1
|
Wu Z, Ye Y, Guo Z, Wu X, Zhang L, Huang Z, Chen F. Stereoselective reduction of diarylmethanones via a ketoreductase@metal-organic framework. Org Biomol Chem 2024; 22:5198-5204. [PMID: 38864364 DOI: 10.1039/d4ob00744a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Mainly owing to their well-defined pore structures and high surface areas, metal-organic frameworks (MOFs) have recently become a versatile class of materials for enzyme immobilization. Nevertheless, most previous studies were focused on model enzymes such as cytochrome c, catalase, and glucose oxidase, with the application of MOF-derived biocomposites for (asymmetric) organic synthesis being rare. In the present work, the immobilization of the ketoreductase KmCR2 onto the zeolitic imidazolate framework (ZIF), a prominent type of MOF, was pursued using the controlled co-precipitation strategy, with a low 2-methylimidazole (2-mIM)/Zn molar ratio of 8 : 1 being employed. Such fabricated biocomposites denoted as KmCR2@ZIF were found to exist mainly in an amorphous phase, as suggested by the scanning electron microscopy (SEM) and powder X-ray diffraction (PXRD) data. Improved thermal and storage stabilities were observed for KmCR2@ZIF compared with the free enzyme. Stereoselective reduction of nine diarylmethanones 1 catalyzed by KmCR2@ZIF was performed, and the corresponding enantioenriched diarylmethanols 2 were afforded in 40-92% conversions with good to excellent optical purities (up to >99% ee). Critically, the current work demonstrated that the unique characteristic of KmCR2, namely the substituent position-controlled stereospecificity (meta versus para or ortho), was not altered upon the enzyme immobilization onto the ZIF.
Collapse
Affiliation(s)
- Zexin Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Yangtian Ye
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, 220 Handan Road, Shanghai, 200433, P. R. China.
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China
| | - Zijun Guo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China.
| | - Xiaofan Wu
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, 220 Handan Road, Shanghai, 200433, P. R. China.
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China
| | - Li Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zedu Huang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, 220 Handan Road, Shanghai, 200433, P. R. China.
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China
| | - Fener Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, P. R. China.
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, 220 Handan Road, Shanghai, 200433, P. R. China.
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P. R. China
| |
Collapse
|
2
|
Zeppieri M, Gagliano C, Spadea L, Salati C, Chukwuyem EC, Enaholo ES, D’Esposito F, Musa M. From Eye Care to Hair Growth: Bimatoprost. Pharmaceuticals (Basel) 2024; 17:561. [PMID: 38794131 PMCID: PMC11124470 DOI: 10.3390/ph17050561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Bimatoprost has emerged as a significant medication in the field of medicine over the past several decades, with diverse applications in ophthalmology, dermatology, and beyond. Originally developed as an ocular hypotensive agent, it has proven highly effective in treating glaucoma and ocular hypertension. Its ability to reduce intraocular pressure has established it as a first-line treatment option, improving management and preventing vision loss. In dermatology, bimatoprost has shown promising results in the promotion of hair growth, particularly in the treatment of alopecia and hypotrichosis. Its mechanism of action, stimulating the hair cycle and prolonging the growth phase, has led to the development of bimatoprost-containing solutions for enhancing eyelash growth. AIM The aim of our review is to provide a brief description, overview, and studies in the current literature regarding the versatile clinical use of bimatoprost in recent years. This can help clinicians determine the most suitable individualized therapy to meet the needs of each patient. METHODS Our methods involve a comprehensive review of the latest advancements reported in the literature in bimatoprost formulations, which range from traditional eye drops to sustained-release implants. These innovations offer extended drug delivery, enhance patient compliance, and minimize side effects. RESULTS The vast literature published on PubMed has confirmed the clinical usefulness of bimatoprost in lowering intraocular pressure and in managing patients with glaucoma. Numerous studies have shown promising results in dermatology and esthetics in promoting hair growth, particularly in treating alopecia and hypotrichosis. Its mechanism of action involves stimulating the hair cycle and prolonging the growth phase, leading to the development of solutions that enhance eyelash growth. The global use of bimatoprost has expanded significantly, with applications growing beyond its initial indications. Ongoing research is exploring its potential in glaucoma surgery, neuroprotection, and cosmetic procedures. CONCLUSIONS Bimatoprost has shown immense potential for addressing a wide range of therapeutic needs through various formulations and advancements. Promising future perspectives include the exploration of novel delivery systems such as contact lenses and microneedles to further enhance drug efficacy and patient comfort. Ongoing research and future perspectives continue to shape its role in medicine, promising further advancements and improved patient outcomes.
Collapse
Affiliation(s)
- Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Caterina Gagliano
- Department of Medicine and Surgery, University of Enna “Kore”, Piazza dell’Università, 94100 Enna, Italy
- Eye Clinic, Catania University, San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, “ Sapienza” University of Rome, 00142 Rome, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| | | | | | - Fabiana D’Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, London NW1 5QH, UK
| | - Mutali Musa
- Department of Optometry, University of Benin, Benin City 300238, Nigeria;
| |
Collapse
|
3
|
Yin Y, Wang J, Li J. A concise and scalable chemoenzymatic synthesis of prostaglandins. Nat Commun 2024; 15:2523. [PMID: 38514642 PMCID: PMC10957970 DOI: 10.1038/s41467-024-46960-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
Prostaglandins have garnered significant attention from synthetic chemists due to their exceptional biological activities. In this report, we present a concise chemoenzymatic synthesis method for several representative prostaglandins, achieved in 5 to 7 steps. Notably, the common intermediate bromohydrin, a radical equivalent of Corey lactone, is chemoenzymatically synthesized in only two steps, which allows us to complete the synthesis of prostaglandin F2α in five steps on a 10-gram scale. The chiral cyclopentane core is introduced with high enantioselectivity, while the lipid chains are sequentially incorporated through a cost-effective process involving bromohydrin formation, nickel-catalyzed cross-couplings, and Wittig reactions. This cost-efficient synthesis route for prostaglandins holds the potential to make prostaglandin-related drugs more affordable and facilitate easier access to their analogues.
Collapse
Affiliation(s)
- Yunpeng Yin
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Jinxin Wang
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jian Li
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Dai Z, Gong Z, Wang C, Long W, Liu D, Zhang H, Lei A. The role of hormones in ILC2-driven allergic airway inflammation. Scand J Immunol 2024; 99:e13357. [PMID: 39008023 DOI: 10.1111/sji.13357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/23/2023] [Accepted: 01/05/2024] [Indexed: 07/16/2024]
Abstract
Group 2 innate lymphoid cells (ILC2s) are a type of innate immune cells that produce a large amount of IL-5 and IL-13 and two cytokines that are crucial for various processes such as allergic airway inflammation, tissue repair and tissue homeostasis. It is known that damaged epithelial-derived alarmins, such as IL-33, IL-25 and thymic stromal lymphopoietin (TSLP), are the predominant ILC2 activators that mediate the production of type 2 cytokines. In recent years, abundant studies have found that many factors can regulate ILC2 development and function. Hormones synthesized by the body's endocrine glands or cells play an important role in immune response. Notably, ILC2s express hormone receptors and their proliferation and function can be modulated by multiple hormones during allergic airway inflammation. Here, we summarize the effects of multiple hormones on ILC2-driven allergic airway inflammation and discuss the underlying mechanisms and potential therapeutic significance.
Collapse
Affiliation(s)
- Zhongling Dai
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Zhande Gong
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Cui Wang
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - WeiXiang Long
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Duo Liu
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Haijun Zhang
- Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Aihua Lei
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
5
|
Willetts A. Bicyclo[3.2.0]carbocyclic Molecules and Redox Biotransformations: The Evolution of Closed-Loop Artificial Linear Biocatalytic Cascades and Related Redox-Neutral Systems. Molecules 2023; 28:7249. [PMID: 37959669 PMCID: PMC10649493 DOI: 10.3390/molecules28217249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/11/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
The role of cofactor recycling in determining the efficiency of artificial biocatalytic cascades has become paramount in recent years. Closed-loop cofactor recycling, which initially emerged in the 1990s, has made a valuable contribution to the development of this aspect of biotechnology. However, the evolution of redox-neutral closed-loop cofactor recycling has a longer history that has been integrally linked to the enzymology of oxy-functionalised bicyclo[3.2.0]carbocyclic molecule metabolism throughout. This review traces that relevant history from the mid-1960s to current times.
Collapse
Affiliation(s)
- Andrew Willetts
- Curnow Consultancies Ltd., Trewithen House, Helston TR13 9PQ, Cornwall, UK
| |
Collapse
|
6
|
Wohlgemuth R. Synthesis of Metabolites and Metabolite-like Compounds Using Biocatalytic Systems. Metabolites 2023; 13:1097. [PMID: 37887422 PMCID: PMC10608848 DOI: 10.3390/metabo13101097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/28/2023] Open
Abstract
Methodologies for the synthesis and purification of metabolites, which have been developed following their discovery, analysis, and structural identification, have been involved in numerous life science milestones. The renewed focus on the small molecule domain of biological cells has also created an increasing awareness of the rising gap between the metabolites identified and the metabolites which have been prepared as pure compounds. The design and engineering of resource-efficient and straightforward synthetic methodologies for the production of the diverse and numerous metabolites and metabolite-like compounds have attracted much interest. The variety of metabolic pathways in biological cells provides a wonderful blueprint for designing simplified and resource-efficient synthetic routes to desired metabolites. Therefore, biocatalytic systems have become key enabling tools for the synthesis of an increasing number of metabolites, which can then be utilized as standards, enzyme substrates, inhibitors, or other products, or for the discovery of novel biological functions.
Collapse
Affiliation(s)
- Roland Wohlgemuth
- MITR, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego Street 116, 90-924 Lodz, Poland;
- Swiss Coordination Committee Biotechnology (SKB), 8021 Zurich, Switzerland
- European Society of Applied Biocatalysis (ESAB), 1000 Brussels, Belgium
| |
Collapse
|
7
|
Kawauchi G, Suga Y, Toda S, Hayashi Y. Organocatalyst-mediated, pot-economical total synthesis of latanoprost. Chem Sci 2023; 14:10081-10086. [PMID: 37772091 PMCID: PMC10530343 DOI: 10.1039/d3sc02978f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/30/2023] [Indexed: 09/30/2023] Open
Abstract
The enantioselective total synthesis of latanoprost, an antiglaucoma agent, has been accomplished with excellent diastereo- and enantioselectivities in a pot-economical manner using six reaction vessels. An enantioselective Krische allylation was conducted in the first pot. In the second pot, olefin metathesis, silyl protection, and hydrogenolysis proceeded efficiently. In the third pot, an organocatalyst-mediated Michael reaction proceeded with excellent diastereoselectivity. The fourth pot involved a substrate-controlled Mukaiyama intramolecular aldol reaction and elimination of HNO2 to afford a methylenecyclopentanone, also with excellent diastereoselectivity. The fifth pot involved a Michael reaction of vinyl cuprate. In the sixth pot, three reactions, a cis-selective olefin metathesis, diastereoselective reduction, and deprotection, afforded latanoprost. Nearly optically pure latanoprost was obtained, and the total yield was 24%.
Collapse
Affiliation(s)
- Genki Kawauchi
- Department of Chemistry, Graduate School of Science, Tohoku University Sendai 980-8578 Japan
| | - Yurina Suga
- Department of Chemistry, Graduate School of Science, Tohoku University Sendai 980-8578 Japan
| | - Shunsuke Toda
- Department of Chemistry, Graduate School of Science, Tohoku University Sendai 980-8578 Japan
| | - Yujiro Hayashi
- Department of Chemistry, Graduate School of Science, Tohoku University Sendai 980-8578 Japan
| |
Collapse
|
8
|
Vanable EP, Habgood LG, Patrone JD. Current Progress in the Chemoenzymatic Synthesis of Natural Products. Molecules 2022; 27:molecules27196373. [PMID: 36234909 PMCID: PMC9571504 DOI: 10.3390/molecules27196373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Natural products, with their array of structural complexity, diversity, and biological activity, have inspired generations of chemists and driven the advancement of techniques in their total syntheses. The field of natural product synthesis continuously evolves through the development of methodologies to improve stereoselectivity, yield, scalability, substrate scope, late-stage functionalization, and/or enable novel reactions. One of the more interesting and unique techniques to emerge in the last thirty years is the use of chemoenzymatic reactions in the synthesis of natural products. This review highlights some of the recent examples and progress in the chemoenzymatic synthesis of natural products from 2019–2022.
Collapse
Affiliation(s)
- Evan P. Vanable
- Department of Chemistry and Biochemistry, Elmhurst University, Elmhurst, IL 60126, USA
| | - Laurel G. Habgood
- Department of Chemistry, Rollins College, Winter Park, FL 32789, USA
| | - James D. Patrone
- Department of Chemistry, Rollins College, Winter Park, FL 32789, USA
- Correspondence:
| |
Collapse
|
9
|
Chemo-enzymatic synthesis of natural products and their analogs. Curr Opin Biotechnol 2022; 77:102759. [PMID: 35908314 DOI: 10.1016/j.copbio.2022.102759] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022]
Abstract
Enzymes continue to gain recognition as valuable tools in synthetic chemistry as they enable transformations, which elude conventional organochemical approaches. As such, the progressing expansion of the biocatalytic arsenal has introduced unprecedented opportunities for new synthetic strategies and retrosynthetic disconnections. As a result, enzymes have found a solid foothold in modern natural product synthesis for applications ranging from the generation of early chiral synthons to endgame transformations, convergent synthesis, and cascade reactions for the rapid construction of molecular complexity. As a primer to the state-of-the-art concerning strategic uses of enzymes in natural product synthesis and the underlying concepts, this review highlights selected recent literature examples, which make a strong case for the admission of enzymatic methodologies into the standard repertoire for complex small-molecule synthesis.
Collapse
|
10
|
Gao L, Lai L, Ye B, Liu M, Cheng D, Jiang M, Chen F. Continuous-flow synthesis of N,N′-bis(2,2,6,6-tetramethyl-4-piperidinyl)-1,6-hexanediamine (DTMPA) in a Micro fixed-bed reactor. J Flow Chem 2022. [DOI: 10.1007/s41981-022-00230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Li W, Jiang M, Liu M, Ling X, Xia Y, Wan L, Chen F. Development of a Fully Continuous-Flow Approach Towards Asymmetric Total Synthesis of Tetrahydroprotoberberine Natural Alkaloids. Chemistry 2022; 28:e202200700. [PMID: 35357730 DOI: 10.1002/chem.202200700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 11/06/2022]
Abstract
Continuous flow synthetic technologies had been widely applied in the total synthesis in the past few decades. Fully continuous flow synthesis is still extremely focused on multi-step synthesis of complex natural pharmaceutical molecules. Thus, the development of fully continuous flow total synthesis of natural products is in demand but challenging. Herein, we demonstrated the first fully continuous flow approach towards asymmetric total synthesis of natural tetrahydroprotoberberine alkaloids, (-)-isocanadine, (-)-tetrahydropseudocoptisine, (-)-stylopine and (-)-nandinine. This method features a concise linear sequence involving four chemical transformations and three on-line work-up processing in an integrated flow platform, without any intermediate purification. The overall yield and enantioselectivity of this four-step continuous flow chemistry were up to 50 % and 92 %ee, respectively, in a total residence time of 32.5 min, corresponding to a throughput of 145 mg/h.
Collapse
Affiliation(s)
- Weijian Li
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Meifen Jiang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| | - Minjie Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| | - Xu Ling
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yingqi Xia
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Li Wan
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| | - Fener Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, China
| |
Collapse
|
12
|
Yi X, Long X, Chen Y, Cen X, Tang P, Chen F. Asymmetric total synthesis of prostaglandin C 2 TBS ether. Chem Commun (Camb) 2022; 58:6000-6003. [PMID: 35485419 DOI: 10.1039/d2cc01737g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We disclose an asymmetric total synthesis of prostaglandin C2 TBS ether, a derivative of an extremely sensitive natural prostaglandin C2. The key to the synthesis is a SmI2-mediated ketyl-enoate reaction that leads to the formation of the functionalized cyclopentane ring with high-level stereochemical control. Access to the crucial alkene system is realized late in the synthesis by the implementation of a Grignard addition/dehydration/metathesis sequence.
Collapse
Affiliation(s)
- Xiaofen Yi
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Xueyu Long
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Yu Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Xiangling Cen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Pei Tang
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Fener Chen
- Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China. .,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
13
|
Yang H, Liu J, Hu P, Gao L, Huang Z, Chen F. Asymmetric total synthesis of (+)-(2 R,4' R,8' R)-α-tocopherol enabled by enzymatic desymmetrization. Org Biomol Chem 2022; 20:2909-2921. [PMID: 35322842 DOI: 10.1039/d2ob00384h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new and highly stereoselective synthesis of chiral diol (S)-14, the common synthetic intermediate to (+)-(2R,4'R,8'R)-α-tocopherol (1), was accomplished in seven steps with 13.8% overall yield. This developed route featured a lipase-catalyzed desymmetric hydrolysis of prochiral diester 39a, which was prepared through a challenging Heck coupling, to chiral quaternary carbon-containing monoester (R)-37a of the correct configuration in 81% yield and 96.7% ee, to the best of our knowledge, leading to the most efficient enzymatic desymmetric synthesis of the chiral chroman skeleton of vitamin E members reported to date. Coupled with the modified preparation of the phytol-derived side chain, the chemoenzymatic total synthesis of 1 was completed in 15 longest linear steps with 3.1% overall yield.
Collapse
Affiliation(s)
- Haidi Yang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China.
| | - Jinyao Liu
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China.
| | - Pan Hu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Liang Gao
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Zedu Huang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China.
| | - Fener Chen
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China. .,Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| |
Collapse
|
14
|
Zhang K, Ke M, Liu Z, Zuo S, Chen FE. One-Pot Synthesis of Cyclopentenols from Vinylethylene Carbonates via Palladium-Catalyzed Decarboxylative Allylation and Cascade Oxidation-Cyclization. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ke Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University,Yanbian University, Yanji 133000, People’s Republic of China
| | - Miaolin Ke
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People’s Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People’s Republic of China
| | - Zhigang Liu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People’s Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People’s Republic of China
| | - Sheng Zuo
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People’s Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People’s Republic of China
| | - Fen-er Chen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University,Yanbian University, Yanji 133000, People’s Republic of China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, People’s Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People’s Republic of China
| |
Collapse
|
15
|
Cheng F, Chen T, Huang YQ, Li JW, Zhou C, Xiao X, Chen FE. Copper-Catalyzed Ullmann-Type Coupling and Decarboxylation Cascade of Arylhalides with Malonates to Access α-Aryl Esters. Org Lett 2021; 24:115-120. [PMID: 34932360 DOI: 10.1021/acs.orglett.1c03688] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have developed a high-efficiency and practical Cu-catalyzed cross-coupling to directly construct versatile α-aryl-esters by utilizing readily available aryl bromides (or chlorides) and malonates. These gram-scale approaches occur with turnovers of up to 1560 and are smoothly conducted by the usage of a low catalyst loading, a new available ligand, and a green solvent. A variety of functional groups are tolerated, and the application occurs with α-aryl-esters to access nonsteroidal anti-inflammatory drugs (NSAIDs) on the gram scale.
Collapse
Affiliation(s)
- Fei Cheng
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Tao Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Yin-Qiu Huang
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jia-Wei Li
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Chen Zhou
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Xiao Xiao
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Fen-Er Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, P. R. China.,Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai 200433, P. R. China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, P. R. China
| |
Collapse
|