1
|
Zou JX, Chang MR, Kuznetsov NA, Kee JX, Babak MV, Ang WH. Metal-based immunogenic cell death inducers for cancer immunotherapy. Chem Sci 2025; 16:6160-6187. [PMID: 40160356 PMCID: PMC11949249 DOI: 10.1039/d4sc08495k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Immunogenic cell death (ICD) has attracted enormous attention over the past decade due to its unique characteristics in cancer cell death and its role in activating innate and adaptive immune responses against tumours. Many efforts have been dedicated to screening, identifying and discovering ICD inducers, resulting in the validation of several based on metal complexes. In this review, we provide a comprehensive summary of current metal-based ICD inducers, their molecular mechanisms for triggering ICD initiation and subsequent protective antitumour immune responses, along with considerations for validating ICD both in vitro and in vivo. We also aim to offer insights into the future development of metal complexes with enhanced ICD-inducing properties and their applications in potentiating antitumour immunity.
Collapse
Affiliation(s)
- Jiao Xia Zou
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
| | - Meng Rui Chang
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
| | - Nikita A Kuznetsov
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR 999077 People's Republic of China
| | - Jia Xuan Kee
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR 999077 People's Republic of China
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore 4 Science Drive 2 Singapore 117544 Singapore
- NUS Graduate School - Integrative Science and Engineering Programme (ISEP), National University of Singapore 21 Lower Kent Ridge Rd Singapore 119077 Singapore
| |
Collapse
|
2
|
Srishti K, Negi O, Hota PK. Recent Development on Copper-Sensor and its Biological Applications: A Review. J Fluoresc 2025; 35:1273-1313. [PMID: 38416283 DOI: 10.1007/s10895-024-03587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/14/2024] [Indexed: 02/29/2024]
Abstract
Metal ion recognition is one of the most prospective research topics in the field of chemical sensors due to its wide range of clinical, biological and environmental applications. In this context, hydrazones are well known compounds that exhibit metal sensing and several biological properties due to the presence of N=CH- bond. Some of the biological properties includes anti-cancer, anti-tumor, anti-oxidant, anti-microbial activities. Hydrazones are also used as a ligand to detect metal ion as well as to generate metal complexes that exhibit medicinal properties. Thus, in recent years, many attempts were made to develop novel ligands with enhanced metal sensing and medicinal properties. In this review, some of the recent development on the hydrazones and their copper complexes are covered from the last few years from 2015-2023. These includes significance of copper ions, synthesis, biological properties, mechanism and metal sensing properties of some of the copper complexes were discussed.
Collapse
Affiliation(s)
- Km Srishti
- Department of Chemistry, School of Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Oseen Negi
- Department of Chemistry, School of Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Prasanta Kumar Hota
- Department of Chemistry, School of Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India.
| |
Collapse
|
3
|
Li SR, Tao SY, Li Q, Hu CY, Sun ZJ. Harnessing nanomaterials for copper-induced cell death. Biomaterials 2025; 313:122805. [PMID: 39250865 DOI: 10.1016/j.biomaterials.2024.122805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024]
Abstract
Copper (Cu), an essential micronutrient with redox properties, plays a pivotal role in a wide array of pathological and physiological processes across virtually all cell types. Maintaining an optimal copper concentration is critical for cellular survival: insufficient copper levels disrupt respiration and metabolism, while excess copper compromises cell viability, potentially leading to cell death. Similarly, in the context of cancer, copper exhibits a dual role: appropriate amount of copper can promote tumor progression and be an accomplice, yet beyond befitting level, copper can bring about multiple types of cell death, including autophagy, apoptosis, ferroptosis, immunogenic cell death, pyroptosis, and cuproptosis. These forms of cell death are beneficial against cancer progression; however, achieving precise copper regulation within tumors remains a significant challenge in the pursuit of effective cancer therapies. The emergence of nanodrug delivery systems, distinguished by their precise targeting, controlled release, high payload capacity, and the ability to co-deliver multiple agents, has revitalized interest in exploiting copper's precise regulatory capabilities. Nevertheless, there remains a dearth of comprehensive review of copper's bidirectional effects on tumorigenesis and the role of copper-based nanomaterials in modulating tumor progression. This paper aims to address this gap by elucidating the complex role in cancer biology and highlighting its potential as a therapeutic target. Through an exploration of copper's dualistic nature and the application of nanotechnology, this review seeks to offer novel insights and guide future research in advancing cancer treatment.
Collapse
Affiliation(s)
- Su-Ran Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, Hubei, PR China
| | - Shi-Yue Tao
- Bathune School of Stomatology, Jilin University, Changchun, 130021, Jilin, PR China
| | - Qian Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, Hubei, PR China
| | - Chuan-Yu Hu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, Hubei, PR China.
| |
Collapse
|
4
|
Gao L, Zhang A. Copper-instigated modulatory cell mortality mechanisms and progress in oncological treatment investigations. Front Immunol 2023; 14:1236063. [PMID: 37600774 PMCID: PMC10433393 DOI: 10.3389/fimmu.2023.1236063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Copper, a transition metal, serves as an essential co-factor in numerous enzymatic active sites and constitutes a vital trace element in the human body, participating in crucial life-sustaining activities such as energy metabolism, antioxidation, coagulation, neurotransmitter synthesis, iron metabolism, and tetramer deposition. Maintaining the equilibrium of copper ions within biological systems is of paramount importance in the prevention of atherosclerosis and associated cardiovascular diseases. Copper induces cellular demise through diverse mechanisms, encompassing reactive oxygen species responses, apoptosis, necrosis, pyroptosis, and mitochondrial dysfunction. Recent research has identified and dubbed a novel regulatory cell death modality-"cuprotosis"-wherein copper ions bind to acylated proteins in the tricarboxylic acid cycle of mitochondrial respiration, resulting in protein aggregation, subsequent downregulation of iron-sulfur cluster protein expression, induction of proteotoxic stress, and eventual cell death. Scholars have synthesized copper complexes by combining copper ions with various ligands, exploring their significance and applications in cancer therapy. This review comprehensively examines the multiple pathways of copper metabolism, copper-induced regulatory cell death, and the current status of copper complexes in cancer treatment.
Collapse
Affiliation(s)
- Lei Gao
- Medical Imaging Department, Huabei Petroleum Administration Bureau General Hospital, Renqiu, China
| | - Anqi Zhang
- Oncology Department, Huabei Petroleum Administration Bureau General Hospital, Renqiu, China
| |
Collapse
|
5
|
Liu S, Zhang S, Liu Y, Yang X, Zheng G. Comprehensive analysis of cuproptosis-related long noncoding RNA for predicting prognostic and diagnostic value and immune landscape in colorectal adenocarcinoma. Hum Genomics 2023; 17:22. [PMID: 36915193 PMCID: PMC10009981 DOI: 10.1186/s40246-023-00469-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/04/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Cuproptosis, as a copper-induced mitochondrial cell death, has attracted extensive attention recently, especially in cancer. Although some key regulatory genes have been identified in cuproptosis, the related lncRNAs have not been further studied. Exploring the prognostic and diagnostic value of cuproptosis-related lncRNAs (CRLs) in colon adenocarcinoma and providing guidance for individualized immunotherapy for patients are of great significance. RESULTS A total of 2003 lncRNAs were correlated with cuproptosis genes and considered as CRLs. We screened 33 survival-associated CRLs and established a prognostic signature base on 7 CRLs in the training group. The patients in the low-risk group had better outcomes in both training group (P < 0.001) and test group (P = 0.016). More exciting, our model showed good prognosis prediction in both stage I-II (P = 0.020) and stage III-IV (P = 0.001). The nomogram model could further improve the accuracy of prognosis prediction. Interestingly, glucose-related metabolic pathways, which were closely related to cuproptosis, were enriched in the low-risk group. Meanwhile, the immune infiltration scores were lower in the high-risk group. The high-risk group was more sensitive to OSI.906 and ABT.888, while low-risk group was more sensitive to Sorafenib. Three lncRNAs, FALEC, AC083967.1 and AC010997.4, were highly expressed in serum of COAD patients, and the AUC was 0.772, 0.726 and 0.714, respectively, indicating their valuable diagnostic value. CONCLUSIONS Our research constructed a prognostic signature based on 7 CRLs and found three promising diagnostic markers for COAD patients. Our results provided a reference to the personalized immunotherapy strategies.
Collapse
Affiliation(s)
- Shichao Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China.,Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Shoucai Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China.,Department of Clinical Laboratory, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Yingjie Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China.,Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China
| | - XiaoRong Yang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, China
| | - Guixi Zheng
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China. .,Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, China.
| |
Collapse
|
6
|
Passeri G, Northcote-Smith J, Suntharalingam K. Payload Release Profile and Anti-Cancer Stem Cell Properties of Compositionally Different Polymeric Nanoparticles Containing a Copper(II) Complex. Molecules 2023; 28:molecules28062506. [PMID: 36985478 PMCID: PMC10051418 DOI: 10.3390/molecules28062506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Cancer stem cells (CSCs) are linked to tumour relapse and metastasis, the main reason for cancer-related deaths. The application of polymeric nanoparticles as drug delivery systems to target CSCs is relatively unexplored. Here, we report the encapsulation of a CSC-potent copper(II) complex 1 by two compositionally different methoxy poly(ethylene glycol)-b-poly(D,L-lactic-co-glycolic) acid (PEG–PLGA) copolymers. Specifically, we used PEG–PLGA (5000:10,000 Da, 1:1 LA:GA) and PEG–PLGA (5000:10,000 Da, 4:1 LA:GA) polymers to prepare spherical nanoparticle formulations 1:1 NP15 and 4:1 NP15, respectively, both with a 15% feed of 1. The two formulations show distinct biophysical and in vitro properties. For example, (i) 4:1 NP15 displays a slower payload release profile than 1:1 NP15 in physiologically relevant solutions, (ii) 4:1 NP15 exhibits statistically greater potency towards breast CSCs than bulk breast cancer cells grown in monolayers, whereas 1:1 NP15 is equally potent towards breast CSCs and bulk breast cancer cells, and (iii) 4:1 NP15 shows significantly greater potency towards three-dimensionally cultured mammospheres than 1:1 NP15. This study shows that the release profile and anti-breast CSC properties of PEG–PLGA nanoparticle formulations (containing 1) can be perturbed (and possibly controlled) by modifying the proportion of glycolic acid within the PLGA component.
Collapse
|
7
|
Passeri G, Vincent RA, Xiao Z, Northcote-Smith J, Suntharalingam K. Encapsulation and Delivery of an Osteosarcoma Stem Cell Active Gallium(III)-Diflunisal Complex Using Polymeric Micelles. ChemMedChem 2023; 18:e202200599. [PMID: 36533570 DOI: 10.1002/cmdc.202200599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/22/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022]
Abstract
Here we report the encapsulation of an osteosarcoma stem cell (OSC) potent gallium(III)-diflunisal complex 1 into polymeric nanoparticles, and its delivery into osteosarcoma cells. At the optimum feed (20 %, 1 NP20 ), nanoparticle encapsulation of 1 enhances potency towards bulk osteosarcoma cells and OSCs (cultured in monolayer and three-dimensional systems). Strikingly, the nanoparticle formulation exhibits up to 5645-fold greater potency towards OSCs than frontline anti-osteosarcoma drugs, doxorubicin and cisplatin. The nanoparticle formulation evokes a similar mechanism of action as the payload, which bodes well for future translation. Specifically, the nanoparticle formulation induces nuclear DNA damage, cyclooxygenase-2 downregulation, and caspase-dependent apoptosis. To the best of our knowledge, this is the first study to demonstrate that polymeric nanoparticles can be used to effectively deliver an OSC-active metal complex into osteosarcoma cells.
Collapse
Affiliation(s)
- Ginevra Passeri
- School of Chemistry, University of Leicester, LE1 7RH, Leicester, UK
| | - Ruby A Vincent
- School of Chemistry, University of Leicester, LE1 7RH, Leicester, UK
| | - Zhiyin Xiao
- School of Chemistry, University of Leicester, LE1 7RH, Leicester, UK.,College of Biological, Chemical Sciences and Engineering, Jiaxing University, 314001, Jiaxing, Zhejiang Province, P. R. China
| | | | | |
Collapse
|
8
|
Chang MR, Rusanov DA, Arakelyan J, Alshehri M, Asaturova AV, Kireeva GS, Babak MV, Ang WH. Targeting emerging cancer hallmarks by transition metal complexes: Cancer stem cells and tumor microbiome. Part I. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
9
|
Tsymbal S, Li G, Agadzhanian N, Sun Y, Zhang J, Dukhinova M, Fedorov V, Shevtsov M. Recent Advances in Copper-Based Organic Complexes and Nanoparticles for Tumor Theranostics. Molecules 2022; 27:7066. [PMID: 36296659 PMCID: PMC9611640 DOI: 10.3390/molecules27207066] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 08/19/2023] Open
Abstract
Treatment of drug-resistant forms of cancer requires consideration of their hallmark features, such as abnormal cell death mechanisms or mutations in drug-responding molecular pathways. Malignant cells differ from their normal counterparts in numerous aspects, including copper metabolism. Intracellular copper levels are elevated in various cancer types, and this phenomenon could be employed for the development of novel oncotherapeutic approaches. Copper maintains the cell oxidation levels, regulates the protein activity and metabolism, and is involved in inflammation. Various copper-based compounds, such as nanoparticles or metal-based organic complexes, show specific activity against cancer cells according to preclinical studies. Herein, we summarize the major principles of copper metabolism in cancer cells and its potential in cancer theranostics.
Collapse
Affiliation(s)
- Sergey Tsymbal
- International Institute of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 197101 Saint Petersburg, Russia
| | - Ge Li
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, 2000 Xiang’an Road East, Xiamen 361101, China
- Xiamen Key Laboratory for Endocrine-Related Cancer Precision Medicine, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
| | - Nikol Agadzhanian
- International Institute of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 197101 Saint Petersburg, Russia
| | - Yuhao Sun
- Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jiazhennan Zhang
- Day-Care Department, Xinjiang Medical University, Urumqi 830011, China
| | - Marina Dukhinova
- International Institute of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 197101 Saint Petersburg, Russia
| | - Viacheslav Fedorov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Maxim Shevtsov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
10
|
Zhu Z, Zhao Q, Song W, Weng J, Li S, Guo T, Zhu C, Xu Y. A novel cuproptosis-related molecular pattern and its tumor microenvironment characterization in colorectal cancer. Front Immunol 2022; 13:940774. [PMID: 36248908 PMCID: PMC9561547 DOI: 10.3389/fimmu.2022.940774] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Cuproptosis, or copper-induced cell death, has been reported as a novel noncanonical form of cell death in recent times. However, the potential roles of cuproptosis in the alteration of tumor clinicopathological features and the formation of a tumor microenvironment (TME) remain unclear. In this study, we comprehensively analyzed the cuproptosis-related molecular patterns of 1,274 colorectal cancer samples based on 16 cuproptosis regulators. The consensus clustering algorithm was conducted to identify cuproptosis-related molecular patterns and gene signatures. The ssGSEA and ESTIMATE algorithms were used to evaluate the enrichment levels of the infiltrated immune cells and tumor immune scores, respectively. The cuproptosis score was established to assess the cuproptosis patterns of individuals with principal component analysis algorithms based on the expression of cuproptosis-related genes. Three distinct cuproptosis patterns were confirmed and demonstrated to be associated with distinguishable biological processes and clinical prognosis. Interestingly, the three cuproptosis patterns were revealed to be consistent with three immune infiltration characterizations: immune-desert, immune-inflamed, and immune-excluded. Enhanced survival, activation of immune cells, and high tumor purity were presented in patients with low cuproptosisScore, implicating the immune-inflamed phenotype. In addition, low scores were linked to high tumor mutation burden, MSI-H and high CTLA4 expression, showing a higher immune cell proportion score (IPS). Taken together, our study revealed a novel cuproptosis-related molecular pattern associated with the TME phenotype. The formation of cuproptosisScore will further strengthen our understanding of the TME feature and instruct a more personalized immunotherapy schedule in colorectal cancer.
Collapse
Affiliation(s)
- Zhonglin Zhu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiuyan Zhao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wang Song
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junyong Weng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shanbao Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianan Guo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Congcong Zhu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China,*Correspondence: Ye Xu,
| |
Collapse
|
11
|
Zuo H, Tao J, Wang M, Xie X, Sun M. A novel immunochemotherapy based on immunogenicity-activated and immunosuppression-reversed biomimetic nanoparticles. RSC Adv 2022; 12:28104-28112. [PMID: 36320259 PMCID: PMC9527569 DOI: 10.1039/d2ra04326b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/25/2022] [Indexed: 01/24/2023] Open
Abstract
Studies show that infiltrated myeloid-derived suppressor cells (MDSCs) are vital in the immunosuppressive tumor microenvironment and account for lymphoma refractoriness and recurrence. Here, we developed a biomimetic nanoplatform (PM-PLGA-DOX/GEM) in which platelet membranes (PM) wrap PLGA nanoparticles co-loaded with doxorubicin (DOX) and gemcitabine (GEM). PM-PLGA-DOX/GEM would accumulate in tumor tissues because of the enhanced permeation and retention (EPR) effect and the tumor cell-induced platelet aggregation (TCIPA) effect. GEM could eliminate the MDSCs in tumor tissues, thereby reversing the immunosuppressive tumor microenvironment. Furthermore, DOX could invoke the immunogenic cell death (ICD) of lymphoma cells. Consequently, numerous T cells were recruited and activated to improve the therapeutic effects. This study will offer a potential platform for clinical treatment of lymphoma and other solid tumors.
Collapse
Affiliation(s)
- Huaqin Zuo
- Department of Hematology, Northern Jiangsu People's Hospital Affiliated to Yangzhou UniversityYangzhouJiangsu225001P. R. China
| | - Junxian Tao
- Department of Endocrinology, Northern Jiangsu People's Hospital Affiliated to Yangzhou UniversityYangzhouJiangsu225001P. R. China
| | - Manli Wang
- Graduate School of Dalian Medical UniversityDalianLiaoning116044P. R. China
| | - Xiaoyan Xie
- Department of Hematology, Northern Jiangsu People's Hospital Affiliated to Yangzhou UniversityYangzhouJiangsu225001P. R. China
| | - Mei Sun
- Department of Hematology, Northern Jiangsu People's Hospital Affiliated to Yangzhou UniversityYangzhouJiangsu225001P. R. China
| |
Collapse
|