically important chelerythrine and nitidine alkaloids in cucurbit[7]uril. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|