1
|
Treacy JW, Tilden JAR, Chao EY, Fu Z, Spokoyny AM, Houk KN, Maynard HD. In silico screening of P, N-ligands facilitates optimization of Au(iii)-mediated S-arylation. Chem Sci 2025; 16:3878-3887. [PMID: 39911338 PMCID: PMC11791779 DOI: 10.1039/d4sc05920d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025] Open
Abstract
Metal-mediated cysteine S-arylation is an emerging bioconjugation technique due to its high chemoselectivity, rapid kinetics, and aqueous compatibility. We have previously demonstrated that by altering the steric profile of the ligand and aryl groups of an Au(iii) oxidative addition complex, one can modulate the kinetics of the bimolecular coordination and induce rate constants up to 16 600 M-1 s-1. To further enhance the rate of coordination, density functional theory (DFT) calculations were performed to investigate the steric properties of the P,N-ligated Au(iii) oxidative addition complex as well as the thermodynamics of the S-arylation reaction. This allowed for the accelerated screening of 13 new Au(iii) oxidative addition complexes. Three of the more sterically available, synthetically accessible P,N-ligands were synthesized, incorporated into Au(i) and Au(iii) complexes, and their rates determined experimentally. The comprehensive mechanistic insights from the DFT calculations led to the development of new reagents with bimolecular coordination rate constants as fast as 20 200 M-1 s-1. Further experimental characterization of these reagents' efficacy as S-arylation reagents led to a proposed switch in selectivity-determining step for the fastest reagent, which was further confirmed by profiling the reductive elimination kinetics. This work provides a concise workflow for the screening of metal-mediated cysteine S-arylation reagents and new fundamental insights into the coordination chemistry behavior of Au(iii) systems.
Collapse
Affiliation(s)
- Joseph W Treacy
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California Los Angeles California 90095-1569 USA
| | - James A R Tilden
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California Los Angeles California 90095-1569 USA
| | - Elaine Y Chao
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California Los Angeles California 90095-1569 USA
| | - Zihuan Fu
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California Los Angeles California 90095-1569 USA
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California Los Angeles California 90095-1569 USA
| | - K N Houk
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California Los Angeles California 90095-1569 USA
| | - Heather D Maynard
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California Los Angeles California 90095-1569 USA
| |
Collapse
|
2
|
Nie Q, Xu T, Fang X, Dan Y, Zhang G, Li Y, Li J, Li Y. The Furan-Thiol-Amine Reaction Facilitates DNA-Compatible Thiopyrrole-Grafted Macrocyclization and Late-Stage Amine Transformation. Org Lett 2025; 27:498-503. [PMID: 39722477 DOI: 10.1021/acs.orglett.4c04505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
We here report an efficient DNA-compatible furan-thiol-amine reaction for macrocyclization and late-stage amine transformation. This reaction, conducted under mild conditions, enables the facile cyclization of DNA-conjugated linear peptides into thiopyrrole-grafted macrocycles regardless of ring size or side-chain modification with good to excellent conversion yields. Additionally, this strategy was employed for the late-stage transformation of terminal amines, serving as critical intermediates in the construction of DNA-encoded peptide libraries. Diverse amines were successfully converted into their corresponding thiopyrrole scaffolds, thereby expanding the structural diversity that can be achieved within DNA-encoded libraries.
Collapse
Affiliation(s)
- Qigui Nie
- Chongqing Fuling Hospital, Chongqing University, Chongqing 40800, China
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Tingting Xu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xianfu Fang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yanrong Dan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Jianbo Li
- BioPic (Chongqing) Biotechnology Company, Ltd., Chongqing 401329, China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
3
|
Gan Y, Zeng Y, Guan H, Shaginian A, Li J, Yang G, Liu G. Synthesis of DNA-Encoded Macrocyclic Peptides via Visible-Light-Mediated Desulfurative C-C Bond Formation. Org Lett 2024; 26:10640-10644. [PMID: 39606858 DOI: 10.1021/acs.orglett.4c04210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
DNA-encoded library (DEL) technology has been developed to serve as a practical platform for the discovery of biologically active macrocyclic peptide compounds. However, the cyclization of linear peptides has been widely regarded as the challenging step in the production of macrocyclic peptide DELs. Herein, we describe a novel DNA-compatible macrocyclization strategy, which enables the construction of ring systems via visible-light-mediated desulfurative C-C bond formation. The macrocyclization proceeds smoothly under mild conditions and in a good yield. Moreover, the reaction is compatible with a variety of linear substrates and can thus be employed to generate structurally diverse DNA-encoded macrocycles with various ring sizes.
Collapse
Affiliation(s)
- Yi Gan
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Yumei Zeng
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Haojie Guan
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Alex Shaginian
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jin Li
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Guanyu Yang
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Guansai Liu
- HitGen Inc., Building 6, No. 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| |
Collapse
|
4
|
Fang P, Pang WK, Xuan S, Chan WL, Leung KCF. Recent advances in peptide macrocyclization strategies. Chem Soc Rev 2024; 53:11725-11771. [PMID: 39560122 DOI: 10.1039/d3cs01066j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Recently, owing to their special spatial structures, peptide-based macrocycles have shown tremendous promise and aroused great interest in multidisciplinary research ranging from potent antibiotics against resistant strains to functional biomaterials with novel properties. Besides traditional monocyclic peptides, many fascinating polycyclic and remarkable higher-order cyclic, spherical and cylindric peptidic systems have come into the limelight owing to breakthroughs in various chemical (e.g., native chemical ligation and transition metal catalysis), biological (e.g., post-translational enzymatic modification and genetic code reprogramming), and supramolecular (e.g., mechanically interlocked, metal-directed folding and self-assembly via noncovalent interactions) macrocyclization strategies developed in recent decades. In this tutorial review, diverse state-of-the-art macrocyclization methodologies and techniques for peptides and peptidomimetics are surveyed and discussed, with insights into their practical advantages and intrinsic limitations. Finally, the synthetic-technical aspects, current unresolved challenges, and outlook of this field are discussed.
Collapse
Affiliation(s)
- Pengyuan Fang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, P. R. China.
| | - Wing-Ka Pang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China.
| | - Shouhu Xuan
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Wai-Lun Chan
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, P. R. China.
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ken Cham-Fai Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China.
| |
Collapse
|
5
|
Swenson CS, Mandava G, Thomas DM, Moellering RE. Tackling Undruggable Targets with Designer Peptidomimetics and Synthetic Biologics. Chem Rev 2024; 124:13020-13093. [PMID: 39540650 PMCID: PMC12036645 DOI: 10.1021/acs.chemrev.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The development of potent, specific, and pharmacologically viable chemical probes and therapeutics is a central focus of chemical biology and therapeutic development. However, a significant portion of predicted disease-causal proteins have proven resistant to targeting by traditional small molecule and biologic modalities. Many of these so-called "undruggable" targets feature extended, dynamic protein-protein and protein-nucleic acid interfaces that are central to their roles in normal and diseased signaling pathways. Here, we discuss the development of synthetically stabilized peptide and protein mimetics as an ever-expanding and powerful region of chemical space to tackle undruggable targets. These molecules aim to combine the synthetic tunability and pharmacologic properties typically associated with small molecules with the binding footprints, affinities and specificities of biologics. In this review, we discuss the historical and emerging platforms and approaches to design, screen, select and optimize synthetic "designer" peptidomimetics and synthetic biologics. We examine the inspiration and design of different classes of designer peptidomimetics: (i) macrocyclic peptides, (ii) side chain stabilized peptides, (iii) non-natural peptidomimetics, and (iv) synthetic proteomimetics, and notable examples of their application to challenging biomolecules. Finally, we summarize key learnings and remaining challenges for these molecules to become useful chemical probes and therapeutics for historically undruggable targets.
Collapse
Affiliation(s)
- Colin S Swenson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gunasheil Mandava
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Deborah M Thomas
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Raymond E Moellering
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
6
|
Tilden JAR, Doud EA, Montgomery HR, Maynard HD, Spokoyny AM. Organometallic Chemistry Tools for Building Biologically Relevant Nanoscale Systems. J Am Chem Soc 2024; 146:29989-30003. [PMID: 39468851 PMCID: PMC12009178 DOI: 10.1021/jacs.4c07110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The recent emergence of organometallic chemistry for modification of biomolecular nanostructures has begun to rewrite the long-standing assumption among practitioners that small-molecule organometallics are fundamentally incompatible with biological systems. This Perspective sets out to clarify some of the existing misconceptions by focusing on the growing organometallic toolbox for biomolecular modification. Specifically, we highlight key organometallic transformations in constructing complex biologically relevant systems on the nanomolecular scale, and the organometallic synthesis of hybrid nanomaterials composed of classical nanomaterial components combined with biologically relevant species. As research progresses, many of the challenges associated with applying organometallic chemistry in this context are rapidly being reassessed. Looking to the future, the growing utility of organometallic transformations will likely make them more ubiquitous in the construction and modification of biomolecular nanostructures.
Collapse
Affiliation(s)
- James A. R. Tilden
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Evan A. Doud
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Hayden R. Montgomery
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Heather D. Maynard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Alexander M. Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Hosozawa T, Niwa M, Takeuchi H, Inohana T, Okumura K, Itoh S. High-yield and high-purity amide bond formation using DMTMM PF 6 for DNA-encoded libraries. Bioorg Med Chem Lett 2024; 110:129859. [PMID: 38955244 DOI: 10.1016/j.bmcl.2024.129859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
In this study, we report on the ability of DMTMM PF6 to improve the amidation reaction. The on-DNA amidation reaction using DMTMM PF6 demonstrates higher conversion rates than those using HATU or DMTMM Cl, particularly with challenging sterically hindered amines and carboxylic acids. The developed method enables the expansion of available building blocks and the efficient synthesis of high-purity DNA-encoded libraries.
Collapse
Affiliation(s)
- Takumi Hosozawa
- Pharmaceutical Research Department, Chemical Research Laboratories, Nissan Chemical Corporation, 10-1, Tsuboi-Nishi 2-chome, Funabashi, Chiba, Japan
| | - Masatoshi Niwa
- Pharmaceutical Research Department, Chemical Research Laboratories, Nissan Chemical Corporation, 10-1, Tsuboi-Nishi 2-chome, Funabashi, Chiba, Japan
| | - Hisayuki Takeuchi
- Pharmaceutical Research Department, Chemical Research Laboratories, Nissan Chemical Corporation, 10-1, Tsuboi-Nishi 2-chome, Funabashi, Chiba, Japan
| | - Takehiko Inohana
- Pharmaceutical Research Department, Chemical Research Laboratories, Nissan Chemical Corporation, 10-1, Tsuboi-Nishi 2-chome, Funabashi, Chiba, Japan
| | - Kaori Okumura
- Pharmaceutical Research Department, Chemical Research Laboratories, Nissan Chemical Corporation, 10-1, Tsuboi-Nishi 2-chome, Funabashi, Chiba, Japan
| | - Shin Itoh
- Pharmaceutical Research Department, Chemical Research Laboratories, Nissan Chemical Corporation, 10-1, Tsuboi-Nishi 2-chome, Funabashi, Chiba, Japan.
| |
Collapse
|
8
|
Smith FR, Meehan D, Griffiths RC, Knowles HJ, Zhang P, Williams HEL, Wilson AJ, Mitchell NJ. Peptide macrocyclisation via intramolecular interception of visible-light-mediated desulfurisation. Chem Sci 2024; 15:9612-9619. [PMID: 38939126 PMCID: PMC11206203 DOI: 10.1039/d3sc05865d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/30/2024] [Indexed: 06/29/2024] Open
Abstract
Synthetic methods that enable the macrocyclisation of peptides facilitate the development of effective therapeutic and diagnostic tools. Herein we report a peptide cyclisation strategy based on intramolecular interception of visible-light-mediated cysteine desulfurisation. This method allows cyclisation of unprotected peptides in an aqueous solution via the installation of a hydrocarbon linkage. We explore the limits of this chemistry using a range of model peptides of increasing length and complexity, including peptides of biological/therapeutic relevance. The method is applied to replace the native disulfide of the peptide hormone, oxytocin, with a proteolytically/redox-stable hydrocarbon, and internal macrocyclisation of an MCL-1-binding peptide.
Collapse
Affiliation(s)
- Frances R Smith
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Declan Meehan
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Rhys C Griffiths
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Harriet J Knowles
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Peiyu Zhang
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Huw E L Williams
- Biodiscovery Institute, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Andrew J Wilson
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Nicholas J Mitchell
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| |
Collapse
|
9
|
Li Y, Han D, Luo Z, Lv X, Liu B. The Chan-Lam-type synthesis of thioimidazolium salts for thiol-(hetero)arene conjugation. Chem Commun (Camb) 2024; 60:4675-4678. [PMID: 38591667 DOI: 10.1039/d4cc00704b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The design of stable and variable aryl linkers for conjugating drug moieties to the metabolism-related thiols is of importance in drug discovery. We disclosed that thioimidazolium groups are unique scaffolds for the thiol-(hetero)arene conjugation under mild conditions. The drug bound thioimidazolium salts, which are easily accessible via a copper-mediated Chan-Lam process in gram-scale, could be successfully applied to the late-stage coupling of bioactive thiols to construct a broad array of drug-like molecules.
Collapse
Affiliation(s)
- Yue Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Dongchang Han
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Zhibin Luo
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Xiaomeng Lv
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Bin Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
10
|
Bao Y, Xing M, Matthew N, Chen X, Wang X, Lu X. Macrocyclizing DNA-Linked Peptides via Three-Component Cyclization and Photoinduced Chemistry. Org Lett 2024; 26:2763-2767. [PMID: 37382883 DOI: 10.1021/acs.orglett.3c01817] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
While DNA-encoded macrocyclic libraries have gained substantial attention and several hit compounds have been identified from DNA-encoded library technology, efficient on-DNA macrocyclic methods are also required to construct DNA-linked libraries with a high degree of cyclization and DNA integrity. In this paper, we reported a set of on-DNA methodologies, including the use of an OPA-mediated three-component cyclization with native handles of amino acids and photoredox chemistries. These chemistries proceed smoothly under mild conditions in good to excellent conversions, successfully generating novel isoindole, isoindoline, indazolone, and bicyclic scaffolds.
Collapse
Affiliation(s)
- Yandan Bao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Minyan Xing
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Jiangning District, Nanjing 211198, China
| | - Naylor Matthew
- UCB, 87 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Xiaohua Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
| | - Xiaojie Lu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
11
|
Lee S, Kwon H, Jee EK, Kim J, Lee KJ, Kim J, Ko N, Lee E, Lim HS. Synthesis and Structural Characterization of Macrocyclic α-ABpeptoids and Their DNA-Encoded Library. Org Lett 2024; 26:1100-1104. [PMID: 38295374 DOI: 10.1021/acs.orglett.3c04387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The first synthesis of macrocyclic α-ABpeptoids with varying lengths is described. X-ray crystal structures reveal that cyclic trimer displays a chair-like conformation with a cct amide sequence and cyclic tetramer has a saddle-like structure with an uncommon cccc amide arrangement. The creation of a DNA-encoded combinatorial library of macrocyclic α-ABpeptoids is described.
Collapse
Affiliation(s)
- Soobin Lee
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Hyunchul Kwon
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Eun-Kyoung Jee
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Jaelim Kim
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Kang Ju Lee
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Jungyeon Kim
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Nakeun Ko
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Eunsung Lee
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03722, South Korea
| | - Hyun-Suk Lim
- Department of Chemistry and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul 03722, South Korea
- Camel Biosciences, Pohang 37673, South Korea
| |
Collapse
|
12
|
Shen L, Monasson O, Peroni E, Le Bideau F, Messaoudi S. Electrochemical Nickel-Catalyzed Selective Inter- and Intramolecular Arylations of Cysteine-Containing Peptides. Angew Chem Int Ed Engl 2023; 62:e202315748. [PMID: 37906608 DOI: 10.1002/anie.202315748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Here we report a simple electrochemical route towards the synthesis of S-arylated peptides by a site selective coupling of peptides with aryl halides under base free conditions. This approach demonstrates the power of electrochemistry to access both highly complex peptide conjugates and cyclic peptides.
Collapse
Affiliation(s)
- Linhua Shen
- Université Paris-Saclay, CNRS, BioCIS, 92290, Orsay, France
| | - Olivier Monasson
- Université Paris-Saclay, CNRS, BioCIS, 92290, Orsay, France
- CY Cergy Paris Université, CNRS, BioCIS, 95000, Cergy Pontoise, France
| | - Elisa Peroni
- Université Paris-Saclay, CNRS, BioCIS, 92290, Orsay, France
- CY Cergy Paris Université, CNRS, BioCIS, 95000, Cergy Pontoise, France
| | | | | |
Collapse
|
13
|
Mikami A, Mori S, Osawa T, Obika S. Post-Synthetic Nucleobase Modification of Oligodeoxynucleotides by Sonogashira Coupling and Influence of Alkynyl Modifications on the Duplex-Forming Ability. Chemistry 2023; 29:e202301928. [PMID: 37635089 DOI: 10.1002/chem.202301928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023]
Abstract
Recently, it was reported that the alkynyl modification of nucleobases mitigates the toxicity of antisense oligonucleotides (ASO) while maintaining the efficacy. However, the general effect of alkynyl modifications on the duplex-forming ability of oligonucleotides (ONs) is unclear. In this study, post-synthetic nucleobase modification by Sonogashira coupling in aqueous medium was carried out to efficiently evaluate the physiological properties of various ONs with alkynyl-modified nucleobases. Although several undesired reactions, including nucleobase cyclization, were observed, various types of alkynyl-modified ONs were successfully obtained via Sonogashira coupling of ONs containing iodinated nucleobases. Evaluation of the stability of the duplex formed by the synthesized alkynyl-modified ONs showed that the alkynyl modification of pyrimidine was less tolerated than that of purine, although both the modifications occurred in the major groove of the duplex. These results can be attributed to the bond angle of the alkyne on the pyrimidine and the close proximity of the alkynyl substituents to the phosphodiester backbone. The synthetic method developed in this study may contribute to the screening of the optimal chemical modification of ASO because various alkynyl-modified ONs that are effective in reducing the toxicity of ASO can be easily synthesized by this method.
Collapse
Affiliation(s)
- Atsushi Mikami
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shohei Mori
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takashi Osawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
14
|
Wang H, Zhao G, Zhang T, Li Y, Zhang G, Li Y. Comparative Study of DNA Barcode Integrity Evaluation Approaches in the Early-Stage Development of DNA-Compatible Chemical Transformation. ACS Pharmacol Transl Sci 2023; 6:1724-1733. [PMID: 37974618 PMCID: PMC10644510 DOI: 10.1021/acsptsci.3c00181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 11/19/2023]
Abstract
DNA-encoded libraries (DEL) have emerged as an important drug discovery technical platform for target-based compound library selection. The success rate of DEL depends on both the chemical diversity of combinatorial libraries and the accuracy of DNA barcoding. Therefore, it is critical that the chemistry applied to library construction should efficiently transform on a wide range of substrates while preserving the integrity of DNA tags. Although several analytical methods have been developed to measure DNA damage caused by DEL chemical reactions, efficient and cost-effective evaluation criteria for DNA damage detection are still demanding. Herein, we set standards for evaluating the DNA compatibility of chemistry development at the laboratory level. Based on four typical DNA damage models of three different DEL formats, we evaluated the detection capabilities of four analytical methods, including ultraperformance liquid chromatography (UPLC-MS), electrophoresis, quantitative polymerase chain reaction (qPCR), and Sanger sequencing. This work systematically revealed the scope and capability of different analytical methods in assessing DNA damages caused by chemical transformation. Based on the results, we recommended UPLC-MS and qPCR as efficient methods for DNA barcode integrity analysis in the early-stage development of DNA-compatible chemistry. Meanwhile, we identified that Sanger sequencing was unreliable to assess DNA damage in this application.
Collapse
Affiliation(s)
- Huicong Wang
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Guixian Zhao
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Tianyang Zhang
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yangfeng Li
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Chemical
Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Gong Zhang
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Chemical
Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yizhou Li
- Chongqing
Key Laboratory of Natural Product Synthesis and Drug Research, School
of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Chemical
Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
- Beijing
National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
15
|
Fan L, Yu Y, Jayne C, Frost JR, Scott JD. Synthesis of DNA-Encoded Macrocyclic Peptides via Nitrile-Aminothiol Click Reaction. Org Lett 2023; 25:8038-8042. [PMID: 37889907 DOI: 10.1021/acs.orglett.3c03284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
DNA-encoded library (DEL) technology holds exciting potential for discovering novel therapeutic macrocyclic peptides (MPs). Herein, we describe the development of a DEL-compatible peptide macrocyclization method that proceeds via intramolecular click-condensation between 3-(2-cyano-4-pyridyl)-l-alanine (Cpa) and an N-terminal cysteine. Cyclization takes place spontaneously in a buffered aqueous solution and affords the cyclized products in excellent yields. The reaction exhibits a broad substrate scope and can be employed to generate MPs of variable ring size and amino acid composition.
Collapse
Affiliation(s)
- Lijun Fan
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yang Yu
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Charles Jayne
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - John R Frost
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jack D Scott
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
16
|
Sunkari YK, Nguyen TL, Siripuram VK, Flajolet M. Impact of organic chemistry conditions on DNA durability in the context of DNA-encoded library technology. iScience 2023; 26:107573. [PMID: 37664608 PMCID: PMC10470182 DOI: 10.1016/j.isci.2023.107573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/15/2023] [Accepted: 08/05/2023] [Indexed: 09/05/2023] Open
Abstract
High-power screening (HPS) technologies, such as DNA-encoded library (DEL) technology, could exponentially increase the dimensions of the chemical space accessible for drug discovery. The intrinsic fragile nature of DNA is associated with cumbersome limitations and DNA durability (e.g., depurination, loss of phosphate groups, adduct formation) is compromised in numerous organic chemistry conditions that require empirical testing. An atlas of reaction conditions (temperature, pH, solvent/buffer, ligands, oxidizing reagents, catalysts, scavengers in function of time) that have been systematically tested in multiple combinations, indicates precisely limits useful for DEL construction. More importantly, this approach could be used broadly to effectively evaluate DNA-compatibility of any novel on-DNA chemical reaction, and it is compatible with different molecular methodologies. This atlas and the general approach presented, by allowing novel reaction conditions to be performed in presence of DNA, should greatly help in expanding the DEL chemical space as well as any field involving DNA durability.
Collapse
Affiliation(s)
- Yashoda Krishna Sunkari
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Thu-Lan Nguyen
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Vijay Kumar Siripuram
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Marc Flajolet
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
17
|
Wong JYK, Ekanayake AI, Kharchenko S, Kirberger SE, Qiu R, Kelich P, Sarkar S, Li J, Fernandez KX, Alvizo-Paez ER, Miao J, Kalhor-Monfared S, John JD, Kang H, Choi H, Nuss JM, Vederas JC, Lin YS, Macauley MS, Vukovic L, Pomerantz WCK, Derda R. Genetically encoded discovery of perfluoroaryl macrocycles that bind to albumin and exhibit extended circulation in vivo. Nat Commun 2023; 14:5654. [PMID: 37704629 PMCID: PMC10499988 DOI: 10.1038/s41467-023-41427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 08/17/2023] [Indexed: 09/15/2023] Open
Abstract
Peptide-based therapeutics have gained attention as promising therapeutic modalities, however, their prevalent drawback is poor circulation half-life in vivo. In this paper, we report the selection of albumin-binding macrocyclic peptides from genetically encoded libraries of peptides modified by perfluoroaryl-cysteine SNAr chemistry, with decafluoro-diphenylsulfone (DFS). Testing of the binding of the selected peptides to albumin identified SICRFFC as the lead sequence. We replaced DFS with isosteric pentafluorophenyl sulfide (PFS) and the PFS-SICRFFCGG exhibited KD = 4-6 µM towards human serum albumin. When injected in mice, the concentration of the PFS-SICRFFCGG in plasma was indistinguishable from the reference peptide, SA-21. More importantly, a conjugate of PFS-SICRFFCGG and peptide apelin-17 analogue (N3-PEG6-NMe17A2) showed retention in circulation similar to SA-21; in contrast, apelin-17 analogue was cleared from the circulation after 2 min. The PFS-SICRFFC is the smallest known peptide macrocycle with a significant affinity for human albumin and substantial in vivo circulation half-life. It is a productive starting point for future development of compact macrocycles with extended half-life in vivo.
Collapse
Affiliation(s)
- Jeffrey Y K Wong
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Arunika I Ekanayake
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Serhii Kharchenko
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Steven E Kirberger
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ryan Qiu
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Payam Kelich
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Susmita Sarkar
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Jiaqian Li
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | | | - Edgar R Alvizo-Paez
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Jiayuan Miao
- Department of Chemistry, Tufts University, Medford, MA, 02155, USA
| | | | - J Dwyer John
- Ferring Research Institute, San Diego, CA, 92121, USA
| | - Hongsuk Kang
- Quantum Intelligence Corp., 31F, One IFC, 10 Gukjegeumyung-ro, Yeongdeungpo-gu-Seoul, Republic of Korea
| | - Hwanho Choi
- Quantum Intelligence Corp., 31F, One IFC, 10 Gukjegeumyung-ro, Yeongdeungpo-gu-Seoul, Republic of Korea
| | - John M Nuss
- Ferring Research Institute, San Diego, CA, 92121, USA
| | - John C Vederas
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Yu-Shan Lin
- Department of Chemistry, Tufts University, Medford, MA, 02155, USA
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Lela Vukovic
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX, 79968, USA
| | | | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada.
| |
Collapse
|
18
|
Yang P, Širvinskas MJ, Li B, Heller NW, Rong H, He G, Yudin AK, Chen G. Teraryl Braces in Macrocycles: Synthesis and Conformational Landscape Remodeling of Peptides. J Am Chem Soc 2023. [PMID: 37326500 DOI: 10.1021/jacs.3c03512] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The three-dimensional structure of medium-sized cyclic peptides accounts for their biological activity and other important physiochemical properties. Despite significant advances in the past few decades, chemists' ability to fine-tune the structure, in particular, the backbone conformation, of short peptides made of canonical amino acids is still quite limited. Nature has shown that cross-linking the aromatic side chains of linear peptide precursors via enzyme catalysis can generate cyclophane-braced products with unusual structures and diverse activities. However, the biosynthetic path to these natural products is challenging to replicate in the synthetic laboratory using practical chemical modifications of peptides. Herein, we report a broadly applicable strategy to remodel the structure of homodetic peptides by cross-linking the aromatic side chains of Trp, His, and Tyr residues with various aryl linkers. The aryl linkers can be easily installed via copper-catalyzed double heteroatom-arylation reactions of peptides with aryl diiodides. These aromatic side chains and aryl linkers can be combined to form a large variety of assemblies of heteroatom-linked multi-aryl units. The assemblies can serve as tension-bearable multijoint braces to modulate the backbone conformation of peptides as an entry to previously inaccessible conformational space.
Collapse
Affiliation(s)
- Peng Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | | | - Bo Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Nicholas W Heller
- Department of Chemistry, University of Toronto, Toronto M5S 3H4, Canada
| | - Hua Rong
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Andrei K Yudin
- Department of Chemistry, University of Toronto, Toronto M5S 3H4, Canada
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
19
|
Krishna Sunkari Y, Kumar Siripuram V, Flajolet M. Diversity-Oriented Synthesis (DOS) of On-DNA Peptidomimetics from Acid-Derived Phosphonium Ylides. Chemistry 2023; 29:e202203037. [PMID: 36653313 DOI: 10.1002/chem.202203037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Indexed: 01/20/2023]
Abstract
The DNA-encoded library (DEL) technology represents a revolutionary drug-discovery tool with unprecedented screening power originating from the association of combinatorial chemistry and DNA barcoding. The chemical diversity of DELs and its chemical space will be further expanded as new DNA-compatible reactions are introduced. This work introduces the use of DOS in the context of on-DNA peptidomimetics. Wittig olefination of aspartic acid-derived on-DNA Wittig ylide, combined with a broad substrate scope of aldehydes, led to formation of on-DNA α ${\alpha }$ , β ${\beta }$ -unsaturated ketones. The synthesis of on-DNA multi-peptidyl-ylides was performed by incorporating sequential amino acids onto a monomeric ylide. Di-, tri- and tetrameric peptidyl-ylides were validated for Wittig olefination and led to on-DNA α ${\alpha }$ , β ${\beta }$ -unsaturated-based peptidomimetics, an important class of intermediates. One on-DNA aryl Wittig ylide was also developed and applied to Wittig olefination for synthesis of on-DNA chalcone-based molecules. Furthermore, DOS was used successfully with electron-deficient peptidomimetics and led to the development of different heterocyclic cores containing on-DNA peptidomimetics.
Collapse
Affiliation(s)
- Yashoda Krishna Sunkari
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Vijay Kumar Siripuram
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Marc Flajolet
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
20
|
Zhang Y, Guo J, Cheng J, Zhang Z, Kang F, Wu X, Chu Q. High-Throughput Screening of Stapled Helical Peptides in Drug Discovery. J Med Chem 2023; 66:95-106. [PMID: 36580278 DOI: 10.1021/acs.jmedchem.2c01541] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Therapeutic peptides have revolutionized treatment for a number of human diseases. In particular, the past two decades have witnessed rapid progress of stapled helical peptides in drug discovery. Stapled helical peptides are chemically modified and constrained in their bioactive α-helical conformation. Compared to unstabilized linear peptides, stapled helical peptides exhibit superior binding affinity and selectivity, enhanced membrane permeability, and improved metabolic stability, presenting exciting promise for targeting otherwise challenging protein-protein interfaces. In this Perspective, we summarize recent applications of high-throughput screening technologies for identification of potent stapled helical peptides with optimized binding properties. We expect to provide a broad reference to accelerate the development of stapled helical peptides as the next generation of therapeutic peptides for various human diseases.
Collapse
Affiliation(s)
- Yiwei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiabei Guo
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiongjia Cheng
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Zhenghua Zhang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Fenghua Kang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Xiaoxing Wu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qian Chu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.,Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
21
|
Nie Q, Sun J, Fang X, He X, Xiong F, Zhang G, Li Y, Li Y. Antimony salt-promoted cyclization facilitating on-DNA syntheses of dihydroquinazolinone derivatives and its applications. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
Knowles OJ, Johannissen LO, Crisenza GEM, Hay S, Leys D, Procter DJ. A Vitamin B 2 -Photocatalysed Approach to Methionine Analogues. Angew Chem Int Ed Engl 2022; 61:e202212158. [PMID: 36250805 PMCID: PMC10100050 DOI: 10.1002/anie.202212158] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 11/05/2022]
Abstract
Access to new non-canonical amino acid residues is crucial for medicinal chemistry and chemical biology. Analogues of the amino acid methionine have been far less explored-despite their use in biochemistry, pharmacology and peptide bioconjugation. This is largely due to limited synthetic access. Herein, we exploit a new disconnection to access non-natural methionines through the development of a photochemical method for the radical α-C-H functionalization of sulfides with alkenes, in water, using inexpensive and commercially-available riboflavin (vitamin B2 ) as a photocatalyst. Our photochemical conditions allow the two-step synthesis of novel methionine analogues-by radical addition to unsaturated amino acid derivatives-and the chemoselective modification of peptide side-chains to yield non-natural methionine residues within small peptides. The mechanism of the bio-inspired flavin photocatalysis has been probed by experimental, DFT and TDDFT studies.
Collapse
Affiliation(s)
- Oliver J. Knowles
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Linus O. Johannissen
- Manchester Institute of Biotechnology and Department of ChemistryUniversity of ManchesterPrincess StreetManchesterM1 7DNUK
| | | | - Sam Hay
- Manchester Institute of Biotechnology and Department of ChemistryUniversity of ManchesterPrincess StreetManchesterM1 7DNUK
| | - David Leys
- Manchester Institute of Biotechnology and Department of ChemistryUniversity of ManchesterPrincess StreetManchesterM1 7DNUK
| | - David J. Procter
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
23
|
Knowles OJ, Johannissen LO, Crisenza GEM, Hay S, Leys D, Procter DJ. A Vitamin B 2-Photocatalysed Approach to Methionine Analogues. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202212158. [PMID: 38505624 PMCID: PMC10946832 DOI: 10.1002/ange.202212158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 11/11/2022]
Abstract
Access to new non-canonical amino acid residues is crucial for medicinal chemistry and chemical biology. Analogues of the amino acid methionine have been far less explored-despite their use in biochemistry, pharmacology and peptide bioconjugation. This is largely due to limited synthetic access. Herein, we exploit a new disconnection to access non-natural methionines through the development of a photochemical method for the radical α-C-H functionalization of sulfides with alkenes, in water, using inexpensive and commercially-available riboflavin (vitamin B2) as a photocatalyst. Our photochemical conditions allow the two-step synthesis of novel methionine analogues-by radical addition to unsaturated amino acid derivatives-and the chemoselective modification of peptide side-chains to yield non-natural methionine residues within small peptides. The mechanism of the bio-inspired flavin photocatalysis has been probed by experimental, DFT and TDDFT studies.
Collapse
Affiliation(s)
- Oliver J. Knowles
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Linus O. Johannissen
- Manchester Institute of Biotechnology and Department of ChemistryUniversity of ManchesterPrincess StreetManchesterM1 7DNUK
| | | | - Sam Hay
- Manchester Institute of Biotechnology and Department of ChemistryUniversity of ManchesterPrincess StreetManchesterM1 7DNUK
| | - David Leys
- Manchester Institute of Biotechnology and Department of ChemistryUniversity of ManchesterPrincess StreetManchesterM1 7DNUK
| | - David J. Procter
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
24
|
Feng D, Liu L, Shi Y, Du P, Xu S, Zhu Z, Xu J, Yao H. Current development of bicyclic peptides. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Xu H, Tan T, Zhang Y, Wang Y, Pan K, Yao Y, Zhang S, Gu Y, Chen W, Li J, Dong H, Meng Y, Ma P, Hou W, Yang G. Metal-Free and Open-Air Arylation Reactions of Diaryliodonium Salts for DNA-Encoded Library Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202790. [PMID: 35853237 PMCID: PMC9475524 DOI: 10.1002/advs.202202790] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/17/2022] [Indexed: 06/15/2023]
Abstract
A successful DNA-encoded library (DEL) will consist of diverse skeletons and cover chemical space as comprehensive as possible to fully realize its potential in drug discovery and chemical biology. However, the lack of versatile on-DNA arylation methods for phenols that are less nucleophilic and reactive poses a great hurdle for DEL to include diaryl ether, a privileged chemotype in pharmaceuticals and natural products. This work describes the use of "substrate activation" approach to address the arylation of DNA-conjugated phenols. Diaryliodonium salt, a highly electrophilic and reactive arylation reagent, is employed as Ar+ sources to ensure highly selective on-DNA arylation of phenols and oximes with both high yields and DNA fidelity. Notably, the new on-DNA arylation reaction can be applied to the late-stage modification of peptides containing tyrosine side-chain and to synthesize DNA-tagged analogues of existing drug molecules such as sorafenib, a known pan-kinase inhibitor. The new on-DNA diaryliodonium salts chemistry affords a greater flexibility in DEL design and synthesis.
Collapse
Affiliation(s)
- Hongtao Xu
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Tingting Tan
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Yiyuan Zhang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Yan Wang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Kangyin Pan
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Ying Yao
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Wanting Chen
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Jie Li
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| | - Hewei Dong
- College of Pharmaceutical Science and Institute of Drug Development & Chemical BiologyZhejiang University of TechnologyHangzhou310014P. R. China
| | - Yu Meng
- College of Pharmaceutical Science and Institute of Drug Development & Chemical BiologyZhejiang University of TechnologyHangzhou310014P. R. China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
- Shanghai Key Laboratory of Orthopedic ImplantsDepartment of Orthopedic SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong UniversitySchool of MedicineShanghai200011P. R. China
| | - Wei Hou
- College of Pharmaceutical Science and Institute of Drug Development & Chemical BiologyZhejiang University of TechnologyHangzhou310014P. R. China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghai201210P. R. China
| |
Collapse
|
26
|
Xu H, Wang Y, Dong H, Zhang Y, Gu Y, Zhang S, Meng Y, Li J, Shi XJ, Ji Q, Liu L, Ma P, Ma F, Yang G, Hou W. Selenylation Chemistry Suitable for On‐Plate Parallel and On‐DNA Library Synthesis Enabling High‐Throughput Medicinal Chemistry. Angew Chem Int Ed Engl 2022; 61:e202206516. [DOI: 10.1002/anie.202206516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Yan Wang
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Hewei Dong
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology Zhejiang University of Technology Hangzhou 310014 China
| | - Yiyuan Zhang
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Yu Meng
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology Zhejiang University of Technology Hangzhou 310014 China
| | - Jie Li
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Xiao Jie Shi
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Qun Ji
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Lili Liu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
- Shanghai Key Laboratory of Orthopedic Implants Department of Orthopedic Surgery Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine 201210 Shanghai China
- Zhejiang Laboratory Hangzhou 311121 China
| | - Fei Ma
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Wei Hou
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology Zhejiang University of Technology Hangzhou 310014 China
| |
Collapse
|
27
|
Li QZ, Hou SH, Kang JC, Lian PF, Hao Y, Chen C, Zhou J, Ding TM, Zhang SY. Bioinspired Palladium-Catalyzed Intramolecular C(sp 3 )-H Activation for the Collective Synthesis of Proline Natural Products. Angew Chem Int Ed Engl 2022; 61:e202207088. [PMID: 35751877 DOI: 10.1002/anie.202207088] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 12/18/2022]
Abstract
Bioinspired palladium-catalyzed intramolecular cyclization of amino acid derivatives containing a vinyl iodide moiety by C-H activation enabled rapid access to a wide range of functionalized proline derivatives with an exocyclic olefin. To demonstrate the practicality of this methodology, the functionalized prolines were used as intermediates for the synthesis of several natural products: lucentamycin A, oxotomaymycin, oxoprothracarcin, and barmumycin.
Collapse
Affiliation(s)
- Quan-Zhe Li
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Si-Hua Hou
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jun-Chen Kang
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Peng-Fei Lian
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yu Hao
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chao Chen
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jia Zhou
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tong-Mei Ding
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shu-Yu Zhang
- Shanghai Key Laboratory for Molecular Engineer of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
28
|
Montgomery HR, Messina MS, Doud EA, Spokoyny AM, Maynard HD. Organometallic S-arylation Reagents for Rapid PEGylation of Biomolecules. Bioconjug Chem 2022; 33:1536-1542. [PMID: 35939764 DOI: 10.1021/acs.bioconjchem.2c00280] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bioconjugation techniques for biomolecule-polymer conjugation are numerous; however, slow kinetics and steric challenges generally necessitate excess reagents or long reaction times. Organometallic transformations are known to circumvent these issues; yet, harsh reaction conditions, incompatibility in aqueous media, and substrate promiscuity often limit their use in a biological context. The work reported herein demonstrates a facile and benign organometallic Au(III) S-arylation approach that enables the synthesis of poly(ethylene glycol) monomethyl ether (mPEG)-protein conjugates with high efficiency. Isolable and bench-stable 2, 5, and 10 kDa mPEG-Au(III) reagents were synthesized via oxidative addition into terminal aryl iodide substituents installed on mPEG substrates with a (Me-DalPhos)Au(I)Cl precursor. Reaction of the isolable mPEG-Au(III) oxidative addition complexes with a cysteine thiol on a biomolecule resulted in facile and selective cysteine arylation chemistry, forging covalent S-aryl linkages and affording the mPEG-biomolecule conjugates. Notably, low polymer reagent loadings were used to achieve near quantitative conversion at room temperature in 1 min due to the rapid kinetics and high chemoselectivity of this Au-based bioconjugation approach. Therefore, this work represents an important addition to the protein-polymer conjugation chemical toolbox.
Collapse
Affiliation(s)
- Hayden R Montgomery
- Department of Chemistry and Biochemistry, University of California, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Marco S Messina
- Department of Chemistry and Biochemistry, University of California, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Evan A Doud
- Department of Chemistry and Biochemistry, University of California, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry, University of California, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States.,California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| | - Heather D Maynard
- Department of Chemistry and Biochemistry, University of California, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States.,California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, United States
| |
Collapse
|
29
|
Xu M, Zhou B, Ding Y, Du S, Su M, Liu H. Programmable Oligonucleotide-Peptide Complexes: Synthesis and Applications. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-021-1265-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Li QZ, Hou SH, Kang JC, Lian PF, Hao Y, Chen C, Zhou J, Ding TM, Zhang SY. Bioinspired Palladium‐Catalyzed Intramolecular C(sp3)−H Activation for the Collective Synthesis of Proline Natural Products. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Quan-Zhe Li
- Shanghai Jiao Tong University Chemistry CHINA
| | - Si-Hua Hou
- SJTU: Shanghai Jiao Tong University CHEMISTRY CHINA
| | | | | | - Yu Hao
- SJTU: Shanghai Jiao Tong University Chemistry CHINA
| | - Chao Chen
- SJTU: Shanghai Jiao Tong University Chemistry CHINA
| | - Jia Zhou
- SJTU: Shanghai Jiao Tong University Chemistry CHINA
| | | | - Shu-Yu Zhang
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering 800 Dongchuan RoadB329 Chemsitry BuildingShanghai Jiao Tong University 200240 Shanghai CHINA
| |
Collapse
|
31
|
Xu H, Wang Y, Dong H, Zhang Y, Gu Y, Zhang S, Meng Y, Li J, Shi XJ, Ji Q, Liu L, Ma P, Ma F, Yang G, Hou W. Selenylation Chemistry Suitable for On‐Plate Parallel and On‐DNA Library Synthesis Enabling High‐Throughput Medicinal Chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Yan Wang
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Hewei Dong
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology Zhejiang University of Technology Hangzhou 310014 China
| | - Yiyuan Zhang
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Yu Meng
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology Zhejiang University of Technology Hangzhou 310014 China
| | - Jie Li
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Xiao Jie Shi
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Qun Ji
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Lili Liu
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
- Shanghai Key Laboratory of Orthopedic Implants Department of Orthopedic Surgery Shanghai Ninth People's Hospital Shanghai Jiao Tong University School of Medicine 201210 Shanghai China
- Zhejiang Laboratory Hangzhou 311121 China
| | - Fei Ma
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies ShanghaiTech University Shanghai 201210 China
| | - Wei Hou
- College of Pharmaceutical Science and Institute of Drug Development & Chemical Biology Zhejiang University of Technology Hangzhou 310014 China
| |
Collapse
|
32
|
Saikia RA, Hazarika N, Biswakarma N, Chandra Deka R, Thakur AJ. Metal-free S-arylation of 5-mercaptotetrazoles and 2-mercaptopyridine with unsymmetrical diaryliodonium salts. Org Biomol Chem 2022; 20:3890-3896. [PMID: 35481589 DOI: 10.1039/d2ob00406b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we demonstrate the application of unsymmetrical iodonium salts towards S-arylation of heterocyclic thiols (especially tetrazole-5-thiols and pyridine-2-thiol) under metal-free conditions, affording a diverse range of di(hetero)aryl thioethers in moderate to good yields. A detailed study on the effects of counter-anions and the auxiliary of iodonium salts was conducted. Suitable auxiliary selection of the unsymmetrical iodonium salt offers flexibility for a wide range of aryl moieties and its incorporation into S-arylation. The DFT study supports the experimental observations of chemoselective arylation.
Collapse
Affiliation(s)
- Raktim Abha Saikia
- Department of Chemical Sciences, Tezpur University, Napaam-784028, Assam, India.
| | - Nitumoni Hazarika
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati-781039, India
| | - Nishant Biswakarma
- Department of Chemical Sciences, Tezpur University, Napaam-784028, Assam, India.
| | - Ramesh Chandra Deka
- Department of Chemical Sciences, Tezpur University, Napaam-784028, Assam, India.
| | - Ashim Jyoti Thakur
- Department of Chemical Sciences, Tezpur University, Napaam-784028, Assam, India.
| |
Collapse
|
33
|
Liu W, Bai X, Song L, Wang X, Lu X. Constructing Head-to-Tail Cyclic Peptide DNA-Encoded Libraries Using Two-Directional Synthesis Strategy. Bioconjug Chem 2022; 33:560-565. [PMID: 35274526 DOI: 10.1021/acs.bioconjchem.2c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Macrocyclic peptides are an important class of therapeutic agents for the biological targets that are difficult to modulate by small-molecule compounds. Meanwhile, DNA-encoded library technology (DELT) provides a powerful platform for hits discovery. The unity of both fields has proven highly productive in finding cyclic peptide hits against diverse pharmaceutical proteins. Many researchers have extended the chemical toolbox for constructing head-to-tail macrocyclic DNA-encoded libraries with various ring sizes. However, the linear peptides of different lengths necessitate tuning the distance between closing sites and DNA-linked sites to perform the macrocyclization process, presumably due to the constrained conformation of linear precursors. To tackle this issue and streamline the synthetic workflow, we report a two-directional synthesis strategy. This method starts from a trifunctional reagent and prepares DNA-linked macrocyclic peptides of ring size between 15 (5-mer) and 24 (8-mer) via amide bond formation reaction, a common method to create macrocyclic peptides.
Collapse
Affiliation(s)
- Wang Liu
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Baoshan, Shanghai, 200444, P. R. China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, P. R. China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Xiaopeng Bai
- UCB, 87 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Liping Song
- Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Baoshan, Shanghai, 200444, P. R. China
| | - Xuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, P. R. China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, P. R. China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
34
|
Li J, Lai W, Pang A, Liu L, Ye L, Xiong XF. On-Resin Synthesis of Linear Aryl Thioether Containing Peptides and in-Solution Cyclization via Cysteine S NAr Reaction. Org Lett 2022; 24:1673-1677. [PMID: 35195423 DOI: 10.1021/acs.orglett.2c00234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cyclic peptides represent one of the most promising therapeutic agents in drug discovery due to their good affinity and selectivity. Herein, an on-resin synthesis of aryl thioether containing peptides and a concise cyclization strategy via chemoselective cysteine SNAr reaction was developed. The arylation group could be incorporated into a series of amino acids and used for standard SPPS and peptides cyclization. Constructed cyclic peptides showed increased cellular uptakes compared to their linear peptides.
Collapse
Affiliation(s)
- Jian Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Weihong Lai
- School of Pharmacy, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong, P. R. China
| | - Ao Pang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Lu Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Lianbao Ye
- School of Pharmacy, Guangdong Pharmaceutical University, 510006 Guangzhou, Guangdong, P. R. China
| | - Xiao-Feng Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| |
Collapse
|
35
|
Yang S, Zhao G, Gao Y, Sun Y, Zhang G, Fan X, Li Y, Li Y. In-solution direct oxidative coupling for the integration of sulfur/selenium into DNA-encoded chemical libraries. Chem Sci 2022; 13:2604-2613. [PMID: 35340849 PMCID: PMC8890091 DOI: 10.1039/d1sc06268a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/29/2022] [Indexed: 12/27/2022] Open
Abstract
Sulfur/selenium-containing electron-rich arenes (ERAs) exist in a wide range of both approved and investigational drugs with diverse pharmacological activities. These unique chemical structures and bioactive properties, if combined with the emerging DNA-encoded chemical library (DEL) technique, would facilitate drug and chemical probe discovery. However, it remains challenging, as there is no general DNA-compatible synthetic methodology available for the formation of C-S and C-Se bonds in aqueous solution. Herein, an in-solution direct oxidative coupling procedure that could efficiently integrate sulfur/selenium into the ERA under mild conditions is presented. This method features simple DNA-conjugated electron-rich arenes with a broad substrate scope and a transition-metal free process. Furthermore, this synthetic methodology, examined by a scale-up reaction test and late-stage precise modification in a mock peptide-like DEL synthesis, will enable its utility for the synthesis of sulfur/selenium-containing DNA-encoded libraries and the discovery of bioactive agents.
Collapse
Affiliation(s)
- Shilian Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Yuting Gao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Yang Sun
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Xiaohong Fan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
- Pharmaceutical Department of Chongqing Three Gorges Central Hospital, Chongqing University Chongqing 404100 P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University Chongqing 400044 P. R. China
| |
Collapse
|
36
|
Zhong S, Fang X, Wang Y, Zhang G, Li Y, Li Y. DNA-Compatible Diversification of Indole π-Activated Alcohols via a Direct Dehydrative Coupling Strategy. Org Lett 2022; 24:1022-1026. [PMID: 35050627 DOI: 10.1021/acs.orglett.1c04169] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Indole-based diversification is highly desired in the DNA-encoded chemical library construction. Herein, we present a general strategy for on-DNA synthesis of diverse C3-functionalized indole derivatives via indole π-activated alcohol formation followed by direct dehydrative coupling. Highly efficient bond linkages of C-C, C-N, and C-S were achieved to fuse building blocks that are widely commercially available. DNA-encoding compatibility of the method has been further demonstrated to pave an avenue for application in constructing indole-focused three-dimensional libraries.
Collapse
Affiliation(s)
- Shuting Zhong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Xianfu Fang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yiting Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
37
|
Nie Q, Fang X, Liu C, Zhang G, Fan X, Li Y, Li Y. DNA-Compatible ortho-Phthalaldehyde (OPA)-Mediated 2-Substituted Isoindole Core Formation and Applications. J Org Chem 2022; 87:2551-2558. [DOI: 10.1021/acs.joc.1c02496] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Qigui Nie
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People’s Republic of China
| | - Xianfu Fang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People’s Republic of China
| | - Changyang Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People’s Republic of China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People’s Republic of China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People’s Republic of China
| | - Xiaohong Fan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People’s Republic of China
- Pharmaceutical Department of Chongqing Three Gorges Central Hospital, Chongqing University Three Gorges Hospital, Chongqing 404100, People’s Republic of China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People’s Republic of China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People’s Republic of China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People’s Republic of China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People’s Republic of China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People’s Republic of China
| |
Collapse
|
38
|
Plais L, Scheuermann J. Macrocyclic DNA-encoded chemical libraries: a historical perspective. RSC Chem Biol 2022; 3:7-17. [PMID: 35128404 PMCID: PMC8729180 DOI: 10.1039/d1cb00161b] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022] Open
Abstract
While macrocyclic peptides are extensively researched for therapeutically relevant protein targets, DNA-encoded chemical libraries (DELs) are developed at a quick pace to discover novel small molecule binders. The combination of both fields has been explored since 2004 and the number of macrocyclic peptide DELs is steadily increasing. Macrocycles with high affinity and potency were identified for diverse classes of proteins, revealing DEL's huge potential. By giving a historical perspective, we would like to review the methods which permitted the rise of macrocyclic peptide DELs, describe the different DELs which were created and discuss the achievements and challenges of this emerging field.
Collapse
Affiliation(s)
- Louise Plais
- Department of Chemistry and Applied Biosciences, ETH Zürich (Swiss Federal Institute of Technology) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied Biosciences, ETH Zürich (Swiss Federal Institute of Technology) Vladimir-Prelog-Weg 4 CH-8093 Zürich Switzerland
| |
Collapse
|
39
|
Li H, Li J, Chao J, Zhang Z, Qin C. Head-to-tail cyclization for the synthesis of naturally occurring cyclic peptides on organophosphorus small-molecular supports. Org Chem Front 2022. [DOI: 10.1039/d1qo01362a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
4,4′-bis(diphenylphosphinyloxyl) diphenyl ketoxime and 4-diphenyl phospholoxy benzyl alcohol were designed and prepared as supports for peptide synthesis. The total synthesis of cyclic peptides in a resin-free manner was successfully demonstrated.
Collapse
Affiliation(s)
- Haidi Li
- MIIT Key Laboratory of Special Functional & Intelligent Polymer materials, MOE Key Laboratory of Supernormal Material Physics & Chemistry, Shaanxi Key Laboratory of Polymer Science & Technology, Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Junyou Li
- MIIT Key Laboratory of Special Functional & Intelligent Polymer materials, MOE Key Laboratory of Supernormal Material Physics & Chemistry, Shaanxi Key Laboratory of Polymer Science & Technology, Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jie Chao
- MIIT Key Laboratory of Special Functional & Intelligent Polymer materials, MOE Key Laboratory of Supernormal Material Physics & Chemistry, Shaanxi Key Laboratory of Polymer Science & Technology, Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Zixin Zhang
- MIIT Key Laboratory of Special Functional & Intelligent Polymer materials, MOE Key Laboratory of Supernormal Material Physics & Chemistry, Shaanxi Key Laboratory of Polymer Science & Technology, Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Chuanguang Qin
- MIIT Key Laboratory of Special Functional & Intelligent Polymer materials, MOE Key Laboratory of Supernormal Material Physics & Chemistry, Shaanxi Key Laboratory of Polymer Science & Technology, Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
40
|
Sunkari YK, Siripuram VK, Nguyen TL, Flajolet M. High-power screening (HPS) empowered by DNA-encoded libraries. Trends Pharmacol Sci 2021; 43:4-15. [PMID: 34782164 DOI: 10.1016/j.tips.2021.10.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/29/2021] [Accepted: 10/14/2021] [Indexed: 01/19/2023]
Abstract
The world is totally dependent on medications. As science progresses, new, better, and cheaper drugs are needed more than ever. The pharmaceutical industry has been predominantly dependent on high-throughput screening (HTS) for the past three decades. Considering that the discovery rate has been relatively constant, can one hope for a much-needed sudden trend uptick? DNA-encoded libraries (DELs) and similar technologies, that have several orders of magnitude more screening power than HTS, and that we propose to group together under the umbrella term of high-power screening (HPS), are very well positioned to do exactly that. HPS also offers novel screening options such as parallel screening, ex vivo and in vivo screening, as well as a new path to druggable alternatives such as proteolysis targeting chimeras (PROTACs). Altogether, HPS unlocks novel powerful drug discovery avenues.
Collapse
Affiliation(s)
- Yashoda Krishna Sunkari
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA
| | - Vijay Kumar Siripuram
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA
| | - Thu-Lan Nguyen
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA
| | - Marc Flajolet
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
41
|
Fair RJ, Walsh RT, Hupp CD. The expanding reaction toolkit for DNA-encoded libraries. Bioorg Med Chem Lett 2021; 51:128339. [PMID: 34478840 DOI: 10.1016/j.bmcl.2021.128339] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022]
Abstract
Over the past decade, DNA-encoded libraries (DELs) have emerged as a leading platform for small molecule drug discovery among pharmaceutical companies, biotech companies and academic drug hunters alike. This revolutionary technology has tremendous potential that is yet to be fully realized, as the exploration of therapeutically relevant chemical space is fueled by the ever-expanding repertoire of DNA-compatible reactions used to construct the libraries. Advances in direct coupling reactions, like photo-catalytic cross couplings, unique cyclizations such as the formation of 1,2,4-oxadiazoles, and new functional group transformations are valuable contributions to the DEL reaction toolkit, and indicate where future reaction development efforts should focus in order to maximize the productivity of DELs.
Collapse
Affiliation(s)
| | - Ryan T Walsh
- X-Chem Inc., 100 Beaver Street, Waltham, MA 02453, USA
| | | |
Collapse
|
42
|
Yang P, Zhang C, Li B, He G, Chen G. Solid Phase Synthesis of Thioether‐linked Peptide Macrocycles via Palladium‐Catalyzed Intramolecular S‐Arylation and S‐Alkenylation. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Peng Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Chao Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Bo Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
43
|
Chu X, Shen L, Li B, Yang P, Du C, Wang X, He G, Messaoudi S, Chen G. Construction of Peptide Macrocycles via Palladium-Catalyzed Multiple S-Arylation: An Effective Strategy to Expand the Structural Diversity of Cross-Linkers. Org Lett 2021; 23:8001-8006. [PMID: 34582221 DOI: 10.1021/acs.orglett.1c03003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A simple and versatile method for macrocyclizing unprotected native peptides with a wide range of easily accessible diiodo and triiodoarene reagents via the palladium-catalyzed multiple S-arylation of cysteine residues is developed. Iodoarenes with different arene and heteroarene cores can be incorporated into peptide macrocycles of varied ring sizes and amino acid compositions with high efficiency and selectivity under mild conditions.
Collapse
Affiliation(s)
- Xin Chu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Linhua Shen
- University Paris-Saclay, CNRS, BioCIS, 92296 Chat̂enay-Malabry, France
| | - Bo Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Peng Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chengzhuo Du
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoye Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Samir Messaoudi
- University Paris-Saclay, CNRS, BioCIS, 92296 Chat̂enay-Malabry, France
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
44
|
Second-generation DNA-encoded multiple display on a constant macrocyclic scaffold enabled by an orthogonal protecting group strategy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.09.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|