1
|
Campeau LC. From Cortisone to Enlicitide: A Journey of Synthetic Chemistry Innovations at Merck. J Org Chem 2025; 90:4781-4795. [PMID: 40168664 PMCID: PMC11998012 DOI: 10.1021/acs.joc.4c02919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/13/2025] [Accepted: 03/21/2025] [Indexed: 04/03/2025]
Abstract
Necessity is the mother of invention. Most synthetic chemistry innovations are driven by our desire to make molecules. In the first half of the 20th century, much of this work was inspired by natural products, but as we started to understand the impact that specific molecules could have on biology and human health, a new stimulus for invention appeared. The pharmaceutical industry first brought mass production and formulation of natural products for medicinal purposes but quickly started tinkering with molecular structure to modify compounds' properties, eventually designing molecules from scratch. This necessity for invention of new molecules to improve human health and to manufacture them on large scale is an excellent stimulus for synthetic chemistry innovations. In this Perspective, examples from Merck's chemistry groups are used to highlight the types of innovations that can arise from these endeavors.
Collapse
Affiliation(s)
- Louis-Charles Campeau
- Process Research and Development, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
2
|
Keane DC, Zhang G, Alshreimi AS, Wink DJ, Anderson LL. Synthesis of Pyrrolidine-2-ylidenes from Isoxazolines and Allenes. J Org Chem 2024; 89:17804-17812. [PMID: 39539245 DOI: 10.1021/acs.joc.4c01976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A diastereoselective addition and rearrangement reaction has been developed for the synthesis of pyrrolidine-2-ylidenes from NH-isoxazolines and electron-deficient allenes. This method proceeds via the rearrangement of a proposed N-alkenylisoxazoline intermediate to generate densely functionalized pyrrolidine-2-ylidenes under simple catalyst-free conditions that tolerate ketone substituents and install relative stereochemistry at positions 3 and 4 of the heterocycle. Reaction optimization and the substrate scope are described in addition to studies evaluating the reactivity of the gem-dione and enaminone groups of the products.
Collapse
Affiliation(s)
- Dylan C Keane
- Department of Chemistry, University of Illinois Chicago, 845 West Taylor Street, MC 111, Chicago, Illinois 60607, United States
| | - Guanqun Zhang
- Department of Chemistry, University of Illinois Chicago, 845 West Taylor Street, MC 111, Chicago, Illinois 60607, United States
| | - Abdullah S Alshreimi
- Department of Chemistry, University of Illinois Chicago, 845 West Taylor Street, MC 111, Chicago, Illinois 60607, United States
| | - Donald J Wink
- Department of Chemistry, University of Illinois Chicago, 845 West Taylor Street, MC 111, Chicago, Illinois 60607, United States
| | - Laura L Anderson
- Department of Chemistry, University of Illinois Chicago, 845 West Taylor Street, MC 111, Chicago, Illinois 60607, United States
| |
Collapse
|
3
|
Müller DS. Advancements in hydrochlorination of alkenes. Beilstein J Org Chem 2024; 20:787-814. [PMID: 38655559 PMCID: PMC11035990 DOI: 10.3762/bjoc.20.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
The hydrochlorination of alkenes has been extensively studied in research and is commonly featured in organic chemistry textbooks as an exemplification of the Markovnikov rule. However, the application of this reaction is typically limited to specific alkenes, such as highly substituted ones, styrenes, or strained systems. Conversely, monosubstituted or 1,2-disubstituted alkenes do not readily react with HCl gas or solutions of HCl gas at practical rates. The challenges associated with hydrochlorination reactions for these "non-activated" alkenes have spurred considerable research efforts over the past 30 years, which constitute the primary focus of this review. The discussion begins with classical polar hydrochlorinations, followed by metal-promoted radical hydrochlorinations, and concludes with a brief overview of recent anti-Markovnikov hydrochlorinations.
Collapse
Affiliation(s)
- Daniel S Müller
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, 263 Avenue du Général Leclerc, F-35000 Rennes, France
| |
Collapse
|
4
|
Liu J, Chen H, Wang M, He W, Yan JL. Organocatalytic asymmetric synthesis of P-stereogenic molecules. Front Chem 2023; 11:1132025. [PMID: 36874062 PMCID: PMC9978094 DOI: 10.3389/fchem.2023.1132025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/10/2023] [Indexed: 02/18/2023] Open
Abstract
P-chirality broadly appears in natural and synthetic functional molecules. The catalytic synthesis of organophosphorus compounds bearing P-stereogenic centers is still challenging, due to the lack of efficient catalytic systems. This review summarizes the key achievements in organocatalytic methodologies for the synthesis of P-stereogenic molecules. Different catalytic systems are emphasized for each strategy class (desymmetrization, kinetic resolution, and dynamic kinetic resolution) with examples cited to illustrate the potential applications of the accessed P-stereogenic organophosphorus compounds.
Collapse
Affiliation(s)
- Junyang Liu
- Innovation Center of Marine Biotechnology and Pharmaceuticals, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Hang Chen
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Min Wang
- Innovation Center of Marine Biotechnology and Pharmaceuticals, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Wangjin He
- Innovation Center of Marine Biotechnology and Pharmaceuticals, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Jia-Lei Yan
- Innovation Center of Marine Biotechnology and Pharmaceuticals, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| |
Collapse
|
5
|
Roy B, Navarro V, Peyrottes S. Prodrugs of Nucleoside 5'-Monophosphate Analogues: Overview of the Recent Literature Concerning their Synthesis and Applications. Curr Med Chem 2023; 30:1256-1303. [PMID: 36093825 DOI: 10.2174/0929867329666220909122820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 11/22/2022]
Abstract
Nucleoside analogues are widely used as anti-infectious and antitumoral agents. However, their clinical use may face limitations associated with their physicochemical properties, pharmacokinetic parameters, and/or their peculiar mechanisms of action. Indeed, once inside the cells, nucleoside analogues require to be metabolized into their corresponding (poly-)phosphorylated derivatives, mediated by cellular and/or viral kinases, in order to interfere with nucleic acid biosynthesis. Within this activation process, the first-phosphorylation step is often the limiting one and to overcome this limitation, numerous prodrug approaches have been proposed. Herein, we will focus on recent literature data (from 2015 and onwards) related to new prodrug strategies, the development of original synthetic approaches and novel applications of nucleotide prodrugs (namely pronucleotides) leading to the intracellular delivery of 5'-monophosphate nucleoside analogues.
Collapse
Affiliation(s)
- Béatrice Roy
- Team Nucleosides & Phosphorylated Effectors, Institute for Biomolecules Max Mousseron (IBMM), University of Montpellier, Route de Mende, 34293 Montpellier, France
| | - Valentin Navarro
- Team Nucleosides & Phosphorylated Effectors, Institute for Biomolecules Max Mousseron (IBMM), University of Montpellier, Route de Mende, 34293 Montpellier, France
| | - Suzanne Peyrottes
- Team Nucleosides & Phosphorylated Effectors, Institute for Biomolecules Max Mousseron (IBMM), University of Montpellier, Route de Mende, 34293 Montpellier, France
| |
Collapse
|
6
|
Ruck RT, Strotman NA, Krska SW. The Catalysis Laboratory at Merck: 20 Years of Catalyzing Innovation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Rebecca T. Ruck
- Department of Process Research & Development, Merck & Co., Inc., Rahway, New Jersey07065, United States
| | - Neil A. Strotman
- Department of Pharmaceutical Sciences & Clinical Supplies, Merck & Co., Inc., Rahway, New Jersey07065, United States
| | - Shane W. Krska
- Chemistry Capabilities Accelerating Therapeutics, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| |
Collapse
|
7
|
Xu S, Del Pozo J, Romiti F, Fu Y, Mai BK, Morrison RJ, Lee K, Hu S, Koh MJ, Lee J, Li X, Liu P, Hoveyda AH. Diastereo- and enantioselective synthesis of compounds with a trifluoromethyl- and fluoro-substituted carbon centre. Nat Chem 2022; 14:1459-1469. [PMID: 36376387 PMCID: PMC9772297 DOI: 10.1038/s41557-022-01054-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
Molecules that contain one or more fluorine atoms are crucial to drug discovery. There are protocols available for the selective synthesis of different organofluorine compounds, including those with a fluoro-substituted or a trifluoromethyl-substituted stereogenic carbon centre. However, approaches for synthesizing compounds with a trifluoromethyl- and fluoro-substituent stereogenic carbon centre are far less common. This potentially impactful set of molecules thus remains severely underdeveloped. Here we introduce a catalytic regio-, diastereo- and enantioselective strategy for the preparation of homoallylic alcohols bearing a stereogenic carbon centre bound to a trifluoromethyl group and a fluorine atom. The process, which involves a polyfluoroallyl boronate and is catalysed by an in situ-formed organozinc complex, can be used for diastereodivergent preparation of tetrafluoro-monosaccharides, including ribose core analogues of the antiviral drug sofosbuvir (Sovaldi). Unexpected reactivity/selectivity profiles, probably originating from the trifluoromethyl- and fluoro-substituted carbon site, are discovered, foreshadowing other unique chemistries that remain unknown.
Collapse
Affiliation(s)
- Shibo Xu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Juan Del Pozo
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Filippo Romiti
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, Strasbourg, France
| | - Yue Fu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan J Morrison
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - KyungA Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Shaowei Hu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Ming Joo Koh
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Jaehee Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA
| | - Xinghan Li
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, Strasbourg, France
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Amir H Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA.
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, Strasbourg, France.
| |
Collapse
|
8
|
Wang M, Zhang Z, Zhang W. Design, Synthesis, and Application of Chiral Bicyclic Imidazole Catalysts. Acc Chem Res 2022; 55:2708-2727. [PMID: 36043467 DOI: 10.1021/acs.accounts.2c00455] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Asymmetric organocatalysis has been considered to be an efficient and reliable strategy for the stereoselective preparation of optically active chemicals. In particular, chiral tertiary amines as Lewis base organocatalysts bearing core structures including quinuclidine, dimethylaminopyridine (DMAP), N-methylimidazole (NMI), amidine, etc. have provided new and powerful tools for various chemical transformations. However, due to the limitations in structural complexity, synthetic difficulty, low catalytic efficiency, and high cost, the industrial application of such catalysts is still far from being widely adopted. Therefore, the development of new chiral tertiary amine catalysts with higher activity and selectivity is greatly desired.In order to address the contradiction between activity and selectivity caused by the ortho group, a bicyclic imidazole structure bearing a relatively large bond angle ∠θ was designed as the skeleton of our new catalysts. 6,7-Dihydro-5H-pyrrolo[1,2-a]imidazole (abbreviated as DPI) and 5,6,7,8-tetrahydroimidazo[1,2-a]pyridine (abbreviated as TIP) are two of the utilized skeletons. In addition to obtaining satisfactory catalytic activity, excellent enantioselectivity would also be expected because the stereocontrol R group is neither far nor close to the catalytic active site (sp2-N atom) and is adjustable. Based on this skeleton, a family of chiral bicyclic imidazole catalysts were easily prepared and successfully applied in several enantioselective reactions for the synthesis of a variety of valuable chiral compounds.6,7-Dihydro-5H-pyrrolo[1,2-a]imidazole (abbreviated as DPI) is the predominantly utilized skeleton. First, HO-DPI, the key intermediate of the designed chiral bicyclic imidazole catalysts, could be efficiently synthesized from imidazole and acrolein, then separated by kinetic resolution or optical resolution. Second, Alkoxy-DPI, the alkyloxy-substituted chiral bicyclic imidazole catalysts, were synthesized by a one-step alkylation from HO-DPI. This type of catalyst has been successfully applied in asymmetric Steglich rearrangement (C-acylation rearrangement of O-acylated azlactones), asymmetric phosphorylation of lactams, and a sequential four-step acylation reaction. Third, Acyloxy-DPI, the acyloxy-substituted chiral bicyclic imidazole catalysts, were synthesized with a one-step acetylative kinetic resolution from racemic HO-DPI or acylation from enantiopure HO-DPI. The catalyst AcO-DPI has been successfully applied in enantioselective Black rearrangement and in direct enantioselective C-acylation of 3-substituted benzofuran-2(3H)-ones and 2-oxindoles. Fourth, Alkyl-DPI was synthesized via a two-step reaction from racemic HO-DPI and separated easily by resolution. The catalyst Cy-DPI has been successfully applied in dynamic kinetic resolution of 3-hydroxyphthalides through enantioselective O-acylation. Cy-PDPI was synthesized through a Cu-catalyzed amidation from Cy-DPI and successfully applied in the kinetic resolution of secondary alcohols with good to excellent enantioselectivities. Finally, the carbamate type chiral bicyclic imidazole catalysts, Carbamate-DPI, were readily synthesized from HO-DPI, and the catalyst Ad-DPI bearing a bulky adamantyl group was successfully applied in the synthesis of the anti-COVID-19 drug remdesivir via asymmetric phosphorylation. Alongside our initial work, this Account also introduces four elegant studies by other groups concerning asymmetric phosphorylation utilizing chiral bicyclic imidazole catalysts.In summary, this Account focuses on the chiral bicyclic imidazole catalysts developed in our group and provides an overview on their design, synthesis, and application that will serve as inspiration for the exploration of new organocatalysts and related reactions.
Collapse
|
9
|
Maligres PE, Peng F, Calabria R, Campeau LC, Chen W, Dormer PG, Green M, He CQ, Hyde AM, Klapars A, Larsen MU, Limanto J, Liu G, Liu Y, Moment A, Nowak T, Ruck RT, Shevlin M, Song ZJ, Tan L, Tong W, Waldman JH, Ye H, Zhao R, Zhou G, Zompa MA, Zultanski SL. Manufacturing Process Development for Uprifosbuvir (MK-3682): A Green and Sustainable Process for Preparing Penultimate 2′-Deoxy-α-2′-Chloro-β-2′-Methyluridine. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter E. Maligres
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Feng Peng
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Ralph Calabria
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Louis-Charles Campeau
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Wenyong Chen
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Peter G. Dormer
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Meredith Green
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Cyndi Qixin He
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Alan M. Hyde
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Artis Klapars
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Mona Utne Larsen
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - John Limanto
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Guiquan Liu
- Shanghai SynTheAll Pharmaceutical Co. Ltd., 9 Yuegong Road, Jinshan District, Shanghai 201507, China
| | - Yizhou Liu
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Aaron Moment
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Timothy Nowak
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Rebecca T. Ruck
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Michael Shevlin
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Zhiguo Jake Song
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Lushi Tan
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Weidong Tong
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jacob H. Waldman
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Honglin Ye
- Shanghai SynTheAll Pharmaceutical Co. Ltd., 9 Yuegong Road, Jinshan District, Shanghai 201507, China
| | - Ralph Zhao
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - George Zhou
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Michael A. Zompa
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Susan L. Zultanski
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
10
|
Ying H, Yao J, Wu F, Zhao Y, Ni F. A mild and concise synthesis of aryloxy phosphoramidate prodrug of alcohols via transesterification reaction. RSC Adv 2022; 12:13111-13115. [PMID: 35497010 PMCID: PMC9052952 DOI: 10.1039/d2ra01995g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
A synthesis of aryloxy phosphoramidate prodrug of alcohols enabled by a transesterification strategy is described here. This reaction operates under mild conditions and thus has excellent functional group tolerance. This method provides an efficient and practical solution to the rapid construction of the aryloxy phosphoramidate prodrugs library for potential SAR studies.
Collapse
Affiliation(s)
- Hanglu Ying
- Institute of Drug Discovery Technology, Ningbo University Ningbo Zhejiang 315211 P. R. China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University Ningbo Zhejiang 315211 P. R. China
| | - Jie Yao
- Institute of Drug Discovery Technology, Ningbo University Ningbo Zhejiang 315211 P. R. China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University Ningbo Zhejiang 315211 P. R. China
| | - Fan Wu
- Institute of Drug Discovery Technology, Ningbo University Ningbo Zhejiang 315211 P. R. China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University Ningbo Zhejiang 315211 P. R. China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University Ningbo Zhejiang 315211 P. R. China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University Ningbo Zhejiang 315211 P. R. China
| | - Feng Ni
- Institute of Drug Discovery Technology, Ningbo University Ningbo Zhejiang 315211 P. R. China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University Ningbo Zhejiang 315211 P. R. China
| |
Collapse
|
11
|
Benkovics T, Peng F, Phillips EM, An C, Bade RS, Chung CK, Dance ZEX, Fier PS, Forstater JH, Liu Z, Liu Z, Maligres PE, Marshall NM, Salehi Marzijarani N, McIntosh JA, Miller SP, Moore JC, Neel AJ, Obligacion JV, Pan W, Pirnot MT, Poirier M, Reibarkh M, Sherry BD, Song ZJ, Tan L, Turnbull BWH, Verma D, Waldman JH, Wang L, Wang T, Winston MS, Xu F. Diverse Catalytic Reactions for the Stereoselective Synthesis of Cyclic Dinucleotide MK-1454. J Am Chem Soc 2022; 144:5855-5863. [PMID: 35333525 DOI: 10.1021/jacs.1c12106] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As practitioners of organic chemistry strive to deliver efficient syntheses of the most complex natural products and drug candidates, further innovations in synthetic strategies are required to facilitate their efficient construction. These aspirational breakthroughs often go hand-in-hand with considerable reductions in cost and environmental impact. Enzyme-catalyzed reactions have become an impressive and necessary tool that offers benefits such as increased selectivity and waste limitation. These benefits are amplified when enzymatic processes are conducted in a cascade in combination with novel bond-forming strategies. In this article, we report a highly diastereoselective synthesis of MK-1454, a potent agonist of the stimulator of interferon gene (STING) signaling pathway. The synthesis begins with the asymmetric construction of two fluoride-bearing deoxynucleotides. The routes were designed for maximum convergency and selectivity, relying on the same benign electrophilic fluorinating reagent. From these complex subunits, four enzymes are used to construct the two bridging thiophosphates in a highly selective, high yielding cascade process. Critical to the success of this reaction was a thorough understanding of the role transition metals play in bond formation.
Collapse
Affiliation(s)
- Tamas Benkovics
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Feng Peng
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Eric M Phillips
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Chihui An
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Rachel S Bade
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Cheol K Chung
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Zachary E X Dance
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Patrick S Fier
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Jacob H Forstater
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Zhijian Liu
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Zhuqing Liu
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Peter E Maligres
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Nicholas M Marshall
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Nastaran Salehi Marzijarani
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - John A McIntosh
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Steven P Miller
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Jeffrey C Moore
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Andrew J Neel
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Jennifer V Obligacion
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Weilan Pan
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Michael T Pirnot
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Marc Poirier
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Mikhail Reibarkh
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Benjamin D Sherry
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Zhiguo Jake Song
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Lushi Tan
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Ben W H Turnbull
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Deeptak Verma
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Jacob H Waldman
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Lu Wang
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Tao Wang
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Matthew S Winston
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Feng Xu
- Department of Process Research and Development, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
12
|
Chung JYL, Kassim AM, Simmons B, Davis TA, Song ZJ, Limanto J, Dalby SM, He CQ, Calabria R, Wright TJ, Campeau LC. Kilogram-Scale Synthesis of 2′-C-Methyl-arabino-Uridine from Uridine via Dynamic Selective Dipivaloylation. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- John Y. L. Chung
- Process Research & Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Amude M. Kassim
- Process Research & Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Bryon Simmons
- Process Research & Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Tyler A. Davis
- Process Research & Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Zhiguo J. Song
- Process Research & Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - John Limanto
- Process Research & Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Stephen M. Dalby
- Process Research & Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Cyndi Q. He
- Computational & Structural Chemistry, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Ralph Calabria
- Process Research & Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Timothy J. Wright
- Process Research & Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| | - Louis-Charles Campeau
- Process Research & Development, Merck & Co., Inc., P.O. Box 2000, Rahway, New Jersey 07065, United States
| |
Collapse
|