1
|
Terholsen H, Schmidt S. Cell-free chemoenzymatic cascades with bio-based molecules. Curr Opin Biotechnol 2024; 85:103058. [PMID: 38154324 DOI: 10.1016/j.copbio.2023.103058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
For the valorization of various bio-based feedstocks, the combination of different catalytic systems with biocatalysis in chemoenzymatic cascades has been shown to have high potential. However, the development of such integrated catalytic systems is often limited by catalyst incompatibility. Therefore, incorporating novel catalytic concepts into the chemoenzymatic valorization of bio-based feedstocks is currently of great interest. This article provides an overview of the methods/approaches used to advance the development of chemoenzymatic cascades for the catalytic upgrading of bio-based feedstocks. It specifically focuses on recent developments in the combination of enzymes with organo- and chemocatalysis. Furthermore, current applications and future perspectives of integrating novel catalytic systems such as photo- and electrocatalysis toward new synthetic routes for the utilization of the often highly functionalized bio-based compounds are reviewed.
Collapse
Affiliation(s)
- Henrik Terholsen
- University of Groningen, Groningen Research Institute of Pharmacy, Dept. of Chemical and Pharmaceutical Biology, Antonius Deusinglaan 1, 9713AV Groningen, the Netherlands
| | - Sandy Schmidt
- University of Groningen, Groningen Research Institute of Pharmacy, Dept. of Chemical and Pharmaceutical Biology, Antonius Deusinglaan 1, 9713AV Groningen, the Netherlands.
| |
Collapse
|
2
|
Wahart AJC, Dolan JP, Anderson SD, Cheallaigh AN, Staniland J, Lima MA, Skidmore MA, Miller GJ, Cosgrove SC. Harnessing a Biocatalyst to Bioremediate the Purification of Alkylglycosides. Chembiochem 2024; 25:e202300625. [PMID: 37830893 DOI: 10.1002/cbic.202300625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/14/2023]
Abstract
As the world moves towards net-zero carbon emissions, the development of sustainable chemical manufacturing processes is essential. Within manufacturing, purification by distillation is often used, however this process is energy intensive and methods that could obviate or reduce its use are desirable. Developed herein is an alternative, oxidative biocatalytic approach that enables purification of alkyl monoglucosides (essential bio-based surfactant components). Implementing an immobilised engineered alcohol oxidase, a long-chain alcohol by-product derived from alkyl monoglucoside synthesis (normally removed by distillation) is selectively oxidised to an aldehyde, conjugated to an amine resin and then removed by simple filtration. This affords recovery of the purified alkyl monoglucoside. The approach lays a blueprint for further development of sustainable alkylglycoside purification using biocatalysis and, importantly, for refining other important chemical feedstocks that currently rely on distillation.
Collapse
Affiliation(s)
- Alice J C Wahart
- Lennard-Jones Laboratory, School of Chemical & Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
- Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Jonathan P Dolan
- Lennard-Jones Laboratory, School of Chemical & Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
- Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Simon D Anderson
- Lennard-Jones Laboratory, School of Chemical & Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
- Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Aisling Ní Cheallaigh
- Lennard-Jones Laboratory, School of Chemical & Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
- Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Jessica Staniland
- Croda Europe Ltd., Croda Europe Ltd., Cowick Hall, Snaith, Goole, DN14 9AA, UK
| | - Marcelo A Lima
- Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Mark A Skidmore
- Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Gavin J Miller
- Lennard-Jones Laboratory, School of Chemical & Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
- Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Sebastian C Cosgrove
- Lennard-Jones Laboratory, School of Chemical & Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
- Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK
| |
Collapse
|
3
|
Andersen CM, Knudson LD, Domaille DW. Interfacing Whole Cell Biocatalysis with a Biocompatible Pictet-Spengler Reaction for One-Pot Syntheses of Tetrahydroisoquinolines and Tryptolines. Chembiochem 2023; 24:e202300464. [PMID: 37801398 DOI: 10.1002/cbic.202300464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/08/2023]
Abstract
Biocatalytic processes are highly selective and specific. However, their utility is limited by the comparatively narrow scope of enzyme-catalysed transformations. To expand product scope, we are developing biocompatible processes that combine biocatalytic reactions with chemo-catalysis in single-flask processes. Here, we show that a chemocatalysed Pictet-Spengler annulation can be interfaced with biocatalysed alcohol oxidation. This two-step, one-pot cascade reaction converts tyramine and aliphatic alcohols to tetrahydroisoquinoline alkaloids in aqueous buffer at mild pH. Tryptamine derivatives are also efficiently converted to tryptolines. Optimization of stoichiometry, pH, reaction time, and whole-cell catalyst deliver the tetrahydroisouinolines and tryptolines in >90 % and >40 % isolated yield, respectively, with excellent regioselectivity.
Collapse
Affiliation(s)
- Campbell M Andersen
- Department of Chemistry, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80403, USA
| | - Luke D Knudson
- Department of Chemistry, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80403, USA
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80403, USA
- Quantitative Biosciences and Engineering Program, Colorado School of Mines, USA
| |
Collapse
|
4
|
Chainani Y, Bonnanzio G, Tyo KE, Broadbelt LJ. Coupling chemistry and biology for the synthesis of advanced bioproducts. Curr Opin Biotechnol 2023; 84:102992. [PMID: 37688985 DOI: 10.1016/j.copbio.2023.102992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/30/2023] [Accepted: 08/05/2023] [Indexed: 09/11/2023]
Abstract
Chemical and biological syntheses can both lead to a myriad of compounds. Biology enables us to harness the metabolism of microbial cell factories to produce key target molecules from renewable biomass-derived substrates. Although bio-based feedstocks are sustainably sourced and more benign than the rapidly depleting fossil fuels that chemical processes have historically relied on, limiting pathways solely to biological reactions may not equate to a greener process overall. In fact, bioreactors rely on substantial quantities of water and can be inefficient since organisms typically operate around ambient conditions and are sensitive to perturbations in their environment. Hybridizing biosynthetic pathways with green chemistry can instead be a more potent strategy to reduce our net manufacturing footprint. Emerging chemistries have demonstrated considerable success in performing complex transformations on biological feedstocks without significant solvent use. Many of these transformations would be too slow to perform enzymatically or infeasible altogether. Here, we put forth the concept that by carefully considering the merits and drawbacks of synthetic biology and chemistry as well as one's own use case, there exist many opportunities for coupling the two. Merging these syntheses can unlock a wider suite of functional group transformations, thereby enabling future manufacturing processes to sustainably access a larger space of valuable, platform chemicals.
Collapse
Affiliation(s)
- Yash Chainani
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Geoffrey Bonnanzio
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Keith Ej Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Linda J Broadbelt
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA; Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
5
|
Dennis JA, Johnson NW, Thorpe TW, Wallace S. Biocompatible α-Methylenation of Metabolic Butyraldehyde in Living Bacteria. Angew Chem Int Ed Engl 2023; 62:e202306347. [PMID: 37477977 PMCID: PMC10952924 DOI: 10.1002/anie.202306347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
Small molecule organocatalysts are abundant in all living organisms. However, their use as organocatalysts in cells has been underexplored. Herein, we report that organocatalytic aldol chemistry can be interfaced with living Escherichia coli to enable the α-methylenation of cellular aldehydes using biogenic amines such as L-Pro or phosphate. The biocompatible reaction is mild and can be interfaced with butyraldehyde generated from D-glucose via engineered metabolism to enable the production of 2-methylenebutanal (2-MB) and 2-methylbutanal (2-MBA) by anaerobic fermentation, and 2-methylbutanol (2-MBO) by whole-cell catalysis. Overall, this study demonstrates the combination of non-enzymatic organocatalytic and metabolic reactions in vivo for the sustainable synthesis of valuable non-natural chemicals that cannot be accessed using enzymatic chemistry alone.
Collapse
Affiliation(s)
- Jonathan A. Dennis
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological SciencesUniversity of EdinburghEdinburghEH9 3FFUK
- EaStCHEM School of ChemistryUniversity of EdinburghEdinburghEH9 3FJUK
| | - Nick W. Johnson
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological SciencesUniversity of EdinburghEdinburghEH9 3FFUK
| | - Thomas W. Thorpe
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological SciencesUniversity of EdinburghEdinburghEH9 3FFUK
| | - Stephen Wallace
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological SciencesUniversity of EdinburghEdinburghEH9 3FFUK
| |
Collapse
|
6
|
Dennis JA, Sadler JC, Wallace S. Tyramine Derivatives Catalyze the Aldol Dimerization of Butyraldehyde in the Presence of Escherichia coli. Chembiochem 2022; 23:e202200238. [PMID: 35687270 PMCID: PMC9540883 DOI: 10.1002/cbic.202200238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/08/2022] [Indexed: 11/26/2022]
Abstract
Biogenic amine organocatalysts have transformed the field of synthetic organic chemistry. Yet despite their use in synthesis and to label biomolecules in vitro, amine organocatalysis in vivo has received comparatively little attention - despite the potential of such reactions to be interfaced with living cells and to modify cellular metabolites. Herein we report that biogenic amines derived from L-tyrosine catalyze the self-aldol condensation of butanal to 2-ethylhexenal - a key intermediate in the production of the bulk chemical 2-ethylhexanol - in the presence of living Escherichia coli and outperform many amine organocatalysts currently used in synthetic organic chemistry. Furthermore, we demonstrate that cell lysate from E. coli and the prolific amine overproducer Corynebacterium glutamicum ATCC 13032 catalyze this reaction in vitro, demonstrating the potential for microbial metabolism to be used as a source of organocatalysts for biocompatible reactions in cells.
Collapse
Affiliation(s)
- Jonathan A. Dennis
- Institute of Quantitative BiologyBiochemistry and BiotechnologySchool of Biological SciencesUniversity of EdinburghKing's Buildings, Alexander Crum Brown RoadEdinburghEH9 3FFUK
- EaStCHEM School of ChemistryUniversity of Edinburgh, King's BuildingsDavid Brewster RoadEdinburghEH9 3FJ
| | - Joanna C. Sadler
- Institute of Quantitative BiologyBiochemistry and BiotechnologySchool of Biological SciencesUniversity of EdinburghKing's Buildings, Alexander Crum Brown RoadEdinburghEH9 3FFUK
| | - Stephen Wallace
- Institute of Quantitative BiologyBiochemistry and BiotechnologySchool of Biological SciencesUniversity of EdinburghKing's Buildings, Alexander Crum Brown RoadEdinburghEH9 3FFUK
| |
Collapse
|